
Lecture slides

Math 30210, Fall 2014

December 10, 2014

Math 30210 (Fall 2014) Lecture slides December 10, 2014 1 / 78

A diet problem [August 27]
I want to construct a nutritious diet using four basic foods: brownies, ice
cream, Dr. Pepper, and cheesecake. I want to keep track of calories,
chocolate, sugar and fat. The USDA tells me that

one unit of brownies gives me 400 calories, 3g of chocolate, 2g of sugar
and 2g of fat;
one unit of ice cream gives me 200 calories, 2g of chocolate, 2g of sugar
and 4g of fat;
the numbers for Dr. Pepper are 150, 0, 4, and 1; and
the numbers for cheesecake are 500, 0, 4, and 5.

My dietician tells me that a healthy daily diet requires at least 500 calories, at
least 6 grams of chocolate, at least 10 grams of sugar, and at least 8 grams of
fat.
A unit of each of the basic foods costs 50c, 20c, 30c, 80c, respectively.

What diet will satisfy all my dietician’s requirements, while keeping the cost as
low as possible?

Math 30210 (Fall 2014) Lecture slides December 10, 2014 2 / 78

A production problem (Ex 2.3.1 of text) [August 27]
A company produces small rowboats and canoes. Production consumes
resources: aluminium, machine time, and labour time. The following table
summarizes how each production item consumes resources, and how much
profit the sale of each one makes:

Aluminium Machine time Labour time Profit
Rowboat 50 lb 6 min. 3 hr $50
Canoe 30 lb 5 min. 5 hr $60

In the near future the company has 1 ton of aluminium, 5 hours of machine
time and 200 hours of labour time available. Assuming it can sell all that it
produces, how many rowboats and canoes should it aim to produce to
maximize profit?

Math 30210 (Fall 2014) Lecture slides December 10, 2014 3 / 78

A transportation problem [August 27]
The US airforce has bases in San Diego, Portland (ME), Tulsa and Kokomo
(IN). It has supply warehouses in Seattle, Manhattan (KS) and San Antonio.
Rations need to be shipped from the warehouses to the bases. The following
table shows

the available supply at each warehouse location;
the demand at each base; and
the cost of shipping a unit of rations from each warehouse to each base.

San Diego Portland Tulsa Kokomo Supply
Seattle 3 8 5 4 800

Manhattan 5 4 3 3 600
San Antonio 4 5 3 5 900

Demand 400 500 300 1000

What is a viable shipping scheme which satisfies each of the bases’
demands, and has minimum cost?

Math 30210 (Fall 2014) Lecture slides December 10, 2014 4 / 78

A recreational problem [August 29]
What is the smallest number of queens that can be placed on a chessboard,
so that every square is either occupied by a queen, or attacked by a queen?

What if no two of the queens are allowed to attack each other?

Math 30210 (Fall 2014) Lecture slides December 10, 2014 5 / 78

A production problem (Q23, p.33 of text) [August 29]
Weekly production schedule for chairs & sofas sought, to maximize profit

Data Fabric Wood Labour Profit
Chair 3 6 9 70
Sofa 8 5 4 60

Availability 96 90 120

Mathematical problem: x = #(chairs), y = #(sofas). Maximize

70x + 60y

subject to constraints

3x + 8y ≤ 96
6x + 5y ≤ 90
9x + 4y ≤ 120

x , y ≥ 0 (and both integers)

Math 30210 (Fall 2014) Lecture slides December 10, 2014 6 / 78

Modified problem (Q23, p.33 of text) [September 1]
Still want weekly production schedule for chairs & sofas, to maximize profit

Data Fabric Wood Labour Profit
Chair 3 6 9 70
Sofa 8 5 4 60

Availability 96 90 120

But now labour (and maybe materials) cost money!

Case 1: labour cost $5 per hour
Case 2: labour cost $5 per hour for the first $80 hours, and $8 per hour
for the remaining $40
Case 3: labour is free, but now wood costs $3 a unit for the first 60 units,
and $2 a unit for the next 30

Math 30210 (Fall 2014) Lecture slides December 10, 2014 7 / 78

Third modification of (Q23, p.33 of text) [September 3]
Want weekly production schedule for chairs & sofas, to maximize profit

Data Fabric Wood Labour Profit
Chair 3 6 9 70
Sofa 8 5 4 60

Availability 96 90 120

Extra element: wood costs $3 a unit for the first 60 units, and $2 a unit for the
next 30

Math 30210 (Fall 2014) Lecture slides December 10, 2014 8 / 78

Formulation of third modification [September 3]
Decision variables: x = #(chairs produced), y = #(sofas produced),
we = #(units of expensive wood purchaed),
wc = #(units of cheap wood purchaed)
Auxiliary variable: b

Objective: Maximize profit p = 70x + 60y − 3we − 2wc

subject to constraints

3x +8y ≤ 96 (fabric)
6x +5y −we −wc ≤ 0 (wood)
9x +4y ≤ 120 (labour)

we ≤ 60 (wood)
wc ≤ 30 (wood)

we −60b ≥ 0 (auxiliary)
wc −30b ≤ 0 (auxiliary)

b ≤ 1 (auxiliary)

as well as all variables non-negative, integral.

Math 30210 (Fall 2014) Lecture slides December 10, 2014 9 / 78

Terminology [September 3]
Linear programming (LP) problem: any problem that asks to maximize or
minimize an objective function that is a linear combination of some variables,
subject to some constraints that are linear equalities and inequalities involving
the variables

Standard form of an LP:

minimization
all variables non-negative
all constraints equalities

Example: Variables x1, x2, x3, x4, x5

Minimize z = 6x1 + 3x2 − 20x5 − 22
subject to constraints

3x1 +2x2 −7x3 −.6x5 = 11
−x2 −x3 −4.7x5 = 0

−5x1 −2x2 +3x3 −4x4 +x5 = −27

as well as x1, x2, x3, x4, x5 ≥ 0.
Math 30210 (Fall 2014) Lecture slides December 10, 2014 10 / 78

Standard form of third modification [September 3]
Variables: x , y , we, wc , b (original variables), x1, x2, x3, x4, x5, x6, x7, x8
(slack variables)

Objective: Minimize z = −70x − 60y + 3we + 2wc

subject to constraints
3x +8y +x1 = 96
6x +5y −we −wc +x2 = 0
9x +4y +x3 = 120

we +x4 = 60
wc +x5 = 30

we −60b −x6 = 0
wc −30b +x7 = 0

b +x8 = 1

as well as all variables non-negative, and all original variables integral.

Math 30210 (Fall 2014) Lecture slides December 10, 2014 11 / 78

Dealing with unrestricted variables [September 3]
A baker has 250g of yeast in stock, and 70k of flour. He can make baguettes,
that use 3g of yeast, 1k of flour, and sell for $2, and sourdough loafs, that use
2g of yeast, 1k of flour, and sell for $1.50. If necessary he can buy in flour at
$1 per k, and at the end of the day he can sell any surplus flour he has at $1
per k. What is is maximum possible profit?

Variables: b (baguettes), s (sourdough), f (flour in excess of 7k used: if f > 0,
fk of extra flour is purchased; if f < 0, −fk is surplus available to sell)

Objective: Maximize z = 2b + 1.5s − f
subject to constraints

3b +2s ≤ 250
b +s = 70 +f

with b, s ≥ 0, and f unrestricted (and all variables integral)
Note 1: could have said b + s ≤ 70 + f (can’t use more flour than have); but
optimum doesn’t change if we force equality, since no optimum solution will
have b + s < 70 + f ; this leaves unsold surplus flour
Note 2: could restrict f by f ≥ −70, but no feasible solution will have f < −70,
so no need

Math 30210 (Fall 2014) Lecture slides December 10, 2014 12 / 78

Standard form of baker’s problem [September 3]
Variables: b, s, f ′, f ′′, x1

Objective: Minimize z = −2b − 1.5s + f ′ − f ′′

subject to constraints

3b +2s +x1 = 250
b +s −f ′ +f ′′ = 70

as well as all variables non-negative, and all integral.

