Introduction to Probability and Statistics

Justifications of some formulas

March 19, 2009

We have encountered a number of important formulas in class recently, that we did not give justifications for. Here are some sketches that might give you a feel for why these are true.

1 The Central Limit Theorem

The Central Limit Theorem says that if X_{1}, \ldots, X_{n} are independent random variables, all with the same distribution that has mean μ and variance σ^{2}, then for large n

$$
X_{1}+\ldots+X_{n} \approx \mathcal{N}\left(n \mu, n \sigma^{2}\right)
$$

In other words, the sum of independent copies of the same random variable has approximately a normal distribution. Scaling to turn the right hand side into a standard normal, there is a more precise statement:

$$
P\left(\frac{X_{1}+\ldots+X_{n}-n \mu}{\sigma \sqrt{n}} \leq z\right) \rightarrow \Phi(z)=P(Z \leq z) \quad \text { as } n \rightarrow \infty
$$

where Z is a standard normal.
One way to justify this is to write

$$
\begin{aligned}
\frac{X_{1}+\ldots+X_{n}-n \mu}{\sigma \sqrt{n}} & =\left(\frac{X_{1}-\mu}{\sigma \sqrt{n}}\right)+\ldots+\left(\frac{X_{1}-\mu}{\sigma \sqrt{n}}\right) \\
& =Y_{1}+\ldots+Y_{n}
\end{aligned}
$$

Each of the Y_{i} 's have mean 0 and variance $\frac{1}{n}$. That means that they have $E\left(Y_{i}\right)=0$ and $E\left(Y_{i}^{2}\right)=\frac{1}{n}$, since $\operatorname{Var}\left(Y_{i}\right)=E\left(Y_{i}^{2}\right)-\left(E\left(Y_{i}\right)\right)^{2}$. This tells us something about the moment generating function of Y_{i}. If the moment generating function of Y_{i} begins

$$
\phi_{Y_{i}}(t)=a+b t+c t^{2}+\ldots
$$

then since $\phi_{Y_{i}}(0)=1$ we must have $a=1 ; \phi_{Y_{i}}^{\prime}(0)=E\left(Y_{i}\right)=0$ we must have $b=0$; and since $\phi_{Y_{i}}^{\prime \prime}(0)=E\left(Y_{i}^{2}\right)=\frac{1}{n}$ we must have $c=\frac{1}{2 n}$. So

$$
\phi_{Y_{i}}(t)=1+\frac{t^{2}}{2 n}+\text { terms involving } t^{3} \text { and higher powers. }
$$

What's the moment generating function of $Y_{1}+\ldots+Y_{n}$? It's

$$
\begin{aligned}
\phi_{Y_{1}+\ldots+Y_{n}}(t) & =E\left(e^{t\left(Y_{1}+\ldots+Y_{n}\right)}\right) \\
& =E\left(e^{t Y_{1}} \ldots e^{t Y_{n}}\right) \\
& =E\left(e^{t Y_{1}}\right) \ldots E\left(e^{t Y_{n}}\right) \\
& =\phi_{Y_{1}}(t) \ldots \phi_{Y_{n}}(t) \\
& =\left(1+\frac{t^{2}}{2 n}+\text { terms involving } t^{3} \text { and higher powers }\right)^{n} .
\end{aligned}
$$

In the third line above we used the fact that the Y_{i} 's are independent.
Now we have to remember some calculus. One way in which the exponential function e^{x} is often defined is by

$$
e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} .
$$

(Reality check: pick a value for x, say $x=2$, and on a calculator compute

$$
\left(1+\frac{2}{1}\right)^{1},\left(1+\frac{2}{10}\right)^{10},\left(1+\frac{2}{100}\right)^{100} \text { and }\left(1+\frac{2}{1000}\right)^{1000}
$$

and see how the values compare to e^{2}.)
Here's how this is useful: at least for small values of t,

$$
\left(1+\frac{t^{2}}{2 n}+\text { terms involving } t^{3} \text { and higher powers }\right)^{n} \approx\left(1+\frac{t^{2}}{2 n}\right)^{n}
$$

and so by the definition of e^{x} it's approximately $e^{t^{2} / 2}$. So, at least for small t,

$$
\phi_{Y_{1}+\ldots+Y_{n}}(t) \approx e^{\frac{t^{2}}{2}}
$$

But $e^{t^{2} / 2}$ is the moment generating function of the standard normal random variable Z, as we derived in class. This strongly suggests that

$$
Y_{1}+\ldots+Y_{n} \approx Z
$$

which is our rough form of the Central Limit Theorem. (To make this precise takes, unfortunately, a lot of blood and sweat!)

