Math 30530 - Introduction to Probability

Quiz 2 - Wednesday September 7, 2011
NAME:
Solution

1. In how many different ways can 7 people be seated in a row if
(a) There is a group of 4 among the 7 who insist on being seated together (in any order); or Solution: 4 ways to choose the four seats in a row occupied by the four who want to sit together; 4! ways to seat those four in the four selected seats; 3! ways to seat the rest, for a total of $(4)(4!)(3!)=576$.
(b) Within the group of 4 who insist on being seated together, there are 2 who insist on being seated side-by-side.
Solution: 4 ways to choose the four seats in a row occupied by the four who want to sit together; 3 ways to choose the two seats in a row within the four for the two who want to sit together; 2! ways to seat those two; 2! ways to seat the other two from among the four; 3 ! ways to seat the rest, for a total of $(4)(3)(2!)(2!)(3!)=288$.
2. Show, either by an algebraic or a counting argument, that

$$
k\binom{n}{k}=n\binom{n-1}{k-1} .
$$

Solution: Algebraic argument first:

$$
k\binom{n}{k}=k \frac{n!}{k!(n-k)!}=\frac{n!}{(k-1)!(n-k)!}=n \frac{(n-1)!}{(k-1)!(n-k)!}=n\binom{n-1}{k-1} .
$$

Now a counting argument: the left hand side counts the number of ways of selecting k people from n to form a committee, and then select one of the k to be the chair. The right hand side counts the number of ways of selecting one person from n to be chair of a committee, and then $k-1$ people from the remaining $n-1$ to join him on the committee. So both sides count the same thing - the number of committees-with-chair of size k from a group of size n - and thus are equal.

