## Math 30-440: Probability and Statistics Spring Semester 2008 <br> \section*{Solutions to Homework 6}

1. Problem 23b) (Ch 5): Here and everywhere I'll use $Z$ for the standard normal.

$$
\begin{aligned}
P(4<X<16) & =P\left(\frac{4-10}{6}<\frac{X-10}{6}<\frac{16-10}{6}\right) \\
& =P(-1<Z<1) \\
& =\Phi(1)-\Phi(-1)=2 \Phi(1)-1=.6826 .
\end{aligned}
$$

## 2. Problem 23c) (Ch 5):

$$
\begin{aligned}
P(X<8) & =P\left(\frac{X-10}{6}<\frac{8-10}{6}\right) \\
& =P(Z<1 / 3) \\
& =\Phi(-1 / 3)=1-\Phi(1 / 3)=.3707
\end{aligned}
$$

Note: There may be some round-off error here and in other questions. To get the numerics right, we really should use a computer.
3. Problem 24 (Ch 5): Let $X_{i}$ be score of student $i$.

$$
\begin{aligned}
P\left(X_{i}<600\right) & =P\left(\frac{X_{i}-500}{100}<\frac{600-500}{100}\right) \\
& =P(Z<1) \\
& =\Phi(1)=.8413
\end{aligned}
$$

If the students are chosen independently, then the probability that all five of them score below 600 is $(.8413)^{5}=.42$.

$$
\begin{aligned}
P\left(X_{i}>640\right) & =P\left(\frac{X_{i}-500}{100}>\frac{640-500}{100}\right) \\
& =P(Z>1.4) \\
& =1-\Phi(1.4)=.0808
\end{aligned}
$$

If the students are chosen independently, then the number that score above 640 is a binomial random variable with $n=5, p=.0808$, and so the probability that exactly 3 score above 640 is

$$
\binom{5}{3}(.0808)^{3}(1-.0808)^{5-3}=.004
$$

4. Problem 27 (Ch 5): Let $X$ be life of bulb.

$$
\begin{aligned}
P(X>L) & =P\left(\frac{X-2000}{85}>\frac{L-2000}{85}\right) \\
& =P\left(Z>\frac{L-2000}{85}\right)
\end{aligned}
$$

What $z$ satisfies $P(Z>z)=.95 ? ~ \Phi(1.64)=.95$, so $P(Z<1.64)=.95$, so $P(Z>-1.64)=.95$. So we should choose $L$ so

$$
\frac{L-2000}{85}=-1.64
$$

or $L=1860$.
5. Problem $31(\mathrm{Ch} 5)$ : Let $X$ be life of randomly chosen chip.

$$
\begin{aligned}
P\left(X>4 \times 10^{6}\right) & =P\left(\frac{X-4.4 \times 10^{6}}{3 \times 10^{5}}>\frac{4 \times 10^{6}-4.4 \times 10^{6}}{3 \times 10^{5}}\right) \\
& =P(Z>-4 / 3) \\
& =\Phi(4 / 3)=.9082 .
\end{aligned}
$$

So in a large batch, expect $90.82 \%$ to be good; contract should be made.
6. Problem 34a) (Ch 5): Let $X_{i}$ be annual rainfall in year $i, i=1,2,3$. We will assume that the $X_{i}$ 's are independent.

$$
\begin{aligned}
P\left(X_{1}>42\right) & =P\left(\frac{X_{1}-40.14}{8.7}>\frac{42-40.14}{8.7}\right) \\
& =P(Z>.214) \\
& =1-\Phi(.214)=.4178
\end{aligned}
$$

7. Problem 34b) (Ch 5): $X_{1}$ and $X_{2}$ are independent (assumption) and have mean 40.14, variance $8.7^{2}=75.69$, so $X_{1}+X_{2}$ has mean 80.28 and variance 151.38 , so standard deviation 12.3.

$$
\begin{aligned}
P\left(X_{1}+X_{2}>84\right) & =P\left(\frac{X_{1}+X_{2}-80.28}{12.3}>\frac{84-80.28}{12.3}\right) \\
& =P(Z>.34) \\
& =1-\Phi(.34)=.3669 .
\end{aligned}
$$

8. Problem 34c) (Ch 5): $X_{1}, X_{2}$ and $X_{3}$ are independent (assumption) and have mean 40.14, variance $8.7^{2}=75.69$, so $X_{1}+X_{2}+X_{3}$ has mean 120.42 and variance 227.07 , so standard deviation 15.07.

$$
\begin{aligned}
P\left(X_{1}+X_{2}+X_{3}>126\right) & =P\left(\frac{X_{1}+X_{2}+X_{3}-120.42}{15.07}>\frac{126-120.42}{15.07}\right) \\
& =P(Z>.42) \\
& =1-\Phi(.42)=.3372
\end{aligned}
$$

9. Problem 37a) (Ch 5): Let $X$ be number of hours. The density of $X$ is $f(x)=e^{-x}(x \geq 0)$

$$
P(X>2)=\int_{2}^{\infty} e^{-x} d x=\left[-e^{-x}\right]_{2}^{\infty}=1 / e^{2}
$$