Math 30210 (Fall 2014) Lecture slides December 10, 2014 13 / 78

Terminology [September 5]
Canonical form for a system of m equations, n unknowns, m ≤ n: any form in
which a particular m of the variables (the basic variables) each appear in
one one equation (a different one for each variable), and each with coefficient
1. The remaining n −m variables are non-basic.

Basic solution corresponding to these basic variables: the (unique) solution
to the system that is (easily) obtained by setting each of the non-basic
variables to 0.

Basic feasible solution: a basic solution with all basic variables non-negative

Example:
3x1 +x2 −.6x5 = 11

x1 x3 −4.7x5 = 0
−5x1 +x4 = 3.3

is in canonical form with basic variables x2, x3, x4; the associated basic
solution is (0,11,0,3.3,0); it’s a basic feasible solution.

Math 30210 (Fall 2014) Lecture slides December 10, 2014 14 / 78

Thumbnail sketch of Simplex method [September 5]
The Simplex method tries to solve an LP by:

1 Putting the problem in standard form
2 Finding a basic feasible solution (requires some work!)
3 Checking if the basic feasible solution from step 2) is optimal (will turn out

to be easy)
4 If not, moving to a different basic feasible solution that yields a smaller

objective value (will turn out to be easy, modulo some algebra)
5 Checking if the basic feasible solution from step 4) is optimal (easy)
6 Repeating steps 4) and 5) until optimal solution is reached (easy)

Steps 2) and 6) raise three theoretical questions:
1 Is there always a basic feasible solution to start from (requires a little

work)
2 Does the objective always reach its minimum at a basic feasible solution

(requires a little work)
3 Are we sure to reach an optimal solution by moving around the basic

feasible solutions (a very delicate question!)

Math 30210 (Fall 2014) Lecture slides December 10, 2014 15 / 78

Terminology [September 8]
Canonical form for an LP, with a particular named set of basic variables:

1 The problem is in standard form
2 The system of constraints is in canonical form, with the named set of variables as

basic
3 The associated basic solution is feasible
4 The objective function is expressed solely in terms of non-basic variables

Example: Minimize 2x1 − 2x2 + 3x3 subject to x1, x2, x2 ≥ 0 and

2x1 −2x2 −2x3 = 17
x1 −x3 = 4

is not in canonical form; but the equivalent problem:

Minimize 5x3 − 10 subject to x1, x2, x3 ≥ 0 and

x1 −x3 = 4
x2 = 9

is in canonical form with basic variables x1, x2.

Math 30210 (Fall 2014) Lecture slides December 10, 2014 16 / 78

Steps of the simplex method I [September 10]
Given a linear programming (LP) problem (maximize/minimize an objective function
that is linear in some variables, subject to some linear constraints on the variables).

Step 1: Put the problem into standard form (minimization, all constraints equalities, all
variables constrained to be non-negative)

Step 2: Find a collection of variables which can act as the basic variables in a basic
feasible solution, and use pivoting operations to put the problem into canonical form
(still standard, each basic variable appears once, each in a different constraint, each
time with coefficient one, objective re-expressed in terms of non-basic variables only,
all constants on right-hand sides of constraints non-negative [last not part of definition
of canonical form; relates to associated basic solution being feasible])

Natural questions to ask:

1 How to find these basic variables? Trial-and-error (ugh)? And what if no such
variables exist? For now, we’ll use magic; but later we’ll see a systematic way to
find this initial basic feasible solution (if it exists); slightly circularly, this systematic
way uses simplex method!

2 What if there are fewer variables than constraints? We’ll deal with this later.
3 Why is what we are doing called “simplex” method? We’ll (vaguely) answer this

later.

Math 30210 (Fall 2014) Lecture slides December 10, 2014 17 / 78

Steps of the simplex method II [September 10]
A generic simplex problem in canonical form, with m = 3, n = 6:

Minimize z subject to constraints

x1 + a1,4x4 + a1,5x5 + a1,6x6 = b1

x2 + a2,4x4 + a2,5x5 + a2,6x6 = b2

x3 + a3,4x4 + a3,5x5 + a3,6x6 = b3

c4x4 + c5x5 + c6x6 = z0 + z

as well as x1, x2, x3, x4, x5, x6 ≥ 0.

Here all the a’s, b’s, c’s are constants, and because we’re assuming that associated
basic solution is feasible, also b1, b2, b3 ≥ 0

Step 3: Read off associated basic feasible solution, associated objective value. Here
(b1, b2, b3, 0, 0, 0), z = −z0.

Step 4: Check is this basic feasible solution optimal (and if it is, stop).

Theorem 3.4.1 (page 78, optimality criterion): If c4, c5, c6 ≥ 0, then the basic feasible
solution (b1, b2, b3, 0, 0, 0) is optimal!

Step 5: If there’s at least one c that is strictly negative; say c4 < 0, then we can
decrease z by increasing x4 while keeping x5, x6 = 0. Decide just how much x4 can be
increased by, while keeping x5, x6 = 0, without moving out of feasibility.

Math 30210 (Fall 2014) Lecture slides December 10, 2014 18 / 78

Steps of the simplex method III [September 12]
Step 5, continued: With x5, x6 held at 0, constraint 1 says

x1 + a1,4x4 = b1.

If a1,4 is 0, then we can increase x4 all the way to +∞ without violating this constraint
(just by holding x1 = b1). If a1,4 is negative, we can also increase x4 all the way to +∞
without violating this constraint (by increasing x1 commensurately). Example: if
constraint is x1 − 2x4 = 5, we can move x4 from 0 to 100 by moving x1 from 5 to 205.

The same consideration holds for the two other constraints, leading to

Theorem 3.4.2 (page 79, unboundedness criterion): If c4 (or one of the other c’s) is
strictly < 0, and all of a1,4, a2,4, a3,4 are ≤ 0, then the objective function of the problem
can be made arbitrarily small (i.e., arbitrarily negative; think −∞), and so the solution
to the minimization problem is not bounded from below.

Math 30210 (Fall 2014) Lecture slides December 10, 2014 19 / 78

Steps of the simplex method IV [September 12]
Step 5, continued: Back to

x1 + a1,4x4 = b1.

If a1,4 is positive, then this constraint allows us to increase x4 until a1,4x4 reaches b1,
without causing x1 to become negative. I.e., x4 can be increased up to b1/a1,4.
Example: if constraint is x1 + 2x4 = 5, we can move x4 from 0 to 2.5 by moving x1 5
down to 0, but we can’t move x4 up any higher without causing x1 to become negative.
The same consideration for each of constraint 2, constraint 3, tells us exactly how far
we are allowed to move x4 up, without violating any constraint, while keeping x5, x6 = 0:
Theorem 3.4.3 (page 81, the departing variable): In the situation where c4 < 0, and
not all of a1,4, a2,4, a3,4 are ≤ 0, check which is the minimum of

b1

a1,4
,

b2

a2,4
,

b3

a3,4

(actually, only consider those ratios where the a term is positive). Suppose it is b1/a1,4.
Then x4 can be increased to b1/a1,4, while keeping x5, x6 = 0, without dropping any of
x1, x2, x3 below zero, while maintaining feasibility. In other words, there is a basic
feasible solution to the problem, with now x2, x3, x4 as the basic variables, which has a
better (lower) objective value than the basic feasible solution with x1, x2, x3 as basic
variables. Pivoting on a1,4x4 puts the problem into canonical form with basic variables
x2, x3, x4.

Math 30210 (Fall 2014) Lecture slides December 10, 2014 20 / 78

Steps of the simplex method V [September 12]
Step 6: pivot on a1,4x4 to put the problem into canonical form with basic variables
x2, x3, x4. Get:

?x1 + x4 + ?x5 + ?x6 = b1/a1,4

?x1 + x2 + + ?x5 + ?x6 = b2 − a2,4b1/a1,4

?x1 + x3 + + ?x5 + ?x6 = b3 − a3,4b1/a1,4

?x1 + + ?x5 + ?x6 = z0 + z − c4b1
a1,4

as well as x1, x2, x3, x4, x5, x6 ≥ 0. Here ?’s represent coefficients whose values we
don’t care about right now. By or choice of which variable to kick out of the basic
variables/which row to pivot on, we have made sure that the associated basic solution

(0, b2 − a2,4b1/a1,4, b3 − a3,4b1/a1,4, b1/a1,4, 0, 0)

is feasible, and by our choice of which variable to add to the basic variables/which
column to pivot on, we have made sure that the associated objective value

z = −z0 +
c4b1

a1,4

is not any bigger than it had been previously, and if b1 > 0 (non-degeneracy) then in
fact the objective has become strictly smaller.

