Some common families of continuous random variables

Math 30530, Fall 2012

November 27, 2012

Math 30530 (Fall 2012)

Continuous Random Variables

The Uniform random variable

- Name: Uniform(a, b)
- When to use: When you want to model selecting a random number in an interval, with no part of the interval favored over any other
- Parameters:
 - a: the start point of the interval
 - b: the end point of the interval
- Density function:

$$f_X(x) = \begin{cases} 0 & \text{if } x < a \\ \frac{1}{b-a} & \text{if } a \le x \le b \\ 0 & \text{if } x > b \end{cases}$$

•
$$\mu = E(X) = \frac{b+a}{2}$$

• $\sigma^2 = \operatorname{Var}(X) = \frac{(b-a)^2}{12}$

The two-dimensional Uniform random variable

- **Name**: Uniform(*R*)
- When to use: When you want to model selecting a random point in a finite region of the plane, with no part of the region favored over any other
- Parameter:
 - R: the region of interest
- What it really is: A pair (*X*, *Y*) of random variables, *X* the *x*-coordinate of the chosen point, *Y* the *y*-coordinate
- Density function:

$$f_{X,Y}(x,y) = \begin{cases} 0 & \text{if } (x,y) \notin R \\ \frac{1}{\operatorname{Area}(R)} & \text{if } (x,y) \in R \end{cases}$$

• Statistics: None, since it's a pair of random variables

The Poisson process

Events occur repeatedly over a period of time

- Occurrences in disjoint time intervals are independent
- Simultaneous occurrences are very rare
- The average number of occurrences per unit time is constant throughout the time period (usually denoted λ)

The Exponential random variable

- **Name**: Exponential(λ)
- When to use: When you are measuring the time until the first occurrence of an event, when the occurrences satisfy the conditions of the Poisson process

Parameter:

- λ : the average number of occurrences per unit time
- Density function:

$$f_X(x) = \left\{ egin{array}{cc} 0 & ext{if } x < 0 \ \lambda e^{-\lambda x} & ext{if } x \geq 0 \end{array}
ight.$$

•
$$\mu = E(X) = \frac{1}{\lambda}$$

• $\sigma^2 = \operatorname{Var}(X) = \frac{1}{\lambda^2}$

Uses of the Normal random variable

- Models distribution of many physical measurements
 - height
 - weight
 - ▶ ...
- Models error made by measuring instruments
- Give a good approximation to Binomial(*n*, *p*) for large *n* and fixed *p*
- Models the distribution of a quantity that is the aggregate of lots of mostly independent factors or smaller quantities
- Models the distribution of the sum of independent, identically distributed random variables
- . . .
- A good distribution to use when you know (roughly) the average and variance of a quantity being measured, know that the measurements fall off at the same rate on both sides of the mean, but don't know the exact distribution

The Standard Normal random variable

- Name: $Z = \mathcal{N}(0, 1)$
- When to use: When you have problems concerning the general normal, and want to use a table to calculate associated probabilities. Transformation that takes general normal X with mean μ and variance σ^2 to standard normal is

$$Z = \frac{X - \mu}{\sigma}$$

Parameters:

- None
- Density function:

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$$

Statistics:

• $\mu = E(Z) = 0$ • $\sigma^2 = Var(Z) = 1$

The Normal random variable

• Name: $\mathcal{N}(\mu, \sigma^2)$

When to use: Numerous situations; see separate page

• Relation to standard normal Z:

$$X = \sigma Z + \mu$$
 and $Z = \frac{X - \mu}{\sigma}$

Parameters:

- µ: the average value
- σ²: the variance
- Density function:

$$f_X(x) = \frac{1}{(\sqrt{2\pi})\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

•
$$\mu = E(X) = \mu$$

• $\sigma^2 = \operatorname{Var}(X) = \sigma^2$

Sums of independent normal random variables

Let $X_1, X_2, ..., X_n$ be independent normal random variables, each with mean μ and variance σ^2 , and set

$$S_n=X_1+X_2+\ldots+X_n.$$

Then

$$S_n \sim \mathcal{N}(n\mu, n\sigma^2)$$

and

$$\frac{S_n - n\mu}{\sqrt{n}\sigma} \sim \mathcal{N}(0, 1) = Z$$

Both statements are exact

The central limit theorem

Let $X_1, X_2, ..., X_n$ be independent, identically distributed random variables, each with mean μ and variance σ^2 , and set

$$S_n = X_1 + X_2 + \ldots + X_n.$$

Then for large n

$$S_n pprox \mathcal{N}(n\mu, n\sigma^2)$$

and

$$\frac{S_n - n\mu}{\sqrt{n}\sigma} \approx \mathcal{N}(0, 1) = Z$$

- Both statements are approximate
- Works for any starting random variable X, discrete or continuous
- An exact form of the second statement: for each $-\infty < t < \infty$,

$$\lim_{n\to\infty} \Pr\left(\frac{S_n - n\mu}{\sqrt{n\sigma}} \le t\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^t e^{\frac{-x^2}{2}} dx$$

DeMoivre-Laplace Theorem, Poisson approximation

DeMoivre-Laplace: If $X \sim \text{Binomial}(n, p)$ then

 $X \approx \mathcal{N}(np, npq)$

Rule of thumb: ok when np(1-p) > 10

The continuity correction: if $X \sim \text{Binomial}(n, p)$ and $Y \sim \mathcal{N}(np, npq)$,

<u>To Calculate</u>	<u>Use</u>
$\Pr(a \le X \le b)$	$\Pr(a5 \le Y \le b + .5)$
Pr(a < X < b)	$\Pr(a + .5 \le Y \le b5)$
$\Pr(a \le X < b)$	$\Pr(a5 \le Y \le b5)$
$\Pr(a < X \leq b)$	$\Pr(a + .5 \le Y \le b + .5)$

Use whenever central limit theorem is used to approximate the sum of independent *discrete* random variables

Poisson approximation: If $X \sim \text{Poisson}(\lambda)$ then

$$X \approx \mathcal{N}(\lambda, \lambda)$$

Rule of thumb: ok when $\lambda > 10$

Math 30530 (Fall 2012)

The Gamma random variable

- Name: Gamma (r, λ)
- When to use: When you are measuring the time until the *r*th occurrence of an event, when the occurrences satisfy the conditions of the Poisson process

Parameters:

- λ : the average number of occurrences per unit time
- r: the number of occurrences you are waiting to see

Density function:

$$f_X(x) = \left\{ egin{array}{cc} 0 & ext{if } x < 0 \ rac{\lambda^r}{(r-1)!} x^{r-1} e^{-\lambda x} & ext{if } x \geq 0 \end{array}
ight.$$

•
$$\mu = E(X) = \frac{r}{\lambda}$$

• $\sigma^2 = \operatorname{Var}(X) = \frac{r}{\lambda^2}$