Introduction to Probability and Statistics

Justifications of some formulas

March 19, 2009

We have encountered a number of important formulas in class recently, that we did not give justifications for. Here are some sketches that might give you a feel for why these are true.

1 The Central Limit Theorem

The Central Limit Theorem says that if X_1, \ldots, X_n are independent random variables, all with the same distribution that has mean μ and variance σ^2 , then for large n

$$X_1 + \ldots + X_n \approx \mathcal{N}(n\mu, n\sigma^2).$$

In other words, the sum of independent copies of the same random variable has approximately a normal distribution. Scaling to turn the right hand side into a standard normal, there is a more precise statement:

$$P\left(\frac{X_1 + \ldots + X_n - n\mu}{\sigma\sqrt{n}} \le z\right) \to \Phi(z) = P(Z \le z) \text{ as } n \to \infty$$

where Z is a standard normal.

One way to justify this is to write

$$\frac{X_1 + \ldots + X_n - n\mu}{\sigma\sqrt{n}} = \left(\frac{X_1 - \mu}{\sigma\sqrt{n}}\right) + \ldots + \left(\frac{X_1 - \mu}{\sigma\sqrt{n}}\right)$$
$$= Y_1 + \ldots + Y_n.$$

Each of the Y_i 's have mean 0 and variance $\frac{1}{n}$. That means that they have $E(Y_i) = 0$ and $E(Y_i^2) = \frac{1}{n}$, since $Var(Y_i) = E(Y_i^2) - (E(Y_i))^2$. This tells us something about the moment generating function of Y_i . If the moment generating function of Y_i begins

$$\phi_{Y_i}(t) = a + bt + ct^2 + \dots$$

then since $\phi_{Y_i}(0) = 1$ we must have a = 1; $\phi'_{Y_i}(0) = E(Y_i) = 0$ we must have b = 0; and since $\phi''_{Y_i}(0) = E(Y_i^2) = \frac{1}{n}$ we must have $c = \frac{1}{2n}$. So

$$\phi_{Y_i}(t) = 1 + \frac{t^2}{2n}$$
 + terms involving t^3 and higher powers.

What's the moment generating function of $Y_1 + \ldots + Y_n$? It's

$$\begin{split} \phi_{Y_1+\ldots+Y_n}(t) &= E\left(e^{t(Y_1+\ldots+Y_n)}\right) \\ &= E\left(e^{tY_1}\ldots e^{tY_n}\right) \\ &= E\left(e^{tY_1}\right)\ldots E\left(e^{tY_n}\right) \\ &= \phi_{Y_1}(t)\ldots \phi_{Y_n}(t) \\ &= \left(1+\frac{t^2}{2n} + \text{terms involving } t^3 \text{ and higher powers}\right)^n. \end{split}$$

In the third line above we used the fact that the Y_i 's are independent.

Now we have to remember some calculus. One way in which the exponential function e^x is often defined is by

$$e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n.$$

(Reality check: pick a value for x, say x = 2, and on a calculator compute

$$\left(1+\frac{2}{1}\right)^{1}, \left(1+\frac{2}{10}\right)^{10}, \left(1+\frac{2}{100}\right)^{100} \text{ and } \left(1+\frac{2}{1000}\right)^{1000},$$

and see how the values compare to e^2 .)

Here's how this is useful: at least for small values of t,

$$\left(1 + \frac{t^2}{2n} + \text{terms involving } t^3 \text{ and higher powers}\right)^n \approx \left(1 + \frac{t^2}{2n}\right)^n$$

and so by the definition of e^x it's approximately $e^{t^2/2}$. So, at least for small t,

$$\phi_{Y_1+\ldots+Y_n}(t) \approx e^{\frac{t^2}{2}}.$$

But $e^{t^2/2}$ is the moment generating function of the standard normal random variable Z, as we derived in class. This strongly suggests that

$$Y_1 + \ldots + Y_n \approx Z,$$

which is our rough form of the Central Limit Theorem. (To make this precise takes, unfortunately, a lot of blood and sweat!)

2 The formula for sample variance

If X_1, \ldots, X_n is a random sample from a population with mean μ and variance σ^2 , then we defined its sample variance to be

$$S^{2} = \frac{\sum_{i=1}^{n} \left(X_{i} - \bar{X}\right)^{2}}{n-1}$$

where $\bar{X} = \frac{X_1 + \ldots + X_n}{n}$ is the sample mean. The reason we divide by n - 1 and not n is because we want S^2 to be a good estimator for σ^2 in the sense that "on average" it's right; that is, we want $E(S^2) = \sigma^2$. Here's the calculation that shows that dividing by n - 1 is exactly the right thing to achieve this:

$$\sum_{i=1}^{n} (X_i - \bar{X})^2 = \sum_{i=1}^{n} \left(X_i - \frac{X_1 + \dots + X_n}{n} \right)^2$$

=
$$\sum_{i=1}^{n} \left(\frac{nX_i - (X_1 + \dots + X_n)}{n} \right)^2$$

=
$$\sum_{i=1}^{n} \left(\frac{-X_1 - X_2 - \dots + (n-1)X_i - X_{i+1} - \dots - X_n}{n} \right)^2$$

=
$$\frac{1}{n^2} \sum_{i=1}^{n} (-X_1 - X_2 - \dots + (n-1)X_i - X_{i+1} - \dots - X_n)^2.$$

When we square each of the *n* terms inside the sum, and add them, we get X_1^2 a total of $(n-1)^2 + (n-1) = n(n-1)$ times: $(n-1)^2$ from the first term, which has an $(n-1)X_1$ in it, and once from each of the remaining terms (which all have $-X_1$ in them). Similarly we get X_i^2 a total of n(n-1) times for each of the other *i*'s. We get X_1X_2 a total of -2(n-1) - 2(n-1) + 2(n-2) = -2n times: -2(n-1) from the first term, which has an $(n-1)X_1 - X_2$ in it, -2(n-1) from the second term, which has a $-X_1 + (n-1)X_2$ in it, and -2 times from each of the remaining n-2 terms (which all have $-X_1 - X_2$ in them). Similarly we get X_iX_j a total of -2n times for each of the other other other other).

$$\sum_{i=1}^{n} \left(X_i - \bar{X} \right)^2 = \sum_{i=1}^{n} n(n-1)X_i^2 + \sum_{i \neq j} -2nX_iX_j.$$

When we take the expectation of both sides, every time we encounter an $E(X_i^2)$ we can write $E(X_1^2)$ (since these are the same), and every time we encounter an $E(X_iX_j)$ we can write $E(X_1)^2$ (since by independence $E(X_iX_j) = E(X_i)E(X_j) = E(X_1)^2$). How many times do we encounter an $E(X_i^2)$? n(n-1) times for each i, so $n^2(n-1)$ times in all. How many times do we encounter an $E(X_iX_j)$? -2n times for each $i \neq j$, and there are $\binom{n}{2}$ choices for $i \neq j$, so $-2n\binom{n}{2} = -n^2(n-1)$ times in all. So we get

$$E\left(\sum_{i=1}^{n} \left(X_{i} - \bar{X}\right)^{2}\right) = \frac{1}{n^{2}} \left(n^{2}(n-1)E(X_{1}^{2}) - n^{2}(n-1)E(X_{1})^{2}\right)$$
$$= (n-1)\left(E(X_{1}^{2}) - E(X_{1})^{2}\right)$$
$$= (n-1)Var(X_{1})$$

and so

$$E(S^2) = \sigma^2$$