Math 30210 (Fall 2014) Lecture slides December 10, 2014 21 / 78

Steps of the simplex method VI [September 12]
Step 7: For the new basic feasible point, check

is the solution optimal? (Thm 3.4.1) (if so, stop)

is the objective unbounded from below? (Thm 3.4.2) (if so stop)

Otherwise, apply Thm 3.4.3 again.

Step 8: Repeat as necessary.

Natural questions:
1 What happens if we get to a degenerate basic feasible solution (some of the b’s

are zero, so some basic variables are 0)? Let’s pretend (for the moment) that this
never happens

2 Does the process terminate, eventually, at an optimal solution (or a solution of
−∞)? YES!!!! (assuming non-degeneracy)

Math 30210 (Fall 2014) Lecture slides December 10, 2014 22 / 78

A poor professor’s diet problem [September 22]
I have three vitamin requirements: vitamins A, B and C. There are five breakfast
cereals available to me: cereals 1, 2, 3, 4 and 5. I want to produce a blend of the
cereals that satisfies my vitamin requirements at minimum cost. Here’s a table of data
showing the number of units of each vitamin in each cereal, my daily requirement of
each vitamin, and the cost of each unit of cereal:

Cer. 1 Cer. 2 Cer. 3 Cer. 4 Cer. 5 Vit. req.
Vit. A a11 a12 a13 a14 a15 req1
Vit. B a21 a22 a23 a24 a25 req2
Vit. C a31 a32 a33 a34 a35 req3
Cost cost1 cost2 cost3 cost4 cost5

Poor professor’s problem (thanks to L. Trotter, Cornell): x1, x2, x3, x4, x5 represent
numbers of units of each cereal used.

Minimize cost1x1 + cost2x2 + cost3x3 + cost4x4 + cost5x5 subject to

a11x1 + a12x2 + a13x3 + a14x4 + a15x5 ≥ req1
a21x1 + a22x2 + a23x3 + a24x4 + a25x5 ≥ req2
a31x1 + a32x2 + a33x3 + a34x4 + a35x5 ≥ req3

and x1, x2, x3, x4, x5 ≥ 0.

Math 30210 (Fall 2014) Lecture slides December 10, 2014 23 / 78

A rich corporation’s sales problem [September 22]
General Nutrition wants me to take vitamin supplements instead of eating cereal, and
wants to know what prices to set to encourage me to make the switch. If GN sets the
price of Vitamin A at y1 per unit, B at y2 and C at y3, then they want to make sure that
the y ’s are set so that I can’t extract the vitamins more cheaply from any of my favourite
cereals. For example, I can already get a11 units of vitamin A, a21 units of vitamin B,
and a31 units of vitamin C, at a cost of cost1, by buying a unit of Cereal 1. The same
cocktail of vitamins would cost me a11y1 + a21y2 + a31 at GN. So GN better make sure

a11y1 + a21y2 + a31 ≤ cost1.

GN (a corporation) wants to maximize its revenue from me, and knows how much of
each vitamin I need. They get the following LP problem:
Rich corporation’s problem: y1, y2, y3 represent costs of units of each vitamin.

Maximize req1y1 + req2y2 + req3y3 subject to

a11y1 + a21y2 + a31y3 ≤ cost1
a12y1 + a22y2 + a32y3 ≤ cost2
a13y1 + a23y2 + a33y3 ≤ cost3
a14y1 + a24y2 + a34y3 ≤ cost4
a15y1 + a25y2 + a35y3 ≤ cost5

and y1, y2, y3 ≥ 0.
Math 30210 (Fall 2014) Lecture slides December 10, 2014 24 / 78

Terminology [September 22]
Max form: An LP is in max form if it is a maximization, all constraints are ≤, and all
variables are non-negative.

Maximize z = c1x1 + c2x2 + c3x3 subject to

a11x1 + a12x2 + a13x3 ≤ b1

a21x1 + a22x2 + a23x3 ≤ b2

a31x1 + a32x2 + a33x3 ≤ b3

a41x1 + a42x2 + a43x3 ≤ b4

a51x1 + a52x2 + a53x3 ≤ b5

and x1, x2, x3 ≥ 0.

Example: The rich corporation’s problem was in Max form

Theorem: Every LP can be expressed in Max form.
Proof: Start from standard form. Replace minimize with maximize by multiplying
objective by −1. Replace each equality with two inequalities, e.g.,

3x + 5y − 6z = 3

becomes

3x + 5y − 6z ≤ 3

−3x − 5y + 6z ≤ −3

Math 30210 (Fall 2014) Lecture slides December 10, 2014 25 / 78

Terminology [September 22]
Min form: An LP is in min form if it is a minimization, all constraints are ≥, and all
variables are non-negative.

Minimize z = c1x1 + c2x2 + c3x3 subject to

a11x1 + a12x2 + a13x3 ≥ b1

a21x1 + a22x2 + a23x3 ≥ b2

a31x1 + a32x2 + a33x3 ≥ b3

a41x1 + a42x2 + a43x3 ≥ b4

a51x1 + a52x2 + a53x3 ≥ b5

and x1, x2, x3 ≥ 0.

Example: The poor professor’s problem was in Min form

Theorem: Every LP can be expressed in Min form.

Math 30210 (Fall 2014) Lecture slides December 10, 2014 26 / 78

The Dual problem [September 22]
The Dual: Given a problem P in max form, the associated dual problem D has one
variable for each constraint of P, and one constraint for each variable of P. It is a min
form problem. If P reads off constraints from rows of a data array, D reads off
constraints from the columns. If P uses the final row of the data array to construct the
objective, D uses the final column.

P (primal problem): Maximize z = c1x1 + c2x2 + c3x3 subject to

a11x1 + a12x2 + a13x3 ≤ b1

a21x1 + a22x2 + a23x3 ≤ b2

a31x1 + a32x2 + a33x3 ≤ b3

a41x1 + a42x2 + a43x3 ≤ b4

a51x1 + a52x2 + a53x3 ≤ b5

and x1, x2, x3 ≥ 0.

D (dual problem): Minimize v = b1y1 + b2y2 + b3y3 + b4y4 + b5y5 subject to

a11y1 + a21y2 + a31y3 + a41y4 + a51y5 ≥ c1

a12y1 + a22y2 + a32y3 + a42y4 + a52y5 ≥ c2

a13y1 + a23y2 + a33y3 + a43y4 + a53y5 ≥ c3

and y1, y2, y3, y4, y5 ≥ 0.
Math 30210 (Fall 2014) Lecture slides December 10, 2014 27 / 78

Using matrix notation [September 22]
Matrix notation is our friend! (See page 125 of the textbook) If

A is the m-row, n-column matrix (m constraints, n variables), ij entry aij

b is the column vector (b1,b2, . . . ,bm)
t (column of rhs’s of constraints)

c is the column vector (c1, c2, . . . , cn)
t (column of objective coefficients)

X is the column vector (x1, x2, . . . , xn)
t of primal variables

Y is the column vector (y1, y2, . . . , ym)
t of dual variables

then:
Primal P : Max z = c · X subject to AX ≤ b X ≥ 0
Dual D : Min v = b · Y subject to AtY ≥ c Y ≥ 0

The dual can be defined for any LP; just put it into Max form first! Using matrix
notation, it’s easy to see:
Theorem: The Dual of the Dual is the Primal. In other words:

Start with any LP problem P in Max form
Form its dual problem D
Put D into Max form
Now that D is in Max form, you can write down its dual D2

You are back where you started! D2 is exactly the same as P
Math 30210 (Fall 2014) Lecture slides December 10, 2014 28 / 78

Artificial variables [September 24]
Artificial variables: An efficient way to find an initial basic feasible solution. If
a problem in standard form doesn’t have an obvious basic feasible solution:

