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We have encountered a number of important formulas in class recently, that we did not give
justifications for. Here are some sketches that might give you a feel for why these are true.

1 The Central Limit Theorem
The Central Limit Theorem says that if X1, . . . , Xn are independent random variables, all with the
same distribution that has mean µ and variance σ2, then for large n

X1 + . . .+Xn ≈ N
(
nµ, nσ2

)
.

In other words, the sum of independent copies of the same random variable has approximately a
normal distribution. Scaling to turn the right hand side into a standard normal, there is a more
precise statement:

P

(
X1 + . . .+Xn − nµ

σ
√
n

≤ z

)
→ Φ(z) = P (Z ≤ z) as n→∞

where Z is a standard normal.
One way to justify this is to write

X1 + . . .+Xn − nµ
σ
√
n

=

(
X1 − µ
σ
√
n

)
+ . . .+

(
X1 − µ
σ
√
n

)
= Y1 + . . .+ Yn.

Each of the Yi’s have mean 0 and variance 1
n

. That means that they haveE(Yi) = 0 andE(Y 2
i ) = 1

n
,

since V ar(Yi) = E(Y 2
i )−(E(Yi))

2. This tells us something about the moment generating function
of Yi. If the moment generating function of Yi begins

φYi
(t) = a+ bt+ ct2 + . . .

then since φYi
(0) = 1 we must have a = 1; φ′Yi

(0) = E(Yi) = 0 we must have b = 0; and since
φ′′Yi

(0) = E(Y 2
i ) = 1

n
we must have c = 1

2n
. So

φYi
(t) = 1 +

t2

2n
+ terms involving t3 and higher powers.
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What’s the moment generating function of Y1 + . . .+ Yn? It’s

φY1+...+Yn(t) = E
(
et(Y1+...+Yn)

)
= E

(
etY1 . . . etYn

)
= E

(
etY1
)
. . . E

(
etYn

)
= φY1(t) . . . φYn(t)

=

(
1 +

t2

2n
+ terms involving t3 and higher powers

)n

.

In the third line above we used the fact that the Yi’s are independent.
Now we have to remember some calculus. One way in which the exponential function ex is

often defined is by
ex = lim

n→∞

(
1 +

x

n

)n

.

(Reality check: pick a value for x, say x = 2, and on a calculator compute(
1 +

2

1

)1

,

(
1 +

2

10

)10

,

(
1 +

2

100

)100

and
(

1 +
2

1000

)1000

,

and see how the values compare to e2.)
Here’s how this is useful: at least for small values of t,(

1 +
t2

2n
+ terms involving t3 and higher powers

)n

≈
(

1 +
t2

2n

)n

and so by the definition of ex it’s approximately et2/2. So, at least for small t,

φY1+...+Yn(t) ≈ e
t2

2 .

But et2/2 is the moment generating function of the standard normal random variable Z, as we
derived in class. This strongly suggests that

Y1 + . . .+ Yn ≈ Z,

which is our rough form of the Central Limit Theorem. (To make this precise takes, unfortunately,
a lot of blood and sweat!)

2 The formula for sample variance
IfX1, . . . , Xn is a random sample from a population with mean µ and variance σ2, then we defined
its sample variance to be

S2 =

∑n
i=1

(
Xi − X̄

)2
n− 1
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where X̄ = X1+...+Xn

n
is the sample mean. The reason we divide by n − 1 and not n is because

we want S2 to be a good estimator for σ2 in the sense that “on average” it’s right; that is, we want
E(S2) = σ2. Here’s the calculation that shows that dividing by n − 1 is exactly the right thing to
achieve this:

n∑
i=1

(
Xi − X̄

)2
=

n∑
i=1

(
Xi −

X1 + . . .+Xn

n

)2

=
n∑

i=1

(
nXi − (X1 + . . .+Xn)

n

)2

=
n∑

i=1

(
−X1 −X2 − . . .+ (n− 1)Xi −Xi+1 − . . .−Xn

n

)2

=
1

n2

n∑
i=1

(−X1 −X2 − . . .+ (n− 1)Xi −Xi+1 − . . .−Xn)2 .

When we square each of the n terms inside the sum, and add them, we get X2
1 a total of (n− 1)2 +

(n−1) = n(n−1) times: (n−1)2 from the first term, which has an (n−1)X1 in it, and once from
each of the remaining terms (which all have−X1 in them). Similarly we get X2

i a total of n(n−1)
times for each of the other i’s. We get X1X2 a total of −2(n− 1)− 2(n− 1) + 2(n− 2) = −2n
times: −2(n − 1) from the first term, which has an (n − 1)X1 − X2 in it, −2(n − 1) from the
second term, which has a −X1 + (n− 1)X2 in it, and −2 times from each of the remaining n− 2
terms (which all have −X1−X2 in them). Similarly we get XiXj a total of −2n times for each of
the other choice of i, j. So

n∑
i=1

(
Xi − X̄

)2
=

n∑
i=1

n(n− 1)X2
i +

∑
i 6=j

−2nXiXj.

When we take the expectation of both sides, every time we encounter an E(X2
i ) we can write

E(X2
1 ) (since these are the same), and every time we encounter an E(XiXj) we can write E(X1)

2

(since by independence E(XiXj) = E(Xi)E(Xj) = E(X1)
2). How many times do we encounter

anE(X2
i )? n(n−1) times for each i, so n2(n−1) times in all. How many times do we encounter an

E(XiXj)? −2n times for each i 6= j, and there are
(

n
2

)
choices for i 6= j, so−2n

(
n
2

)
= −n2(n−1)

times in all. So we get

E

(
n∑

i=1

(
Xi − X̄

)2)
=

1

n2

(
n2(n− 1)E(X2

1 )− n2(n− 1)E(X1)
2
)

= (n− 1)
(
E(X2

1 )− E(X1)
2
)

= (n− 1)V ar(X1)

and so
E(S2) = σ2.
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