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The Uniform random variable
Name: Uniform(a,b)
When to use: When you want to model selecting a random
number in an interval, with no part of the interval favored over any
other
Parameters:

I a: the start point of the interval
I b: the end point of the interval

Density function:

fX (x) =


0 if x < a

1
b−a if a ≤ x ≤ b
0 if x > b

Statistics:
I µ = E(X ) = b+a

2

I σ2 = Var(X ) = (b−a)2

12
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The two-dimensional Uniform random variable
Name: Uniform(R)

When to use: When you want to model selecting a random point
in a finite region of the plane, with no part of the region favored
over any other
Parameter:

I R: the region of interest

What it really is: A pair (X ,Y ) of random variables, X the
x-coordinate of the chosen point, Y the y -coordinate
Density function:

fX ,Y (x , y) =

{
0 if (x , y) 6∈ R

1
Area(R) if (x , y) ∈ R

Statistics: None, since it’s a pair of random variables
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The Poisson process
Events occur repeatedly over a period of time

Occurrences in disjoint time intervals are independent
Simultaneous occurrences are very rare
The average number of occurrences per unit time is constant
throughout the time period (usually denoted λ)
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The Exponential random variable
Name: Exponential(λ)

When to use: When you are measuring the time until the first
occurrence of an event, when the occurrences satisfy the
conditions of the Poisson process
Parameter:

I λ: the average number of occurrences per unit time

Density function:

fX (x) =
{

0 if x < 0
λe−λx if x ≥ 0

Statistics:
I µ = E(X ) = 1

λ
I σ2 = Var(X ) = 1

λ2
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Uses of the Normal random variable
Models distribution of many physical measurements

I height
I weight
I . . .

Models error made by measuring instruments
Give a good approximation to Binomial(n,p) for large n and fixed p
Models the distribution of a quantity that is the aggregate of lots of
mostly independent factors or smaller quantities
Models the distribution of the sum of independent, identically
distributed random variables
. . .

A good distribution to use when you know (roughly) the average
and variance of a quantity being measured, know that the
measurements fall off at the same rate on both sides of the mean,
but don’t know the exact distribution
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The Standard Normal random variable
Name: Z = N (0,1)
When to use: When you have problems concerning the general
normal, and want to use a table to calculate associated
probabilities. Transformation that takes general normal X with
mean µ and variance σ2 to standard normal is

Z =
X − µ
σ

Parameters:
I None

Density function:

fZ (z) =
1√
2π

e−z2/2

Statistics:
I µ = E(Z ) = 0
I σ2 = Var(Z ) = 1
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The Normal random variable
Name: N (µ, σ2)

When to use: Numerous situations; see separate page
Relation to standard normal Z :

X = σZ + µtttttttandtttttttZ =
X − µ
σ

Parameters:
I µ: the average value
I σ2: the variance

Density function:

fX (x) =
1

(
√

2π)σ
e−

(x−µ)2

2σ2

Statistics:
I µ = E(X ) = µ
I σ2 = Var(X ) = σ2
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Sums of independent normal random variables
Let X1,X2, . . . ,Xn be independent normal random variables, each with
mean µ and variance σ2, and set

Sn = X1 + X2 + . . .+ Xn.

Then
Sn ∼ N (nµ,nσ2)

and
Sn − nµ√

nσ
∼ N (0,1) = Z

Both statements are exact
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The central limit theorem
Let X1,X2, . . . ,Xn be independent, identically distributed random
variables, each with mean µ and variance σ2, and set

Sn = X1 + X2 + . . .+ Xn.

Then for large n
Sn ≈ N (nµ,nσ2)

and
Sn − nµ√

nσ
≈ N (0,1) = Z

Both statements are approximate
Works for any starting random variable X , discrete or continuous
An exact form of the second statement: for each −∞ < t <∞,

lim
n→∞

Pr
(

Sn − nµ√
nσ

≤ t
)

=
1√
2π

∫ t

−∞
e

−x2
2 dx
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DeMoivre-Laplace Theorem, Poisson approximation
DeMoivre-Laplace: If X ∼ Binomial(n,p) then

X ≈ N (np,npq)

Rule of thumb: ok when np(1− p) > 10

The continuity correction: if X ∼ Binomial(n,p) and Y ∼ N (np,npq),

To Calculate Use
Pr(a ≤ X ≤ b) Pr(a− .5 ≤ Y ≤ b + .5)
Pr(a < X < b) Pr(a + .5 ≤ Y ≤ b − .5)
Pr(a ≤ X < b) Pr(a− .5 ≤ Y ≤ b − .5)
Pr(a < X ≤ b) Pr(a + .5 ≤ Y ≤ b + .5)

Use whenever central limit theorem is used to approximate the sum of
independent discrete random variables

Poisson approximation: If X ∼ Poisson(λ) then

X ≈ N (λ, λ)

Rule of thumb: ok when λ > 10
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The Gamma random variable
Name: Gamma(r , λ)
When to use: When you are measuring the time until the r th
occurrence of an event, when the occurrences satisfy the
conditions of the Poisson process
Parameters:

I λ: the average number of occurrences per unit time
I r : the number of occurrences you are waiting to see

Density function:

fX (x) =

{
0 if x < 0
λr

(r−1)!x
r−1e−λx if x ≥ 0

Statistics:
I µ = E(X ) = r

λ
I σ2 = Var(X ) = r

λ2
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