Add one new (artificial) non-negative variable to each constraint
Use simplex to minimize the sum of the artificial variables, subject to the
new constraints (this requires expressing the sum of the artificial variables
in terms of the real variables; the artificial variables will be the basic
variables when the simplex method starts to solve the artificial problem)
If the optimum objective is 0, ignoring artificial variables (which are all 0 at
optimum) gives a basic feasible solution to original problem. Use this to
start simplex on the original problem (initially expressing the original
objective in terms of non-basic variables, if necessary)
If the optimum objective is > 0, the original problem had no feasible point
(any such point would give feasible point for artificial problem, with
objective value 0, just by setting all artificial variables to 0)
One of the above two must happen: the artificial problem can’t have
negative objective value, so is not unbounded from below

Math 30210 (Fall 2014) Lecture slides December 10, 2014 29 / 78

Two notes on artificial variables [September 24]

Any variable that appears in the original problem only once, with
coefficient 1, can be used as a basic variable in the artificial problem; so it
may not be necessary to add as many artificial variables as constraints.
The artificial objective stays as the sum of the artificial variables in this
case
LP Assistant takes care of the initial correct expression of the artificial
objective in terms of non-basic variables, and of keeping the original
objective expressed in terms of non-basic variables

Math 30210 (Fall 2014) Lecture slides December 10, 2014 30 / 78

A possible problem: redundancy [September 24]
Problem: System of equations is redundant if some equations can be
expressed as linear combinations of others. Redundant systems can’t have
basic feasible solutions! (In canonical form, there are clearly no dependencies
among equations)

Solution: Add artificial variables. As before, artificial optimum > 0 reveals no
feasible points. If artificial optimum is 0:

if all artificial variables non-basic, everything is ok (have basic feasible
solution for original problem)
if some are basic, they are currently set to 0. For each one: scan its row.
Pick an original, non-basic variable in row with non-zero coefficient, pivot
on that coefficient to replace artificial basic variable (value 0) with original
variable (also 0).
if this deals with all basic variables, everything is ok (have basic feasible
solution for original problem)
any row this does not deal with, is a row that only mentions artificial
variables, and for purposes of solving original problem, can be ignored!
Again everything is ok: on deleting rows, get basic feasible solution for a
scaled-down problem that has no redundancy. Solving the artificial
problem roots out redundancy.

Math 30210 (Fall 2014) Lecture slides December 10, 2014 31 / 78

Simplex I: preparation [September 26]
Given any linear programming problem:

Put it in standard form (all constraints equalities of the form a1x1 + . . .+ anxn = b
with b ≥ 0, all variables non-negative, objective is to be minimized)

Are there at least as many variables as constraints?
I YES: proceed
I NO: add in a few new variables, all with zero coefficients everywhere

Is there an obvious basic feasible solution (a collection of variables, one for each
constraint, that only appears once in the constraints, with coefficient 1)?

I YES: put the problem in canonical form (i.e., re-express the objective in
terms of non-basic variables) and record the data of the problem in a
tableau: first column records the names of the current basic variables, next
columns are one for each variable, final column records right-hand side
values of constraints, rows record constraints, final row records objective.

I NO: add an artificial variable to each constraint that needs one; consider
artificial problem of minimizing sum of artificial variables subject to new
constraints. This has an obvious basic feasible solution; put artificial problem
in canonical form and set up initial tableau.

Math 30210 (Fall 2014) Lecture slides December 10, 2014 32 / 78

Simplex II: tableau operation [September 26]
Given a tableau, repeat this sequence of steps until it stops:

Optimality: Are all coefficients in the objective row at least 0? Optimality has been
reached, STOP

Unboundedness: Is there a negative coefficient in the objective row, with all
coefficients above it 0 or negative? Objective is not bounded from below, STOP

Otherwise:
I Pick a negative coefficient in the objective row, with at least one positive

coefficient above it (using an entering rule — e.g., first such coefficient one
finds, going from left to right along objective row). Variable in this column will
enter the set of basic variables

I Find smallest ratio of right-hand side entry to positive constraint row entry in
column on entering variable (breaking ties using a departing rule — e.g.,
choose topmost such ratio in case of tie). Basic variable in this row will leave
set of basic variables.

I Pivot on chosen entry to bring in the entering variable to, and remove the
departing variable from, the basis

Math 30210 (Fall 2014) Lecture slides December 10, 2014 33 / 78

Simplex III: interpretation [September 26]
If you are working on the artificial problem:

Termination with unboundedness will not happen

If termination with optimality happens, and optimum is > 0, RECORD: original
problem has no feasible point

If termination with optimality happens, and optimum is 0, read off basic feasible
solution to original problem, delete artificial variable columns and artificial
objective row, original problem is now set up to perform tableau operations.
NOTE: this process may require some pivoting, to remove zero-value artificial
basic variables from the set of basic variables, and row-deletion, if redundancies
are discovered

If you are working on the original problem:

If termination with unboundedness happens, RECORD: original problem is not
bounded from below

If termination with optimality happens, RECORD: the current basic feasible
solution, and the corresponding objective value (negative of the number in the
bottom right corner of the tableau), gives the optimum objective. If necessary
(e.g., if original original problem was a maximization), translate this back to the
set-up of the problem before standardization

Math 30210 (Fall 2014) Lecture slides December 10, 2014 34 / 78

A fundamental theorem [September 29]
Theorem: Start with any linear programming problem. Assuming that at no
point in either the artificial or original problem is there degeneracy (a basic
feasible solution at which a basic variable has value 0) then the simplex
algorithm, as described, produces, in a finite amount of time, either an optimal
solution to the problem, or the information that the optimum is not bounded
from below.

Tragic fact: If there is degeneracy, then with an unlucky choice of entering
rule and departing rule, the simplex method may run forever without
producing an optimum solution.

Happy fact:

In practice: infinite loops in the simplex method are incredibly rare
In theory: given any linear programming problem presented in canonical
form, there is a finite sequence of pivoting steps that leads the simplex
algorithm to terminate (either with a declaration of optimality or a
declaration of unboundedness).

Math 30210 (Fall 2014) Lecture slides December 10, 2014 35 / 78

Bland’s rule to avoid cycling [September 29]
Bland’s rule for pivoting: If there are multiple negative entries in the
objective row, choose the first one, reading left to right. If there are multiple
smallest ratios corresponding to this choice, choose the one that throws out
from the basis the current basic variable with the smallest index.

Theorem (proved in an elementary but quite convoluted way by Bland in
1977): Start with any linear programming problem, and run the simplex
algorithm using Bland’s rule for pivoting. Whether degeneracy is encountered
or not, the algorithm will terminate in a finite amount of time, either with an
optimal solution to the problem, or the information that the optimum is not
bounded from below.

Drawbacks to Bland’s rule:

Often takes longer than other pivoting rules (such as “choose the most
negative entry in the objective row”) would.
Might force you to divide by very small numbers, leading to rounding
errors.

Math 30210 (Fall 2014) Lecture slides December 10, 2014 36 / 78

How many iterations does the simplex method need?
[September 29]
Typically: If a problem has n variables and n constraints, then almost always
simplex will solve it after no more than ≈ 3n pivots

Worst case: For almost every particular pivot rule that has been proposed,
there are examples of problems with n variables and n constraints that it takes
simplex about 2n pivots to solve

Open question: Is there a pivot rule that allows simplex to solve every
problem with n variables and n constraints using, say, no more than n10

pivots?

Fact: There are methods, completely different from simplex, that solve every
Linear Programming problem quickly

Math 30210 (Fall 2014) Lecture slides December 10, 2014 37 / 78

Recalling Max form and Min form [September 29]
Max form: An LP is in max form if it is a maximization, all constraints are ≤, and all
variables are non-negative.
Maximize z = c1x1 + c2x2 + c3x3 subject to

a11x1 + a12x2 + a13x3 ≤ b1

a21x1 + a22x2 + a23x3 ≤ b2

a31x1 + a32x2 + a33x3 ≤ b3

a41x1 + a42x2 + a43x3 ≤ b4

a51x1 + a52x2 + a53x3 ≤ b5

and x1, x2, x3 ≥ 0.
Min form: An LP is in min form if it is a minimization, all constraints are ≥, and all
variables are non-negative.
Minimize z = c1x1 + c2x2 + c3x3 subject to

a11x1 + a12x2 + a13x3 ≥ b1

a21x1 + a22x2 + a23x3 ≥ b2

a31x1 + a32x2 + a33x3 ≥ b3

a41x1 + a42x2 + a43x3 ≥ b4

a51x1 + a52x2 + a53x3 ≥ b5

and x1, x2, x3 ≥ 0.
Theorem: Every LP can be expressed in both Max form and in Min form.

