Math 30530 - Introduction to Probability

Quiz 2 - Wednesday September 19, 2012
Solutions

1. There are three presses in my kitchen. The first two both contain ten boxes of quick-quinoa and 5 boxes of quick-couscous. Each of these boxes take ten minutes to prepare. The last press only has regular couscous, which takes 20 minutes to prepare. I reach into a randomly chosen press, select a random box, and prepare the contents for my dinner. Let X be the Bernoulli random variable where success is preparing couscous (regular or quick-) for dinner, and let Y be the number of minutes I spend preparing.
(a) Write down the joint mass function of X and Y.

Solution (5 pts): X has possible values 1 an 0 , and Y has possible values 10 and 20. The joint mass function is the specification of all possible pair-probabilities $\operatorname{Pr}(X=x, Y=y)$. We have

$$
\operatorname{Pr}(X=1, Y=10)=\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)=\frac{2}{9},
$$

because to have $X=1$ and $Y=10$ we must have picked quick-couscous: $2 / 3$ probability of picking one of the two presses with quick-couscous, and after that $1 / 3$ probability of actually sececting the couscous from the chosen press. We have

$$
\operatorname{Pr}(X=0, Y=10)=\left(\frac{2}{3}\right)\left(\frac{2}{3}\right)=\frac{4}{9},
$$

by similar reasoning. We have

$$
\operatorname{Pr}(X=1, Y=20)=\frac{1}{3},
$$

because the only way to get 20 minute couscous is to choose press 3 (and take anything from it). Finally, we have

$$
\operatorname{Pr}(X=0, Y=20)=0,
$$

because the only way to get 20 minute quinoa. For completeness we should say $\operatorname{Pr}(X=$ $x, Y=y)=0$ for all other pairs (x, y).
(b) Are X and Y independent? Explain.

Solution (2 pts): They seem to be dependent; if I give you the information $X=0$, that tells you that Y must be 10 , whereas if I give you no information about X, Y can be either 10 or 20 ; so information about X gives information about Y. To use the definition of independence, we could say that $\operatorname{Pr}(X=0, Y=20)=0$ while $\operatorname{Pr}(X=0) \operatorname{Pr}(Y=$ 20) $=(4 / 9)(1 / 3)=4 / 27$, so $\operatorname{Pr}(X=0, Y=20) \neq \operatorname{Pr}(X=0) \operatorname{Pr}(Y=20)$ and X and Y are not independent.
2. I'm rolling a dice five times, hoping to get three or more sixes. Exactly on of my first two rolls is a six. Given this information, what is the probability that I get three or more sixes in total?

Solution (3 pts): Given that I have rolled one six in two tries, I need to roll either 2 or 3 sixes in the remaining 3 tries. The number of sixes I roll in the last 3 tries, X, is a binomial random variable with $n=3, p=1 / 6$, so

$$
\operatorname{Pr}(X \geq 2)=\binom{3}{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{1}+\binom{3}{3}\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{0}=\frac{2}{27} .
$$

