Math 30530 - Introduction to Probability

Quiz 1 - Wednesday August 31, 2011
NAME: \qquad

1. Let E and F be events in a probability space with $P(E)=p, P(F)=q$ and $P(E \cup F)=r$.
(a) (3 pts) Express $P(E F)$ in terms of p, q and r.

Solution: We know that $P(E \cup F)=P(E)+P(F)-P(E F)$, so $r=p+q-P(E F)$. Rearranging, we get

$$
P(E F)=p+q-r
$$

(b) (4 pts) Let H be the event that EITHER none of E, F OR both of E, F occur. In terms of p, q and r, write an expression for $P(H)$.
Solution: H consists of $(E \cup F)^{c}$ (none of E, F occur) together with $E F$ (both occur), and these are mutually exclusive, so their probabilities add. We have $P\left((E \cup F)^{c}\right)=$ $1-P(E \cup F)=1-r$ and $P(E F)=p+q-r$, so

$$
P(H)=1+p+q-2 r .
$$

2. (3 pts) 55% of students read the Observer daily, 25% live off campus, and 63% either live of campus or read the Observer daily (or both). I pick a student at random (all students equally likely). What is the probability that the student I pick BOTH lives off campus AND reads the Observer daily?
Solution: Let S be the set of all students (the sample space for the experiment "pick a random student"). Let E be the event that a student reads the Observer and F the event that they live off campus. We are given that $P(E)=.55, P(F)=.25$ and $P(E \cup F)=.63$, and we want to compute $P(E F)$. Using the result of the first part of the quiz, with $p=.55$, $q=.25$ and $r=.63$, we have

$$
P(E F)=.55+.25-.63=.17
$$