Math 30210 (Fall 2014) Lecture slides December 10, 2014 38 / 78

Recalling the Dual problem [September 29]
The Dual: Given a problem P in max form, the associated dual problem D has one
variable for each constraint of P, and one constraint for each variable of P. It is a min
form problem. If P reads off constraints from rows of a data array, D reads off
constraints from the columns. If P uses the final row of the data array to construct the
objective, D uses the final column.

P (primal problem): Maximize z = c1x1 + c2x2 + c3x3 subject to

a11x1 + a12x2 + a13x3 ≤ b1

a21x1 + a22x2 + a23x3 ≤ b2

a31x1 + a32x2 + a33x3 ≤ b3

a41x1 + a42x2 + a43x3 ≤ b4

a51x1 + a52x2 + a53x3 ≤ b5

and x1, x2, x3 ≥ 0.

D (dual problem): Minimize v = b1y1 + b2y2 + b3y3 + b4y4 + b5y5 subject to

a11y1 + a21y2 + a31y3 + a41y4 + a51y5 ≥ c1

a12y1 + a22y2 + a32y3 + a42y4 + a52y5 ≥ c2

a13y1 + a23y2 + a33y3 + a43y4 + a53y5 ≥ c3

and y1, y2, y3, y4, y5 ≥ 0.
Math 30210 (Fall 2014) Lecture slides December 10, 2014 39 / 78

Using matrix notation [September 29]
Matrix notation is our friend! (See page 125 of the textbook) If

A is the m-row, n-column matrix (m constraints, n variables), ij entry aij

b is the column vector (b1,b2, . . . ,bm)
t (column of rhs’s of constraints)

c is the column vector (c1, c2, . . . , cn)
t (column of objective coefficients)

X is the column vector (x1, x2, . . . , xn)
t of primal variables

Y is the column vector (y1, y2, . . . , ym)
t of dual variables

then:
Primal P : Max z = c · X subject to AX ≤ b X ≥ 0
Dual D : Min v = b · Y subject to AtY ≥ c Y ≥ 0

The dual can be defined for any LP; just put it into Max form first! Using matrix
notation, it’s easy to see:
Theorem: The Dual of the Dual is the Primal. In other words:

Start with any LP problem P in Max form
Form its dual problem D
Put D into Max form
Now that D is in Max form, you can write down its dual D2

You are back where you started! D2 is exactly the same as P
Math 30210 (Fall 2014) Lecture slides December 10, 2014 40 / 78

Shortcuts to duality [October 1]
Given primal problem P:

if it is a maximization, change all ≥ constraints to ≤ by multiplying by −1
if it is a minimization, change all ≤ constraints to ≥ by multiplying by −1
Don’t bother changing = constraints to pair of ≤ or ≥
Don’t bother replacing unrestricted variables with pair of restricted
variables

Construct dual by these operations:

Maximaization problem goes to minimization problem
≤ constraint #(j) goes to non-negative variable #(j)
= constraint #(j) goes to unrestricted variable #(j)

non-negative variable #(i) goes to ≥ constraint #(i)
unrestricted variable #(i) goes to = constraint #(i)

constraint #(j) coefficients go to variable #(j) coefficients
variable #(i) coefficients go to constraint #(i) coefficients

objective coefficients go to constraint rhs’s
constraint rhs’s go to objective coefficients

Table can be read in both directions
Math 30210 (Fall 2014) Lecture slides December 10, 2014 41 / 78

Interpreting the diet problem dual [October 1]
The Primal problem (Poor Professor)

Objective: minimize cost
Variables: one for each resource, amount of each resource used in blend
Constraints: one for each nutrition requirement; blend must have at least
a certain amount
Objective coefficients: cost per unit of each resource
Right-hand side of constraints: amount of each nutrition required

The Dual problem (Rich Corporation)

Objective: maximize revenue
Variables: one for each nutrient, cost per unit of each nutrient
Constraints: one for each resources; cost of reproducing nutritional
content of each resource should be no more than a certain amount
Objective coefficients: amount of each nutrition required
Right-hand side of constraints: cost per unit of each resource

Math 30210 (Fall 2014) Lecture slides December 10, 2014 42 / 78

Dice problem [October 6]
Ordinary die: comes up 1, 2, 3, 4, 5, 6, each with probability 1/6. Average
value:

1(1/6) + 2(1/6) + 3(1/6) + 4(1/6) + 5(1/6) + 6(1/6) = 3 1/2

Weighted/loaded die: comes up 1, 2, 3, 4, 5, 6, with probabilities
p1,p2,p3,p4,p5,p6 respectively, each pi ≥ 0, pi ’s add to 1. Average value:

1p1 + 2p2 + 3p3 + 4p4 + 5p5 + 6p6

Question: Which loaded die with the same average value as an ordinary die
has greatest bias towards 6?

Maximize p6 subject to

p1 + p2 + p3 + p + 4 + p5 + p6 = 1
p1 + 2p2 + 3p3 + 4p + 4 + 5p5 + 6p6 = 3 1/2

and all pi ≥ 0

Math 30210 (Fall 2014) Lecture slides December 10, 2014 43 / 78

Example for duality theorem proof [October 8]
Primal: Maximize 30x1 + 6x2 − 5x3 + 18x4 subject to

1x1 + 0x2 + 2x3 + 1x4 ≤ 20

−2x1 + 1x2 + 0x3 − 1x4 ≤ 15

6x1 + 2x2 − 3x3 + 0x4 ≤ 54

x1, x2, x3, x4 ≥ 0.

Dual: Minimize 20y1 + 15y2 + 54y3 subject to

1y1 − 2y2 + 6y3 ≥ 30

0y1 + 1y2 + 2y3 ≥ 6

2y1 + 0y2 − 3y3 ≥ −5

1y1 − 1y2 + 0y3 ≥ 18

y1, y2, y3 ≥ 0.

Observation: At optimum simplex tableau for primal, objective row coefficients of
slack variables gives optimum solution to dual problem!

Math 30210 (Fall 2014) Lecture slides December 10, 2014 44 / 78

A more precise duality theorem obsv. [October 10]
Given a maximization problem, in Max form, with finite optimum:

Multiply all constraints with negative right-hand sides by −1
Add slack variables to put into standard form
Run simplex (possibly with artificial variables initially)
When simplex has reached optimum tableau, the vector of coefficients
of slack variables in the objective row of the optimum tableau gives
an optimum feasible point for the dual problem (and the optimum
value for the dual is the same as that for the primal)

Given a minimization problem, in Min form, with finite optimum:

Exactly the same thing happens

Math 30210 (Fall 2014) Lecture slides December 10, 2014 45 / 78

Dealing with equality constraints [October 10]
Given an LP problem with finite optimum:

Organize constraints so that right-hand sides are all positive
Add slack variables to ≤ and ≥ constraints, if necessary multiply
objective by −1 to put into standard form
Run simplex (possibly with artificial variables initially, for ≥ constraints
and for = constraints)
When simplex has reached optimum tableau, you can read off the
solution to the dual problem:

I For each ≤ or ≥ primal constraint, the coefficient of the associated slack
variable in the final (real) objective row is the value of the associated dual
variable at optimality

I For each = primal constraint, the value of the associated dual variable at
optimality comes from the coefficient of the associated artificial variable in
the final (real) objective row: if the primal was originally a maximization
problem, take the coefficient value, and if the primal was originally a
minimization problem, take the negative of the coefficient value.

