Introduction to Probability

Math 30530, Section 01 - Fall 2012

Homework 7 - Solutions

1. GW 25.1: The area of the triangle is $9 / 2$, so on the triangle the joint density is $2 / 9$; everywhere else it is 0 . The region R of the triangle where $X+Y>2$ is shown shaded in figure 1 of the figures page, and $\operatorname{Pr}(X+Y \geq 2)$ is the double integral of the density over that region. Since the density is constant, this is just $2 / 9$ times the area of the region, or $(2 / 9) \times(5 / 2)=5 / 9$.
2. GW 25.2: As with the previous question, we calculate the area of the shaded region in figure 2 of the figures page, divided by the total area; it's $12 / 18$ or $2 / 3$.
3. $\mathbf{G W} 25.8:$ a) $\int_{1}^{2} \int_{3}^{4} \frac{1}{304}(x+1)\left(y^{2}+1\right) d y d x=\frac{25}{228} \approx .109649$.
b)

$$
f_{X}(x)= \begin{cases}0 & \text { if } x<0 \text { or } x>4 \\ \frac{1}{12}(x+1) & \text { if } 0 \leq x \leq 4\end{cases}
$$

c)

$$
f_{Y}(y)= \begin{cases}0 & \text { if } y<0 \text { or } y>4 \\ \frac{3}{76}\left(y^{2}+1\right) & \text { if } 0 \leq y \leq 4\end{cases}
$$

4. GW 25.20: We have to do a double integral over the shaded region shown in figure 3 of the figures page, of the joint density. This is best done as an iterated integral with x on the outside:

$$
\int_{x=0}^{1 / 2} \int_{y=-1}^{2 x}\left(\frac{1}{4} \cos x \sin y+\frac{1}{4}\right) d x d y=\frac{1}{48}(9-12 \sin (1 / 2)+4 \sin (3 / 2)) \approx .150768
$$

5. GW 26.4: The marginal density of X is

$$
f_{X}(x)= \begin{cases}0 & \text { if } x<0 \text { or } x>1 \\ \int_{0}^{1} \frac{12}{7}\left(x y+x^{2}\right) d y=\frac{6 x}{7}+\frac{12 x^{2}}{7} & \text { if } 0 \leq x \leq 1\end{cases}
$$

The marginal density of Y is

$$
f_{Y}(y)= \begin{cases}0 & \text { if } y<0 \text { or } y>1 \\ \int_{0}^{1} \frac{12}{7}\left(x y+x^{2}\right) d x=\frac{4}{7}+\frac{6 y}{7} & \text { if } 0 \leq y \leq 1\end{cases}
$$

The product of these marginals is not the original joint density, so they are not independent.
6. GW 26.7: a) As we will see below, $f_{X}(x) f_{Y}(y) \neq f_{X, Y}(x, y)$, so these random variables are not independent.
b) The marginal density of X is

$$
f_{X}(x)= \begin{cases}0 & \text { if } x<0 \text { or } x>10 \\ \int_{0}^{10-x} \frac{3 x y}{1250} d y=\frac{3 x(x-10)^{2}}{1250} & \text { if } 0 \leq x \leq 10\end{cases}
$$

The marginal density of Y is

$$
f_{Y}(y)= \begin{cases}0 & \text { if } y<0 \text { or } y>10 \\ \int_{0}^{10-y} \frac{3 x y}{1250} d x=\frac{3 y(y-10)^{2}}{1250} & \text { if } 0 \leq y \leq 10\end{cases}
$$

7. GW 26.8: We want $\operatorname{Pr}(X<Y)$. Assuming independence (otherwise we have no chance to solve the problem), the joint density of X and Y is

$$
f_{X, Y}(x, y)=120 e^{-12 x-10 y}
$$

(if $x, y \geq 0$; it's 0 otherwise).
$\operatorname{Pr}(X<Y)$ is the double integral of this density function over the shaded region in figure 4 of the figures page, i.e.

$$
\operatorname{Pr}(X<Y)=\int_{x=0}^{\infty} \int_{y=x}^{\infty} 120 e^{-12 x-10 y} d y d x=\frac{6}{11} \approx .5454 .
$$

8. GW 26.12: a) On the triangle (area 8) the joint density is $1 / 8$. The probability that $X<3, Y<3$ is the area of the shaded region in figure 5 of the figures page, divided by 8 , i.e. $7 / 8$.
9. GW 28.1: The marginal density of X is

$$
f_{X}(x)= \begin{cases}0 & \text { if } x<0 \text { or } x>3 \\ \int_{y=0}^{3-x} \frac{2}{9} d y=\frac{2(3-x)}{9} & \text { if } 0 \leq x \leq 3\end{cases}
$$

So $E(X)=\int_{0}^{3} x \frac{2(3-x)}{9} d x=1$.
10. GW 28.13: $E(X)=\int_{0}^{5} \frac{3 x}{245}\left(x^{2}+8\right) d x=\frac{615}{196} \approx 3.13776$.
11. GW 28.21: The marginal density of X is

$$
f_{X}(x)= \begin{cases}0 & \text { if } x<0 \text { or } x>2 \\ \int_{y=0}^{4} \frac{3}{80}\left(x^{2}+y\right) d y=\frac{3}{10}+\frac{3 x^{2}}{20} & \text { if } 0 \leq x \leq 2\end{cases}
$$

So $E(X)=\int_{0}^{2} x\left(\frac{3}{10}+\frac{3 x^{2}}{20}\right) d x=\frac{6}{5}=1.2$.
12. (a) $\mathbf{2 8 . 2 2}$ with one child:

