Math 30530 - Introduction to Probability

Quiz 3 - Wednesday October 3, 2012
Solutions

3 in every 10 copies of today's Observer had an insert with a discount voucher for Sorin's restaurant (so when you pick up a copy of the Observer, there is a $3 / 10$ probability of finding such an insert; you may assume that different copies are independent of each other).

1. How likely is it that you have to look in more than six copies of the Observer in order to find your first insert?
Solution: Let X be the number of copies you have to look in until you find your first insert; $X \sim$ Geometric(3/10). The event $\{X>6\}$ that you have to look in more than six copies of the Observer in order to find your first insert is the same as the event that on the first attempts, you failed to find an insert; so (by independence) $\operatorname{Pr}(X>6)=(7 / 10)^{6} \approx .1176$.
2. You have searched in 4 copies of the Observer, and still haven't found the insert. How likely is it that you will have to look in more than 10 copies in total to find your first insert?
Solution: X is memoryless, so after failing to find an insert in the first 4 copies you looked in, you are starting a fresh geometric random variable; $\operatorname{Pr}(X>10 \mid X>4)=\operatorname{Pr}(X>6)=$ $(7 / 10)^{6}$.
3. On average how many copies of the Observer do you have to look in until you have found 9 inserts in total?
Solution: Let Y be the number of copies you have to look in until you find 9 inserts; $Y \sim \operatorname{NegBinomial}(3,3 / 10)$, and so $E(Y)=9 \times(1 /(3 / 10))=30$.