The objective value of the dual at optimum is the same as that of the
primal

Math 30210 (Fall 2014) Lecture slides December 10, 2014 46 / 78

Integer programming examples I [October 13]
Discrete allocation I: I have $83,500 to invest, and I have the following
opportunities:

A city bond for $20,000, with 6% return after one year
A city bond for $30,000, with 5.5% return after one year
Treasury bills in units of $5,000, with 3% return after one year
Up to 50 shares at $625 per share, with 5.2% return after one year

I am not allowed to purchase both city bonds. How do I invest to maximize
return after 1 year?

Discrete allocation II: I have 4 items, numbered 1 through 4. Item i has value
$vi and weighs wi lbs. I can carry at most W lbs. Which items do I choose to
carry, to maximize the total value of the items I am carrying?

Math 30210 (Fall 2014) Lecture slides December 10, 2014 47 / 78

Integer programming examples II [October 17]
Fixed charges: A factory can produce each of items A and B. A unit of each
item has an associated profit in dollars, and uses a number of labor hours and
a number of pounds of raw material. Additionally, for each item there is a fixed
setup charge in dollars if the decision is made to produce even one of that
item. The data for the problem is summarized in the table below:

Data A B Availability
Labor 3 4 100

Materials 2 1 80
Fixed charge 800 600

Profit 20 30

How many of each item should be produced to maximize profit?

Sliding charges: Consider two modifications to the above problem:
1 Suppose 10 hours extra labour is available at $10/hour, and 20 hours at

$12/hour.
2 Suppose that union rules mean that all 20 hours of the more expensive

labor must be used before any of the cheaper hours can be used.

Math 30210 (Fall 2014) Lecture slides December 10, 2014 48 / 78

Sudoku through integer programming [October 17]
Variables: xijk , 1 ≤ i ≤ 9, 1 ≤ j ≤ 9, 1 ≤ k ≤ 9 (729 in all)
Interpretation: xijk = 1 if entry in cell (i , j) is k , is 0 otherwise
First family of constraints: For each i , j , k

xijk ≤ 1, all integers

729 constraints
Second family of constraints: For each i , j

xij1 + xij2 + . . . xij9 = 1

(one number per cell) — 81 constraints
Third family of constraints: For each i , k ,

xi1k + xi2k + . . . xi9k = 1

(number k appears exactly once in row i) — 81 constraints
Fourth and fifth family of constraints: encoding that number k appears exactly once
in each column, each 3-by-3 box — 162 constraints
Sixth family of constraints: For each cell (i , j) with given number k , xijk = 1
Integer programming problem: Minimize 0 subject to above constraints, all variables
non-negative
Parameters: 729 variables, (972+number of givens) constraints

Math 30210 (Fall 2014) Lecture slides December 10, 2014 49 / 78

Integer programming examples III [October 27]
Sliding charges again: Material is to be purchased, at a cost of

$10 per unit for first 100 units,
$8 per unit for next 200 units,
$6 per unit thereafter.

Production constraints force that at most 1000 units will ever be needed.
Encode the cost of materials purchase using linear equations.

Rental charges in transportation problems: Three warehouse, supplies
s1, s2, s3. Three outlets, demands d1,d2,d3; available supply significantly
exceed total demand. Shipping cost per unit from warehouse i to outlet j is cij .
Rental cost for warehouse i is ri , payable (for future use) only if warehouse i
still has some units left after shipping. Find minimum cost shipping scheme.

Either/or constraints: Encode using linear constraints that
a variable x is either 0 or at least 50
at least one of the constraints x + y ≤ 10, x + 2y ≤ 16, 2x + y ≤ 16 holds
at least two of x + y ≤ 10, x + 2y ≤ 16, 2x + y ≤ 16 hold

Math 30210 (Fall 2014) Lecture slides December 10, 2014 50 / 78

Gomory’s cutting plane algorithm [October 29]
Given: A pure integer programming problem, that is, a linear programming
problem where all variables are constrained to be integers.

Gomory’s algorithm (1958):
1 Solve the problem using simplex, ignoring the integrality constraints.
2 If the solution is fully integral, problem solved.
3 If not, add one new constraint to the problem that

1 cuts out the current optimal solution from the feasible set, but
2 doesn’t cut out any feasible points that are all integral.

4 Return to step one.

Math 30210 (Fall 2014) Lecture slides December 10, 2014 51 / 78

Load balancing problem [October 29]
Given: Weights w1,w2, . . . ,wn, total weight W .
Problem: Split them into two groups of as near equal weight as possible
Equivalent problem: Pick out a subset of the weights whose total weight is as close
to W/2 as possible, without exceeding it
Equivalent problem, when all the weights are integers: Pick out a subset of the
weights whose total weight is as close to [W/2] as possible, without exceeding it,
where [W/2] is the biggest integer not exceeding W/2
Example: I have a penny, a nickel, a dime and a quarter, and I want to split them into
two groups of as near equal value as possible.
LP formulation: x1 is 0 if I don’t choose the penny, 1 if I do, similarly for x2, x3, x4; so
the xi ’s are integral (actually, binary)
Maximize x1 + 5x2 + 10x3 + 25x4 subject to

x1 + 5x2 + 10x3 + 25x4 + x5 = 20

x1 + x6 = 1

x2 + x7 = 1

x3 + x8 = 1

x4 + x9 = 1

all xi ≥ 0, all xi integers
Math 30210 (Fall 2014) Lecture slides December 10, 2014 52 / 78

Gomory’s cutting plane algorithm II [October 31]
Given: A pure integer programming problem

1 Solve problem using simplex, ignoring integrality constraints
2 If solution is fully integral, problem solved
3 If not

1 pick out row
∑

i aixi = b in final tableau with b not integral
2 rewrite as −d +

∑
i dixi = e −

∑
i eixi with

F 0 ≤ di < 1 for each i , and 0 < d < 1
F e, e1, e2, . . . , en all integers

3 add variable xn+1 ≥ 0, integral, constraint −d +
∑

i dixi = xn+1

4 key observations:
1 if (x1, . . . , xn) feasible integral point for original problem, there’s xn+1 with

(x1, . . . , xn, xn+1) feasible integral point for original problem
2 if (x?

1 , . . . , x
?
n) the optimum picked out by simplex for original problem with

integrality ignored, there is no x?
n+1 with (x?

1 , . . . , x
?
n , x?

n+1) feasible for new
problem with integrality ignored

5 Return to step one
6 Rules for choosing row exist, that ensure termination of algorithm with

optimum integral point; in practice, just choose non-integral b with largest
fractional part

Math 30210 (Fall 2014) Lecture slides December 10, 2014 53 / 78

Branch-and-bound algorithm [November 5]
Given: An LP problem P with some integer constraints

1 Form P ′ by ignoring integrality constraints, solve using simplex
2 If solution is integral where it should be (good solution), STOP
3 If not

1 pick variable that should be integer but isn’t, say xi = bi
2 Form subproblem P1: old problem (P) together with extra constraint xi ≤ [bi],

where [bi] is largest integer not exceeding bi , and xi still integral
3 Form subproblem P2: old problem (P) together with extra constraint

xi ≥ [bi] + 1, and xi still integral
4 Optimum for P must be feasible for one of P1, P2, so return to step 1 with

both subproblems (this is branching)
5 STOP when all branches have terminated; branch with best good solution

has the optimum for P

Math 30210 (Fall 2014) Lecture slides December 10, 2014 54 / 78

Reasons for a branch to terminate [November 5]
1 subproblem has good solution
2 subproblem has no feasible solution or is unbounded
3 subproblem has an optimum, that is not as advantageous as optimum on

some other branch that has terminated with a good solution (NB: for
maximization problems, objectives get smaller along a branch; for
minimization problems, objectives get bigger along a branch) (this is
bounding)

4 subproblem has an optimum, that is more advantageous than the
optimum on some other branch that has terminated with a good solution,
but more advantageous only by a fraction less than 1 (this only if we
know that the optimum objective value will be an integer)

Math 30210 (Fall 2014) Lecture slides December 10, 2014 55 / 78

Transportation algorithm I [November 10]
1 Step 1: find a basic feasible solution using Northwest rule:

