Introduction to Probability and Statistics

Review of the most common distributions

March 14, 2008

Here is a list of some of the most common probability distributions encountered in statistics, with their basic properties and uses. The first three in each category (discrete, continuous) are the most important.

1. Discrete

(a) **Bernoulli**

- i. **Parameter**: $0 \le p \le 1$
- ii. Mass function: P(X = 1) = p, P(X = 0) = 1 p
- iii. Mean and variance: p and p(1-p)
- iv. Use: Models the outcome of a single trial, success probability p

(b) **Binomial**

- i. **Parameters**: Positive integer $n, 0 \le p \le 1$
- ii. Mass function: $P(X = k) = {n \choose k} p^k (1-p)^{n-k}, k = 0, 1, ..., n.$
- iii. Mean and variance: np and np(1-p)
- iv. Use: Counts the number of successes when n independent repetitions of a trial are performed, each with success probability p

(c) Poisson

- i. Parameter: $\lambda > 0$
- ii. Mass function: $P(X = k) = \frac{\lambda^k}{k!}e^{-\lambda}, k = 0, 1, 2, \dots$
- iii. Mean and variance: Both λ
- iv. Uses:
 - A. Approximates the binomial when number of trials n is large and probability of success p is small, $\lambda = np$
 - B. Models the number of times a rare event occurs in a time period, when λ is the average number of occurrences

- (d) Hypergeometric
 - i. Parameters: N, M, n
 - ii. Mass function: $P(X = k) = \frac{\binom{N}{k}\binom{M}{n-k}}{\binom{N+M}{n}}, k = 0, 1, \dots \min\{N, n\}$
 - iii. Mean and variance: $\frac{nN}{N+M}$ and $\frac{nNM}{(N+M)^2} \left(1 \frac{n-1}{N+M-1}\right)$
 - iv. Use: Models the number of desirable elements obtained, if n items are drawn from a pool containing N desirable and M undesirable elements

2. Continuous

- (a) Uniform
 - i. Parameters: $\alpha < \beta$
 - ii. Density function: $f(x) = \frac{1}{\beta \alpha}$, $\alpha \le x \le \beta$
 - iii. Mean and variance: $\frac{\alpha+\beta}{2}$ and $\frac{(\beta-\alpha)^2}{12}$
 - iv. Use: Models the selection of a random number between α and β
- (b) **Exponential**
 - i. **Parameter**: $\lambda > 0$
 - ii. Density function: $f(x) = \lambda e^{-\lambda x}, x \ge 0$
 - iii. Mean and variance: $\frac{1}{\lambda}$ and $\frac{1}{\lambda^2}$
 - iv. Use: Models the time spent waiting until an event occurs, $1/\lambda$ the average waiting time
- (c) Normal
 - i. **Parameters**: μ , σ^2

ii. Density function:
$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- iii. Mean and variance: μ and σ^2 (Standard Normal if $\mu = 0, \sigma^2 = 1$)
- iv. Uses:
 - A. Models the distribution of many observable physical quantities
 - B. Models the error made when measuring device makes measurement
 - C. Approximates the limit of the sum of independent random variables with the same mean and variance

(d) Chi-squared

- i. Parameter: n
- ii. **Description**: $X = Z_1^2 + Z_2^2 + \ldots + Z_n^2$ where the Z_i 's are independent standard normals
- iii. Uses:
 - A. Models distance of a point in *n*-dimensional space from origin if coordinates are independent standard normals
 - B. Suitably scaled, is the sample variance of a sample drawn from a normal population