Let D be the point of the perimeter of the rink where the door is located. Let D^{\prime} be the point opposite the door. Imagine breaking the perimeter at D^{\prime}, and rolling it out as a straight line on the x-axis with D at the origin (so it stretches from -50π to 50π). Let X be the position of the child when the mother arrives; X is uniform on $[-50 \pi, 50 \pi]$, so has density:

$$
f_{X}(x)= \begin{cases}0 & \text { if } x<-50 \pi \text { or } x>50 \pi \\ \frac{1}{100 \pi} & \text { if }-50 \pi \leq x \leq 50 \pi\end{cases}
$$

The mother is interested in the distance from her to the child. This is $Z=|X|$. The CDF of Z is given by

$$
F_{Z}(z)= \begin{cases}0 & \text { if } z<0 \\ \operatorname{Pr}(Z \leq z)=\operatorname{Pr}(-z \leq X \leq z)=\frac{2 z}{100 \pi} & \text { if } 0 \leq z \leq 50 \pi \\ 1 & \text { if } z>50 \pi\end{cases}
$$

The density of Z is given by differentiating the CDF:

$$
f_{Z}(z)= \begin{cases}0 & \text { if } z<0 \text { or } z>50 \pi \\ \frac{1}{50 \pi} & \text { if } 0 \leq z \leq 50 \pi\end{cases}
$$

So $E(Z)=\int_{0}^{50 \pi} \frac{z}{50 \pi} d z=25 \pi$.
(b) $\mathbf{2 8 . 2 2}$ with two children:

As before let D be the point of the perimeter of the rink where the door is located. Let D^{\prime} be the point opposite the door. Imagine breaking the perimeter at D^{\prime}, and rolling it out as a straight line on the x-axis with D at the origin (so it stretches from -50π to 50π). Let X be the position of the first child when the mother arrives and Y the position of the second; X, Y are uniform on $[-50 \pi, 50 \pi]$, and independent, so have joint density:

$$
f_{X, Y}(x, y)= \begin{cases}0 & \text { if } x<-50 \pi \text { or } x>50 \pi \text { or } y<-50 \pi \text { or } y>50 \pi \\ \frac{1}{(100 \pi)^{2}} & \text { if }-50 \pi \leq x, y \leq 50 \pi\end{cases}
$$

The mother is interested in the distance from her to the nearest child. This is $Z=\min \{|X|,|Y|\}$. The CDF of Z is given by

$$
F_{Z}(z)= \begin{cases}0 & \text { if } z<0 \\ \operatorname{Pr}(Z \leq z)=\operatorname{Pr}(\min |X|,|Y| \leq z) & \text { if } 0 \leq z \leq 50 \pi \\ 1 & \text { if } z>50 \pi\end{cases}
$$

To calculate $\operatorname{Pr}(\min |X|,|Y| \leq z)$, note that the event we are looking at is the union of $|X| \leq z$ and $|Y| \leq z$ (one or the other), and so

$$
\begin{aligned}
\operatorname{Pr}(\min |X|,|Y| \leq z) & =\operatorname{Pr}(|X| \leq z)+\operatorname{Pr}(|Y| \leq z)-\operatorname{Pr}(|X| \leq z,|Y| \leq z) \\
& =\frac{2 z}{100 \pi}+\frac{2 z}{100 \pi}-\left(\frac{2 z}{100 \pi}\right)^{2}
\end{aligned}
$$

(the very last part because X, Y are independent). So the density of Z, which is given by differentiating the CDF , is:

$$
f_{Z}(z)= \begin{cases}0 & \text { if } z<0 \text { or } z>50 \pi \\ \frac{1}{25 \pi}-\frac{2 z}{(50 \pi)^{2}} & \text { if } 0 \leq z \leq 50 \pi\end{cases}
$$

So $E(Z)=\int_{0}^{50 \pi} z\left(\frac{1}{25 \pi}-\frac{2 z}{(50 \pi)^{2}}\right) d z=(50 \pi) / 3$.
13. The following density is a special case of one that occurs fairly commonly in economics and social science. It's called the Pareto or Zipf density (Wikipedia has good pages on both). There's a Pareto density for each $\alpha>1$, and it's given by

$$
f_{\alpha}(x)= \begin{cases}0 & \text { if } x<1 \\ \frac{c}{x^{\alpha}} & \text { if } x \geq 1\end{cases}
$$

Here c is a constant that depends on α.
(a) For each $\alpha>1$, find the value of $c=c(\alpha)$ that makes f_{α} a valid density:

$$
\int_{1}^{\infty} \frac{c}{x^{\alpha}} d x=\left[\frac{c}{(1-\alpha) x^{\alpha-1}}\right]_{x=1}^{\infty}=\frac{c}{\alpha-1}
$$

So we must take $c=\alpha-1$.
(b) For which values of α does the density f_{α} have a finite expectation:

$$
E(X)=\int_{1}^{\infty} x \frac{\alpha-1}{x^{\alpha}} d x=\int_{1}^{\infty} \frac{\alpha-1}{x^{\alpha-1}} d x=\left[\frac{\alpha-1}{(2-\alpha) x^{\alpha-2}}\right]_{x=1}^{\infty}
$$

If $\alpha>2$ then this integral converges (to $\frac{\alpha-1}{\alpha-2}$). If $\alpha \leq 2$ then it diverges. So there is finite expectation for $\alpha>2$.