10. Problem 37b) (Ch 5): For this we use the memoryless property.

$$
P(X>3 \mid X>2)=P(X>1)=\int_{1}^{\infty} e^{-x} d x=\left[-e^{-x}\right]_{1}^{\infty}=1 / e
$$

11. Problem 39 (Ch 5): Let $X$ be life of car. If $X$ is exponential, then (by memorylessness)

$$
P(X>30 \mid X>10)=P(X>20)=\int_{20}^{\infty} \frac{1}{20} e^{-x / 20} d x=\left[-e^{-x / 20}\right]_{20}^{\infty}=1 / e
$$

If $X$ is uniform on $(0,40)$, then

$$
P(X>30 \mid X>10)=\frac{P(X>30, X>10)}{P(X>10)}=\frac{P(X>30)}{P(X>10)}=\frac{.25}{.75}=1 / 3 .
$$

12. Problem 44 (Ch 5): $X+Y$ is chi-squared with $3+6=9$ degrees of freedom. From an online calculator,

$$
P\left(\chi_{9}^{2}>10\right)=.3505
$$

13. Problem 1 (Ch 6): $E\left(X_{i}\right)=0 \times .2+1 \times .3+3 \times .5=1.8$. So $E(\bar{X})=1.8$ whether $n=2$ or 3 (the expectation of the sample mean is always equal to the expectation of the underlying distribution).
$E\left(X^{2}\right)=0 \times .2+1 \times .3+9 \times .5=4.8$ so $\operatorname{Var}\left(X_{i}\right)=4.8-(1.8)^{2}=1.56$. Since the variance of the sample mean is always the variance of the underlying distribution divided by the size of the sample, $\operatorname{Var}(\bar{X})=.78$ when $n=2$ and .52 when $n=3$. (Here I'm using the formulas derived on page 203).
14. Problem 4a) (Ch 6): The random variable associated with a single roll, $X_{1}$, takes on value 35 with probability $1 / 38$ and value -1 with probability $37 / 38$. So

$$
E\left(X_{1}\right)=35 \frac{1}{38}-1 \frac{37}{38}=-1 / 19
$$

and $E\left(X^{2}\right)=(35)^{2} \frac{1}{38}+(-1)^{2} \frac{37}{38}=\frac{631}{19}$ so

$$
\operatorname{Var}\left(X_{1}\right)=\frac{631}{19}-\left(\frac{-1}{19}\right)^{2}=\frac{11988}{361}
$$

By the central limit theorem, if the wheel is spun $n$ times then the distribution of the total winnings, $X=X_{1}+\ldots+X_{n}$, is approximately normal with mean $-n / 19$ and variance $11988 n / 361$. The event of "winning" is the event $X>0$.

$$
\begin{aligned}
P(X>0) & =P\left(\frac{X+n / 19}{\sqrt{11988 n / 361}}>\frac{0+n / 19}{\sqrt{11988 n / 361}}\right) \\
& =P\left(Z>\sqrt{\frac{n}{11988}}\right)=1-\Phi\left(\sqrt{\frac{n}{11988}}\right) .
\end{aligned}
$$

When $n=34$, this is roughly $1-\Phi(.05)=.48$.
15. Problem 4a) (Ch 6): When $n=1000$, the probability is roughly $1-\Phi(.29)=.386$.
16. Problem 4a) (Ch 6): When $n=100000$, the probability is roughly $1-\Phi(2.89)=.002$.
17. Problem 6 (Ch 6): Let $X_{i}$ be the $i$ th roundoff error. The sum of the errors is $X=X_{1}+$ $X_{2}+\ldots+X_{50}$. We want $P(-3<X<3)$ (i.e., the probability that the accumulated error is no more than $\pm 3$ ). Since each $X$ has mean 0 and variance $1 / 12$ (property of uniform random variables), by the central limit theorem $X$ is approximately normal with mean 0 and variance $50 / 12=4.16 \ldots$, so

$$
\begin{aligned}
P(-3<X<3) & =P\left(-3 / \sqrt{4.16 \ldots}<\frac{X}{\sqrt{4.16 \ldots}}<3 / \sqrt{4.16 \ldots}\right) \\
& =P(-1.47<Z<1.47)=2 \Phi(1.47)-1=.8584
\end{aligned}
$$

so the probability of roundoff error greater than 3 is around .141.
18. Problem 7 (Ch 6): Let $X_{i}$ be the $i$ th roll of the dice. $E\left(X_{i}\right)=3.5$ and $\operatorname{Var}\left(X_{i}\right)=35 / 12$. If we roll 140 times, the sum of the dice is $X=X_{1}+\ldots+X_{140}$ which by central limit theorem is approximately normal with mean 490 and variance $408.3 \ldots$. The probability that we have not yet reached 400 is

$$
\begin{aligned}
P(X<400) & =P\left(\frac{X-490}{\sqrt{408.3 \ldots}}<\frac{-90}{\sqrt{408.3 \ldots}}\right) \\
& =P(Z<-4.45)=1-\Phi(4.45) \approx 0
\end{aligned}
$$

So the probability that we require more than 140 rolls is very close to 0 .