2 The formula for sample variance

If X_{1}, \ldots, X_{n} is a random sample from a population with mean μ and variance σ^{2}, then we defined its sample variance to be

$$
S^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}
$$

where $\bar{X}=\frac{X_{1}+\ldots+X_{n}}{n}$ is the sample mean. The reason we divide by $n-1$ and not n is because we want S^{2} to be a good estimator for σ^{2} in the sense that "on average" it's right; that is, we want $E\left(S^{2}\right)=\sigma^{2}$. Here's the calculation that shows that dividing by $n-1$ is exactly the right thing to achieve this:

$$
\begin{aligned}
\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} & =\sum_{i=1}^{n}\left(X_{i}-\frac{X_{1}+\ldots+X_{n}}{n}\right)^{2} \\
& =\sum_{i=1}^{n}\left(\frac{n X_{i}-\left(X_{1}+\ldots+X_{n}\right)}{n}\right)^{2} \\
& =\sum_{i=1}^{n}\left(\frac{-X_{1}-X_{2}-\ldots+(n-1) X_{i}-X_{i+1}-\ldots-X_{n}}{n}\right)^{2} \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n}\left(-X_{1}-X_{2}-\ldots+(n-1) X_{i}-X_{i+1}-\ldots-X_{n}\right)^{2}
\end{aligned}
$$

When we square each of the n terms inside the sum, and add them, we get X_{1}^{2} a total of $(n-1)^{2}+$ $(n-1)=n(n-1)$ times: $(n-1)^{2}$ from the first term, which has an $(n-1) X_{1}$ in it, and once from each of the remaining terms (which all have $-X_{1}$ in them). Similarly we get X_{i}^{2} a total of $n(n-1)$ times for each of the other i 's. We get $X_{1} X_{2}$ a total of $-2(n-1)-2(n-1)+2(n-2)=-2 n$ times: $-2(n-1)$ from the first term, which has an $(n-1) X_{1}-X_{2}$ in it, $-2(n-1)$ from the second term, which has a $-X_{1}+(n-1) X_{2}$ in it, and -2 times from each of the remaining $n-2$ terms (which all have $-X_{1}-X_{2}$ in them). Similarly we get $X_{i} X_{j}$ a total of $-2 n$ times for each of the other choice of i, j. So

$$
\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\sum_{i=1}^{n} n(n-1) X_{i}^{2}+\sum_{i \neq j}-2 n X_{i} X_{j}
$$

When we take the expectation of both sides, every time we encounter an $E\left(X_{i}^{2}\right)$ we can write $E\left(X_{1}^{2}\right)$ (since these are the same), and every time we encounter an $E\left(X_{i} X_{j}\right)$ we can write $E\left(X_{1}\right)^{2}$ (since by independence $E\left(X_{i} X_{j}\right)=E\left(X_{i}\right) E\left(X_{j}\right)=E\left(X_{1}\right)^{2}$). How many times do we encounter an $E\left(X_{i}^{2}\right)$? $n(n-1)$ times for each i, so $n^{2}(n-1)$ times in all. How many times do we encounter an $E\left(X_{i} X_{j}\right) ?-2 n$ times for each $i \neq j$, and there are $\binom{n}{2}$ choices for $i \neq j$, so $-2 n\binom{n}{2}=-n^{2}(n-1)$ times in all. So we get

$$
\begin{aligned}
E\left(\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right) & =\frac{1}{n^{2}}\left(n^{2}(n-1) E\left(X_{1}^{2}\right)-n^{2}(n-1) E\left(X_{1}\right)^{2}\right) \\
& =(n-1)\left(E\left(X_{1}^{2}\right)-E\left(X_{1}\right)^{2}\right) \\
& =(n-1) \operatorname{Var}\left(X_{1}\right)
\end{aligned}
$$

and so

$$
E\left(S^{2}\right)=\sigma^{2}
$$