I fill in cell (1, 1) as much as possible
I if warehouse 1 now empty, move down one cell; if outlet 1 now satisfied,

move across 1 cell
I repeat

2 Step 2: check for optimality:
I assign variables u1, . . . , um to the warehouses, v1, . . . , vn to the outlets
I set u1 = 0, and fix remaining so that for each basic cell (i , j), ui + vj = cij
I calculate ui + vj for all remaining cells, and compare with ci j ; if ui + vj always

at most cij , current solution is optimal, if not, it is not
3 Step 3: if not optimal, decide on a new (entering) basic variable:

I typically one picks that cell (i , j) for which ui + vj − cij is biggest

Math 30210 (Fall 2014) Lecture slides December 10, 2014 56 / 78

Transportation algorithm II [November 10]
1 Step 4: enter this new basic variable:

I find a loop: a chain of cells

cell 1→ cell 2→ cell 3 . . .→ cell `→ cell 1

with these properties:
F cell 1 is the entering variable, all other cells are basic variables
F consecutive cells are either in same row or same column
F chain takes a 90 degree turn at each cell

I enter value x in the entering variable cell, and adjust the values in all other
cells by adding/subtracting x so that supply and demand constraints are still
met

I choose x as large as possible so that all entries are still non-negative
I pick one of the cells that ends up with a zero value to be the departing

variable, and erase this value
2 Step 5: return to Step 2 and repeat

Math 30210 (Fall 2014) Lecture slides December 10, 2014 57 / 78

Transportation algorithm III [November 14]
Some modifications to setup

1 What if supply exceeds demand? Set up a dummy outlet, whose demand
is the surplus, and with all shipping costs 0

2 What if demand exceeds supply? Problem is unfeasible. But, one can still
ask “what is the best shipping scheme that ships out all available units,
and doesn’t exceed any single outlet demand?”. Set up a dummy
warehouse, whose supply is the deficit, and with all shipping costs 0

3 What if some shipping cost are negative (e.g., due to subsidies
received)? Proceed as before; correctness of algorithm does not rely on
positivity of costs

4 What if there is some warehouse - outlet pair along which nothing can be
shipped? Invent a large dummy cost for this route, so large that the cost
of sending even one unit exceeds the total cost of any feasible scheme (if
one exists). For example, set the dummy cost to be one greater than the
total supply times the largest real cost. If the optimum solution uses any
of the forbidden routes, that says that there was no feasible solution to
the original problem.

Math 30210 (Fall 2014) Lecture slides December 10, 2014 58 / 78

Minimum spanning tree [November 14]
n cities, C1,C2, . . . ,Cn, want to connect themselves up with a road network. It’s
required that in the end, it should be possible to travel between any two cities, perhaps
via some other cities. For each pair of cities (i , j) the cost cij of connected them up with
a road is known. What configuration of roads achieves this at minimum cost?

n(n − 1)/2 potential roads, so 2n(n−1)/2 possible configurations (not all feasible)

Optimal configuration will have no cycles: cities Ci1 ,Ci2 , . . . ,Cik with Ci1 joined directly
to Ci2 , Ci2 joined directly to Ci3 , etc, and Cik joined directly to Ci1 . A connected
configuration with no cycles is called a tree. But, there are a lot of trees on n cities:
nn−2 of them. FACT: all trees have n − 1 connections.

Minimum spanning tree problem can be encoded as an integer (binary) programming
problem, with one variable for each potential connection, one constraint for each
variable (to say that it is binary), one constraint for each potential cycle (to say that not
all connections are present), and one constraint to say that there are n − 1
connections.

n(n − 1)/2 variables, n(n − 1)/2 +
(∑n

k=3
n(n−1)...(n−(k−1))

2k

)
+ 1 constraints

n = 4: 6 variables, 14 constraints

n = 40: 780 variables, 2.8× 1046 constraints

Simplex plus Gomory or Branch & bound probably won’t help!
Math 30210 (Fall 2014) Lecture slides December 10, 2014 59 / 78

IP formulation of 4 city MST problem [November 17]
Variables: XAB , XAC , XAD , XBC , XBD , XCD ,

XAB =

{
1 if connection from A to B used
0 if not, etc.

Objective: Minimize 5XAB + 6XAC + 5XAD + 3XBC + 4XBD + 3XCD

Constraints: all X ’s non-negative and integral, as well as

XAB + XAC + XBC ≤ 2

XAB + XAD + XBD ≤ 2

XAC + XAD + XCD ≤ 2

XBC + XBD + XCD ≤ 2

XAB + XAD + XBC + XCD ≤ 3

XAB + XAC + XBD + XCD ≤ 3

XAC + XAD + XBC + XBD ≤ 3

XAB + XAC + XAD + XBC + XBD + XCD = 4

and
XAB, XAC , XAD, XBC , XBD, XCD each ≤ 1.

Math 30210 (Fall 2014) Lecture slides December 10, 2014 60 / 78

Kruskal’s MST algorithm [November 17]
Joseph Kruskal discovered the following in 1956:

1 Start with no connections between the n cities
2 Select the cheapest available edge (break ties arbitrarily)
3 Delete from future consideration all connections whose addition would

create a cycle
4 Go back to step 2
5 When no connections are left available, algorithm stops; selected

connections form a minimum weight spanning tree

This is an example of a greedy algorithm: it selects the optimum continuation
at each stage, without considering the possibility that a slightly less
advantageous choice now might lead to significant gains later.

Sometimes greed is good (as in Kruskal’s algorithm); sometimes not.

Math 30210 (Fall 2014) Lecture slides December 10, 2014 61 / 78

Proof of Kruskal I — preliminaries [November 17]
1 No cycles ever created, by design
2 As long as network not yet fully connected, there are available connections that

don’t create cycle, and algorithm continues; so when it stops, network connected
3 Final network is optimal — takes some work

Lemma: F , F ′ two cycle-free networks on n cities, with F having fewer connections
than F ′. There’s connection in F ′ that can be added to F , that joins two clusters of F
(so keeps it cycle-free)

Proof:

If F has k clusters, then since each cluster has one fewer connections than cities,
F has n − k connections; if F ′ has k ′ clusters, then it has n − k ′ connections

Since n − k ′ > n − k , have k ′ < k

Assume for contradiction: every connection in F ′ links two cities that are in same
cluster in F

I Then each cluster in F ′ sits inside a cluster in F
I So k ′ ≥ k

This contradiction gives lemma

Math 30210 (Fall 2014) Lecture slides December 10, 2014 62 / 78

Proof of Kruskal II — minimality [November 19]
Proof that final network is optimal, using lemma:

Let T = {t1, . . . , tn−1} be final network produced by Kruskal, with connections ti
ordered, as created, from cheapest to most expensive (c(t1) ≤ c(t2) ≤ . . . c(tn−1),
where c(ti) is cost of connection ti)

Assume for contradiction that H = {h1, . . . , hn−1} (with
c(h1) ≤ c(h2) ≤ . . . c(hn−1)) is a cheaper network

Let k be first step at which H beats T (
∑k

i=1 c(hi) <
∑k

i=1 c(ti)); because Kruskal
starts with globally cheapest connection, k 6= 1

Since
∑k−1

i=1 c(hi) ≥
∑k−1

i=1 c(ti), must have c(hk) < c(tk)

Look at networks Tk−1 = {t1, . . . , tk−1} and Hk = {h1, . . . , hk} (both without
cycles)

By Lemma, there’s connection, say h`, in Hk that joins two clusters in Tk−1

h` was available at step k in running of Kruskal’s algorithm, and
c(h`) ≤ c(hk) < c(tk), so Kruskal should not have chosen connection tk at this
point.

