Chapter 3

Problems

@ P{6 f different} = P{6, different}/P{different}
: _ P{Ist=6,2nd # 6} + P{lIst # 6,2nd = 6}
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could also have been solved by using reduced sample space—for given that outcomes differ it
is the same as asking for the probability that 6 is chosen when 2 of the numbers 1,2, 3,4, 5,6
are randomly chosen.

@ P{6 | sumof 7} = P{(6,1}/1/6 = 1/6
P{6 | sumof 8} = P{(6,2)}/5/36 = 1/5
P(6 | sumof 9} = P{(6,3)}/4/36 = 1/4
P{6 | sum of 10} = P{(6,4)}/3/36 = 1/3
P{6 | sumof 11} = P{(6,5)}/2/36 = 112

P{6 | sumof 12} = 1.
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(b) Let F; denote the event that she failed the ith exam.
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(b) P{Lib|voted} =

58(.24)

P{C ted} = ~ 286
(c) P(Con|voted) 35(.46)+ .62(3)+ .58(24)
(d) P{voted} = .35(.46) + .62(.3) + .58(.24) = 4862
That is, 48.62 percent of the voters voted.
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(b) Since we have no information about the ball in the urn, the answer is 1/2.

Let M be the event that the person is male, and let C be the event that he or she is color blmd
Also, let p denote the proportiod of the population that is male. :

P(C|M)P(M) _ (05)p
P(C|M)P(M)+P(C[M*)P(M*) ~ (.05)p+(.0025)(1~ p)

PM|C) =



Let A denote the event that the next card is the ace of spades and let B be the event that it is
the two of clubs. '

(a) P{A)} = P{next card is an ace} P{A I next card is an ace}
31 3

324 128

(b) Let C be the event that the two of clubs appeared among the first 20 cards.

P(B) = P(B| OP(C) + P(B| C)P(C)

19 129 29
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@ Let E and R be the events that Joe is early tomorrow and that it will rain tomorrow.

(a) P(E)= P(ElR)P(R) +P(EIRYP(R*)=.7(T)+.9(3)=.76

P(E|R)P(R)
b) P(R|E)= 21O
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f/Sm Let W and F be the events that component | works and that the system functions.
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(c) P{up on first ] up 1 after 3}
= P{up first, up 1 after 3}/[3p*(1 - p)]
=p2p(1 - p)/[3p’(1 - p)] = 2/3.



= P{both hit}
62. P{both hit | at least one hit} =
Q (a) P{both hit | at least one hit} P{at least one hit}
=pip/(1 = q:192)

(b) P{Barb hit |at least one hit} = pi/(1 = ¢:92)
Q;=1-p;, and we have assumed that the outcomes of the shots are independent.

@ If use (a) will win with probability p. If use strategy (b) then

P{win} = P{win lboth corrt:ct}p2 + P{win ‘ exactly 1 correct}2p(l = p)
+ P{win | neither correct}(1 = 128
=p*+p(1-p)+0=p

Thus, both strategies give the same probability of winning.

@ (a) U~ (1= PP)(1-PsPy)lPs= (P\P, + P3Py — P\P,P3Po)Ps
(b) Let B, = {1 and 4 close}, E;={1,3,5 all close}

E;={2,5close}, Es = {2, 3, 4 close}. The desired probability is

@ P{Braves win} = P{B| B wins 3 of 3} 1/8 + P{B | B wins 2 of 3} 3/8
b +P{B!Bwins10f3}3/8+P{B\BwinsOof3}1/8
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where P{B | B wins i of 3} is obtained by conditioning on the outcome of the other series.

For instance

P{Blein20f3}:P{BiDorGwin3of3,Bwin20f3} 1/4
= P(B|D or G win 2 of 3, B win 2 of 3} 3/4
i1 3

24 4

By symmetry P{D win} = P{G win} and as the probabilities must sum to 1 we have.

13
P{D win} = P{G win} = —.
{D win} {G win} 4

@ (a) 1/16, (b) 1/32, (c) 10/32, (d) 174, (e) 31/32.



@ (a) Because there will be 4 games if each player wins one of the first two games and then one
of them wins the next two, P(4 games) = 2p(1 - p)[p2 +(1- p)z}.

(b) Let A be the event that A wins. Conditioning on the outcome of the first two games gives

pit = P(A| a, ayp? + P a, byp(1 = p) + P b, a)(1 = p)p + PA b, bY(1 = pY
=p* + PA2p(1 - p)

where the notation a, b means, for instance, that A wins the first and B wins the second

game. The final equation used that P(A I a,b)=PA { b, a) = P(A). Solving, gives

p2

PA) = ——F——
@ 1-2p(-p)

@ Using the hint

P(Ac B} = i(z‘/z“){"]/z" =i(?)2"/4” = (3/4)"

i=0 L i=0

where the final equality uses

Y B P
Z(i )2‘1"" =Q+1)

i=0

(b) PAB= @)= P(AcCB)= (3/4)", by part (a), since B is also equally likely to be any of the

subsets.

Theoretical Exercises
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@ P(A) = 1/365. Fori#j#k, P(AyAiD) = 165/(365)° = 1/(365)°. Also, fori#j#k#r,
P(A, A, = 1/(365).

n — 1 must result in an odd number of

P
@ If the first trial is a success, then the remaining
successes, whereas if it is a failure, then the remaining n — 1 must result in an even number of

SUCCESSes.



