Math 30530 - Introduction to Probability

Quiz 7 - Wednesday November 9, 2011
NAME: \qquad

1. Adult Rat Terriers have a height that is normally distributed with mean 11 ", variance 1 . What is the probability that a randomly chosen Rat Terrier has height ≥ 12.5 inches?
Solution: Let X be the height of a randomly chosen adult Rat Terrier. We have that X is normal with $\mu=11$ and $\sigma^{2}=1$. So

$$
\begin{aligned}
P(X \geq 12.5) & =P\left(\frac{X-11}{1} \geq \frac{12.5-11}{1}\right) \\
& =P(Z \geq 1.5) \\
& =1-P(Z \leq 1.5) \\
& =1-.9332 \\
& =.0668 .
\end{aligned}
$$

2. The sub-breed of Saddle-back Rat Terriers has been selectively bred to have a height that is normally distributed with mean 11 " and variance σ^{2}. It is known that a randomly chosen Saddle-back Rat Terrier has a 5% probability of being taller than 12.5 inches. What is σ ?
Let X be the height of a randomly chosen adult Saddle-back Rat Terrier. We have that X is normal with $\mu=11$, but with $\sigma^{2}=1$ unknown. We know that $P(X \geq 12.5)=.05$, which is the same as $P((X-11) / \sigma \geq(12.5-11) / \sigma)=.05$ or $P(Z \geq 1.5 / \sigma)=.05$. Since $P(Z \leq 1.645)=.95$, we have $P(Z \geq 1.645)=.05$. So we want σ to satisfy $1.5 / \sigma=1.645$, or $\sigma=.912$.
