Math 30530 - Introduction to Probability

Quiz 6 - Wednesday November 2, 2011

NAME: \qquad Solutions

I choose a random real number between 0 and 2 . Let X be the number that I choose.

1. Write down the density function $f(x)$ of X. (Be sure to specify its value for all inputs in the domain $-\infty<x<\infty$).

Solution:

$$
f(x)= \begin{cases}0 & \text { if } x<0 \\ 1 / 2 & \text { if } 0 \leq x \leq 2 \\ 0 & \text { if } x>2\end{cases}
$$

2. Write down the cumulative distribution function $F(x)$ of X. (Be sure to specify its value for all inputs in the domain $-\infty<x<\infty$.)
Solution: For $x<0, F(x)=0$, and for $x>2, F(x)=1$. For $0 \leq x \leq 2$,

$$
F(x)=P(X \leq x)=\int_{0}^{x} \frac{1}{2} d t=\frac{x}{2}
$$

3. For a a real number between 0 and 8 , what is $P\left(X^{3} \leq a\right)$?

Solution:

$$
P\left(X^{3} \leq a\right)=P\left(X \leq a^{1 / 3}\right)=\int_{0}^{a^{1 / 3}} \frac{1}{2} d t=\frac{a^{1 / 3}}{2}
$$

4. Write down the density function $g(x)$ of the random variable X^{3}.

Solution: For $x<0, g(x)=0$, and for $x>8, g(x)=0$. For $0 \leq x \leq 8$, we obtain the density function by differentiating the distribution function:

$$
g(x)=\frac{d}{d x} \frac{x^{1 / 3}}{2}=\frac{x^{-2 / 3}}{6} .
$$

