8 Quiz 2 (Oct. 1)

Name: SOLUTTONS

1. The tableau below reveals that the linear programming currently being solved is not bounded from below.

Basis	x_1	x_2	x_3	x_4	x_5	x_6	rhs
x_3	2	0	1	0	0	2	12
x_4	-4	-3	0	1	0	-1	6
$egin{array}{c} x_3 \ x_4 \ x_5 \ \end{array}$	3	-5	0	0	1	3	20
Obj	5	-2	0	0	0	-2	40

• Part (a): Suppose that x_2 enters the set of basic variables, with some value X, while all the other non-basic variables (x_1, x_6) remain at value 0. What value (it will depend on X) should the basic variable x_4 be set to, to maintain feasibility?

With
$$X_{1,1}$$
16 set to 0, Constraint # 2 says
$$-31(z+1)(4=6, \text{ or } 1)(4=6+3)(z)$$
Setting $X_2 = X$ forces $1(4=6+3)X$ to
Maintain feasibility

• Part (b): Again, Suppose that x_2 enters the set of basic variables, with some value X, while all the other non-basic variables remain at value 0. What will be the new value of the objective function? (It will depend on X.)

with
$$\chi_{1,1} = 16$$
 set to 0, correct objective value satisfies
$$-2\chi_{1} = 2+40 \text{ or } 2 = -40 = 2\chi_{1}$$
Seffing $\chi_{2} = \chi_{2} = \chi_{3} = 2$
Cause $\chi_{1} = 40 = 2\chi_{2}$

• Part (c): Give an example of a feasible point for this problem that has objective value -240.

Want 2 = -40 - 2X = -240, so X = 100Kepping 11,16 = 0, moving 12 to 100 moves 14 to 306Since 12 has coefficient 0 in Constraint with 12 basic, 13 Can Stay at 12. Constraint #3 says -512 +16 = 20 or 16 = 20 +512, so 16 moves to 520.

Point (0, 100, 12, 306, 520,0) has objective

2. Consider the following LP problem: Minimize a + b + c subject to

$$3a-2b-c \le 2$$
 $-a+4b+c \ge 4$
 $2a+3b-2c = 4$
Slach ranables
ranables

as well as $a, b, c \ge 0$.

• Set up the initial simplex tableau for this problem, including all necessary slack variables and artificial variables. If using artificial variables, be sure to correctly present the artificial objective function

present the artificial objective function. basis a b c d e F g rh 5										
basis	1 a	Ь	<u>_</u>	Cd	e)	11	9	ThS		
d	$\left(3\right)$	-2	-		0	0		2		
F	-1	4	1	0	-/	1	0	4		
g	2	3	-2	0	0	0	1	4		
obj	1	1	1	0	0	0	0	0		
Artifical obj	-1	-7)	0	1	0	0	-8		
Artificial objective is $\omega = f + g = 8 - a - 9.5 + C + e$										
f = 4 + a - 45 - c + e g = 4 - 2a - 36 + 2c $so - a - 75 + c + e = w - 8$										

- Say which of the following three things will happen when you begin running the simplex algorithm on your tableau:
 - A: The algorithm immediately terminates with "optimum reached" (in this case, say what the optimum is, and what point it is reached at)
 - B: The algorithm terminates with "the problem is not bounded from below" (in this case, circle the entries of the tableau that allow you to conclude this)
 - C: A pivoting occurs (in this case, circle all entries in the tableau on which it would be legitimate to pivot)

There are fur possible places where a pivoling Can occur.