Introduction to Probability and Statistics

Review of interval estimates

April 3, 2009

Here is a list of all of the situations for which we have constructed confidence intervals. In each case the situation is that we have drawn a random sample X_1, \ldots, X_n from a population whose distribution is known up to some parameter.

Normal population, mean μ unknown, variance σ^2 known

- Unbiased estimator for μ : $\bar{X} = \frac{X_1 + \dots + X_n}{n}$
- Maximum likelihood estimator for μ : \bar{X}
- $100(1-\alpha)\%$ confidence intervals for μ :
 - Two-sided: $\left(\bar{X} z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$
 - One-sided lower: $\left(-\infty, \bar{X} + z_{\alpha} \frac{\sigma}{\sqrt{n}}\right)$
 - One-sided upper: $\left(\bar{X} z_{\alpha} \frac{\sigma}{\sqrt{n}}, \infty\right)$
- All based on: $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} = Z$, a standard normal

Normal population, mean μ unknown, variance σ^2 unknown, estimating mean

• $100(1-\alpha)\%$ confidence intervals for μ :

- Two-sided:
$$\left(\bar{X} - t_{\alpha/2,n-1}\frac{S}{\sqrt{n}}, \bar{X} + t_{\alpha/2,n-1}\frac{S}{\sqrt{n}}\right)$$

- One-sided lower: $\left(-\infty, \bar{X} + t_{\alpha,n-1}\frac{S}{\sqrt{n}}\right)$
- One-sided upper: $\left(\bar{X} - t_{\alpha}\frac{S}{\sqrt{n}}, \infty\right)$

• All based on: $\frac{\bar{X}-\mu}{S/\sqrt{n}} = t_{n-1}$, a *t*-distribution with n-1 degrees of freedom, where $S^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}$ is sample variance

Normal population, mean μ unknown, variance σ^2 unknown, estimating variance

- Unbiased estimator for σ^2 : $S^2 = \frac{\sum_{i=1}^{n} (X_i \bar{X})^2}{n-1}$
- Maximum likelihood estimator for σ^2 : $\frac{\sum_{i=1}^{n} (X_i \bar{X})^2}{n}$
- $100(1-\alpha)\%$ confidence intervals for σ^2 :

- Two-sided:
$$\left(\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}\right)$$

- One-sided lower: $\left(0, \frac{(n-1)S^2}{\chi^2_{1-\alpha,n-1}}\right)$
- One-sided upper: $\left(\frac{(n-1)S^2}{\chi^2_{\alpha,n-1}}, \infty\right)$

• All based on: $\frac{(n-1)S^2}{\sigma^2} = \chi^2_{n-1}$, a χ^2 distribution with n-1 degrees of freedom

Two normal populations, means μ_1, μ_2 unknown, variances σ_1^2, σ_2^2 known, estimating difference between means

• $100(1-\alpha)\%$ confidence intervals for $\mu_1 - \mu_2$:

- **Two-sided**: $\left(\bar{X} - \bar{Y} - z_{\alpha/2}\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}, \bar{X} - \bar{Y} + z_{\alpha/2}\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}\right)$, where \bar{X} is sample mean from first population (sample size n), \bar{Y} is sample mean from second population (sample size m)

- One-sided lower: $\left(-\infty, \bar{X} \bar{Y} + z_{\alpha}\sqrt{\frac{\sigma_{1}^{2}}{n} + \frac{\sigma_{2}^{2}}{m}}\right)$
- One-sided upper: $\left(\bar{X} \bar{Y} z_{\alpha}\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}, \infty\right)$
- All based on: $\frac{(\bar{X}-\bar{Y})-(\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^2}{n}+\frac{\sigma_2^2}{m}}} = Z$, a standard normal

Two normal populations, means μ_1, μ_2 unknown, variances σ_1^2, σ_2^2 unknown, assumed equal to σ^2 , estimating difference between means

- Pooled estimator for common variance: $S_p^2 = \frac{(n-1)S_1^2 + (m-1)S_2^2}{n+m-2}$
- $100(1-\alpha)\%$ confidence intervals for $\mu_1 \mu_2$:

- Two-sided:
$$\left(\bar{X} - \bar{Y} - t_{\alpha/2,n+m-2}\sqrt{\frac{S_p^2}{n} + \frac{S_p^2}{m}}, \bar{X} - \bar{Y} + t_{\alpha/2,n+m-2}\sqrt{\frac{S_p^2}{n} + \frac{S_p^2}{m}}\right)$$

- One-sided lower: $\left(-\infty, \bar{X} - \bar{Y} + t_{\alpha,n+m-2}\sqrt{\frac{S_p^2}{n} + \frac{S_p^2}{m}}\right)$
- One-sided upper: $\left(\bar{X} - \bar{Y} - t_{\alpha,n+m-2}\sqrt{\frac{S_p^2}{n} + \frac{S_p^2}{m}}, \infty\right)$

• All based on: $\frac{(\bar{X}-\bar{Y})-(\mu_1-\mu_2)}{\sqrt{\frac{S_p^2}{n}+\frac{S_p^2}{m}}} = t_{n+m-2}$, a *t*-distribution with n+m-2 degrees of freedom

Bernoulli population, parameter p unknown

Here X_1, \ldots, X_n is a sample of size *n* from a population in which an unknown proportion *p* have a certain characteristic, and each X_i is 1 if sample *i* has the characteristic, and 0 otherwise.

• Approximate $100(1 - \alpha)\%$ confidence intervals for p, if sample size is large $(n \ge 30)$:

- Using
$$\hat{p} = \frac{X_1 + ... + X_n}{n}$$
 as an estimate for p in the variance:
* Two-sided: $\left(\hat{p} - z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$
* One-sided lower: $\left(0, \hat{p} - z_{\alpha}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$
* One-sided upper: $\left(\hat{p} - z_{\alpha}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, 1\right)$
- Using worst-case estimate $p = 1/2$ in the variance:
* Two-sided: $\left(\hat{p} - z_{\alpha/2}\sqrt{\frac{1}{4n}}, \hat{p} + z_{\alpha/2}\sqrt{\frac{1}{4n}}\right)$

* One-sided lower:
$$(\hat{p} - z_{\alpha}\sqrt{\frac{1}{4n}})$$

* One-sided upper: $(\hat{p} - z_{\alpha}\sqrt{\frac{1}{4n}})$

• All based on: $\frac{\bar{X}-np}{\sqrt{np(1-p)}} \approx Z$, a standard normal (Central Limit Theorem), where $X = X_1 + \ldots + X_n$.