# Some common families of continuous random variables 

Math 30530, Fall 2012

November 27, 2012

## The Uniform random variable

- Name: Uniform $(a, b)$
- When to use: When you want to model selecting a random number in an interval, with no part of the interval favored over any other
- Parameters:
- a: the start point of the interval
- $b$ : the end point of the interval
- Density function:

$$
f_{X}(x)= \begin{cases}0 & \text { if } x<a \\ \frac{1}{b-a} & \text { if } a \leq x \leq b \\ 0 & \text { if } x>b\end{cases}
$$

- Statistics:
- $\mu=E(X)=\frac{b+a}{2}$
- $\sigma^{2}=\operatorname{Var}(X)=\frac{(b-a)^{2}}{12}$


## The two-dimensional Uniform random variable

- Name: Uniform $(R)$
- When to use: When you want to model selecting a random point in a finite region of the plane, with no part of the region favored over any other
- Parameter:
- $R$ : the region of interest
- What it really is: A pair $(X, Y)$ of random variables, $X$ the $x$-coordinate of the chosen point, $Y$ the $y$-coordinate
- Density function:

$$
f_{X, Y}(x, y)= \begin{cases}0 & \text { if }(x, y) \notin R \\ \frac{1}{\operatorname{Area}(R)} & \text { if }(x, y) \in R\end{cases}
$$

- Statistics: None, since it's a pair of random variables


## The Poisson process

Events occur repeatedly over a period of time

- Occurrences in disjoint time intervals are independent
- Simultaneous occurrences are very rare
- The average number of occurrences per unit time is constant throughout the time period (usually denoted $\lambda$ )


## The Exponential random variable

- Name: Exponential $(\lambda)$
- When to use: When you are measuring the time until the first occurrence of an event, when the occurrences satisfy the conditions of the Poisson process
- Parameter:
- $\lambda$ : the average number of occurrences per unit time
- Density function:

$$
f_{X}(x)= \begin{cases}0 & \text { if } x<0 \\ \lambda e^{-\lambda x} & \text { if } x \geq 0\end{cases}
$$

- Statistics:
- $\mu=E(X)=\frac{1}{\lambda}$
- $\sigma^{2}=\operatorname{Var}(X)=\frac{1}{\lambda^{2}}$


## Uses of the Normal random variable

- Models distribution of many physical measurements
- height
- weight
- Models error made by measuring instruments
- Give a good approximation to $\operatorname{Binomial}(n, p)$ for large $n$ and fixed $p$
- Models the distribution of a quantity that is the aggregate of lots of mostly independent factors or smaller quantities
- Models the distribution of the sum of independent, identically distributed random variables
- A good distribution to use when you know (roughly) the average and variance of a quantity being measured, know that the measurements fall off at the same rate on both sides of the mean, but don't know the exact distribution


## The Standard Normal random variable

- Name: $Z=\mathcal{N}(0,1)$
- When to use: When you have problems concerning the general normal, and want to use a table to calculate associated probabilities. Transformation that takes general normal $X$ with mean $\mu$ and variance $\sigma^{2}$ to standard normal is

$$
Z=\frac{X-\mu}{\sigma}
$$

- Parameters:
- None
- Density function:

$$
f_{Z}(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}
$$

- Statistics:
- $\mu=E(Z)=0$
- $\sigma^{2}=\operatorname{Var}(Z)=1$


## The Normal random variable

- Name: $\mathcal{N}\left(\mu, \sigma^{2}\right)$
- When to use: Numerous situations; see separate page
- Relation to standard normal $Z$ :

$$
X=\sigma Z+\mu \quad \text { and } \quad Z=\frac{X-\mu}{\sigma}
$$

- Parameters:
- $\mu$ : the average value
- $\sigma^{2}$ : the variance
- Density function:

$$
f_{X}(x)=\frac{1}{(\sqrt{2 \pi}) \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

- Statistics:
- $\mu=E(X)=\mu$
- $\sigma^{2}=\operatorname{Var}(X)=\sigma^{2}$


## Sums of independent normal random variables

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent normal random variables, each with mean $\mu$ and variance $\sigma^{2}$, and set

$$
S_{n}=X_{1}+X_{2}+\ldots+X_{n}
$$

Then

$$
S_{n} \sim \mathcal{N}\left(n \mu, n \sigma^{2}\right)
$$

and

$$
\frac{S_{n}-n \mu}{\sqrt{n} \sigma} \sim \mathcal{N}(0,1)=Z
$$

- Both statements are exact


## The central limit theorem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent, identically distributed random variables, each with mean $\mu$ and variance $\sigma^{2}$, and set

$$
S_{n}=X_{1}+X_{2}+\ldots+X_{n}
$$

Then for large $n$

$$
S_{n} \approx \mathcal{N}\left(n \mu, n \sigma^{2}\right)
$$

and

$$
\frac{S_{n}-n \mu}{\sqrt{n} \sigma} \approx \mathcal{N}(0,1)=Z
$$

- Both statements are approximate
- Works for any starting random variable $X$, discrete or continuous
- An exact form of the second statement: for each $-\infty<t<\infty$,

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\frac{S_{n}-n \mu}{\sqrt{n} \sigma} \leq t\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} e^{\frac{-x^{2}}{2}} d x
$$

## DeMoivre-Laplace Theorem, Poisson approximation

DeMoivre-Laplace: If $X \sim \operatorname{Binomial}(n, p)$ then

$$
X \approx \mathcal{N}(n p, n p q)
$$

Rule of thumb: ok when $n p(1-p)>10$
The continuity correction: if $X \sim \operatorname{Binomial}(n, p)$ and $Y \sim \mathcal{N}(n p, n p q)$,

$$
\begin{array}{cc}
\text { To Calculate } & \underline{\text { Use }} \\
\operatorname{Pr}(a \leq X \leq b) & \operatorname{Pr}(a-.5 \leq Y \leq b+.5) \\
\operatorname{Pr}(a<X<b) & \operatorname{Pr}(a+.5 \leq Y \leq b-.5) \\
\operatorname{Pr}(a \leq X<b) & \operatorname{Pr}(a-.5 \leq Y \leq b-.5) \\
\operatorname{Pr}(a<X \leq b) & \operatorname{Pr}(a+.5 \leq Y \leq b+.5)
\end{array}
$$

Use whenever central limit theorem is used to approximate the sum of independent discrete random variables
Poisson approximation: If $X \sim \operatorname{Poisson}(\lambda)$ then

$$
X \approx \mathcal{N}(\lambda, \lambda)
$$

Rule of thumb: ok when $\lambda>10$

## The Gamma random variable

- Name: $\operatorname{Gamma}(r, \lambda)$
- When to use: When you are measuring the time until the $r$ th occurrence of an event, when the occurrences satisfy the conditions of the Poisson process
- Parameters:
- $\lambda$ : the average number of occurrences per unit time
- $r$ : the number of occurrences you are waiting to see
- Density function:

$$
f_{X}(x)= \begin{cases}0 & \text { if } x<0 \\ \frac{\lambda^{r}}{(r-1)!} x^{r-1} e^{-\lambda x} & \text { if } x \geq 0\end{cases}
$$

- Statistics:
- $\mu=E(X)=\frac{r}{\lambda}$
- $\sigma^{2}=\operatorname{Var}(X)=\frac{r}{\lambda^{2}}$