This contradiction proves that H couldn’t have existed, T is minimum cost
connected network

Math 30210 (Fall 2014) Lecture slides December 10, 2014 63 / 78

Three other MST algorithms [November 19]
1 Greedy subtraction: Essentially the same as Kruskal

I Start with all possible connections
I One-by-one delete most expensive connection whose deletion would not

disconnect the network
I Stop when no connection can be deleted without disconnecting the network

2 Prim’s algorithm: Independently discovered by Jarnik (19030) Prim (1957) and
Dijkstra (1959)

I Pick an arbitrary city to start from
I Build the cheapest connection out of that city (may not be globally cheapest

city), to form cluster of size 2
I Build the cheapest connection out of the cluster of size 2, to form cluster of

size 3
I Repeat, until cluster has grown to size n

3 Greedy and Selfish algorithm: (Only works if all connection costs are different)
I Each city, independently of all the others, begins building the cheapest

connection out of the city, stopping either when connections reaches target
city, or meets target city’s connection half-way

I There are now a number of clusters of cities. Each cluster, independently of
all the others, begins building the cheapest connection out of the cluster

I Repeat until there’s one cluster
Math 30210 (Fall 2014) Lecture slides December 10, 2014 64 / 78

Games [November 21]
Here are some of the characteristics of the games that we will study:

1 Two players [US politics, not European politics]
2 Zero-sum: whatever Player 1 wins in the end, Player 2 loses, and vice-versa

[MLB, not most economic trade]
3 Perfect information: both players have full access to the rules, full access to the

current state of play, and full knowledge of the moves that are available to both
players [Chess, not Battleship]

4 Deterministic: both players decisions on how to play fully determines the outcome
[Tic-Tac-Toe, not poker]

Some simple examples:
1 Rock-Paper-Scissors: Two players each throw a hand, either clenched (rock),

open (paper), or with middle and index finger split (scissors). Rock crushes
(beats) scissors cuts (beats) paper covers (beats) rock; players showing the same
item draw. The loser pays the winner $1.

2 Two-finger Morra: Two players each throw out a hand, showing some number of
fingers (between 1 and 2), while at the same time shouting out a guess (some
number between 2 and 4) as to the total number of fingers that will be shown. A
player who guesses correctly get points from the opponent equal to the number of
fingers showing. If no-one guesses correctly the game is a tie.

Math 30210 (Fall 2014) Lecture slides December 10, 2014 65 / 78

Chess as a two-person zero-sum game [November 21]
Game tree:

White has 20 possible opening moves
Black has 20 possible responses
From here on, number of possible moves depends on previous moves
Get big “Game tree”: ≈ 1047 nodes (finite by “draw rule”)

Strategy for White:
Specification of opening move M1

For each possible response i of Black, specification of second move M2i

For each i , and response j of Black to M2i , specification of third move M3ij

. . .

Strategy for Black:
For each possible opening move i of Black, specification of opening move N1i

. . .

Payoffs: if White uses strategy A, Black uses strategy B
+1 if unique game determined by A and B ends with White winning
−1 if it ends with Black winning
0 if it ends with draw

Math 30210 (Fall 2014) Lecture slides December 10, 2014 66 / 78

Notation for games [November 21]
Matrix games:

P1 (Player 1) has available strategy set {s1, . . . , sm}
P2 (Player 2) has available strategy set {t1, . . . , tn}
If P1 plays strategy si , and P2 plays strategy tj , then there is a payoff aij (from P2

to P1 if aij ≥ 0, from P1 to P2 if aij < 0)

Payoff matrix: A = (aij)1≤i≤m, 1≤j≤n

Both players know all rules, and payoff matrix

Some meta comments:

We’ll always assume aij are known real numbers; utility theory deals with setting
these values

Conditions under which decision might be made:
I with certainty: as in all of our LP examples
I with risk: in the presence of randomness, with known probabilities
I with uncertainty: in the presence of randomness, with unknown probabilities

— our games roughly fall into this category

Math 30210 (Fall 2014) Lecture slides December 10, 2014 67 / 78

Maximum security strategies [November 24]
First principle of games (maximization of security level (worst-case gain)):

A rational player will play in such a way as to maximize his gain under the
assumption that the opponent will respond in the way that is most damaging

for the player (as opposed to most advantageous)

Security level for P1 for strategy si :

min
j

aij (minimum entry in row i of payoff matrix)

Security level for P2 for strategy tj :

max
i

aij (maximum entry in column j of payoff matrix)

Maximum security level for P1:

u1 = max
i

min
j

aij (convention: occurs in row h)

Maximum security level for P2:

u2 = min
j

max
i

aij (convention: occurs in column k)

Math 30210 (Fall 2014) Lecture slides December 10, 2014 68 / 78

Observations about maximum security strategies
[November 24]
The following are equivalent:

1 u1 = u2

2 (sh, tk) is a stable pair of strategies
3 A has a saddle point: an entry that is simultaneously a row minimum and

a column maximum; in particular, entry (h, k) is a saddle point

When any one of these things happens, say that (sh, tk) is a solution to the
game, and the value of the game is the common value of u1,u2

The following are equivalent:
1 u1 < u2

2 (sh, tk) is a not a stable pair of strategies
3 A does not have a saddle point

Second principle of games (desire for equilibrium):

Rational players tend to play in a way that is stable

Math 30210 (Fall 2014) Lecture slides December 10, 2014 69 / 78

Mixed strategies [December 1]
Mixed strategy for P1: (x1, . . . , xm), each xi ≥ 0,

∑
i xi = 1 (interpretation: P1 plays

strategy si with probability xi). Denote by S the set of all possible strategies for P1 (S
includes the pure strategies, “always play si ”).
For P2: (y1, . . . , yn), each xi ≥ 0,

∑
i xi = 1; T is set of mixed strategies for P2.

Expected payoff when P1 uses strategy X = (x1, . . . , xm) and P2 uses strategy
Y = (y1, . . . , yn):

m∑
i=1

n∑
j=1

aijxiyj = XAT t .

Security level for P1 playing strategy X1: worst-case expected payoff over all of Y ’s
strategies, or

min
Y∈T

X1AY t .

For P2 playing Y2: maxX∈S XAY t
1.

Theorem 9.4.1: The worst-case expected payoff for P1 playing X1 is always achieved
at one of Y ′ pure strategies:

min
Y∈T

X1AY t = min
1≤j≤n

X1Aet
j

where ej is the j th standard basis vector in Rn; analogous statement for P2.
Math 30210 (Fall 2014) Lecture slides December 10, 2014 70 / 78

Optimal security levels [December 3]
Optimal security level for P1: Maximum, over all mixed strategies X , of the
security level of X (ie, the maximum over all X of the worst-case expected
payoff to P1 when he plays X)

v1 = max
X∈S

min
Y∈T

XAY t

= max
X∈S
{security level of X}

= max
X∈S

min
j=1,...,n

XAet
j

For P2:

v2 = min
Y∈T

max
X∈S

XAY t

= min
Y∈T
{security level of Y}

= min
Y∈T

max
i=1,...,m

eiAY t

Math 30210 (Fall 2014) Lecture slides December 10, 2014 71 / 78

The fundamental theorem [December 3]
Theorem (proved by Jon von Neumann in 1928): for all matrix games,

v1 = v2

In other words, there is some number v , the value of the game, such that P1 can obtain
a security level of v by playing a certain strategy X0, but can’t obtain a higher security
level; and P2 can obtain a security level of v by playing a certain strategy Y0, but can’t
obtain a lower security level. The pair of strategies (X0,Y0) constitutes a solution to the
game. It satisfies the principle of maximizing security for each player, and it satisfies
the principle of stability:

Stability (equilibrium): In response to Y0, no strategy has a greater expected payoff
than X0 (XAY t

0 ≤ X0AY t
0 for all X ∈ S; so P1 has no incentive to change strategy from

X0, knowing that P2 will be playing Y0), AND, in response to X0, no strategy has a
lower expected payoff than Y0 (X0AY t

0 ≤ X0AY t for all Y ∈ T ; so P2 has no incentive to
change strategy from Y0, knowing that P1 will be playing X0)

Proof idea: P1 sets up the problem of calculating v1 as a linear programming problem,
and P2 does the same for v2. the two linear programming problems turn out to be dual
to one another, so the theorem is a corollary of the duality theorem.

Fairness: If v = v1 = v2 = 0, game is fair; if v > 0, game favours P1, if v < 0, game
favours P2.

Math 30210 (Fall 2014) Lecture slides December 10, 2014 72 / 78

Game theory LP summary [December 5]
Game matrix: A = (aij)i=1,...,m, j=1,...,n with all aij ≥ 0 (if not, add universal constant to
all entries, and subtract it from final value)

P1’s linear program to find v1: Minimize 1/w = x ′1 + x ′2 + . . .+ x ′m subject to

a11x ′1 + a21x ′2 + . . .+ am1x ′m ≥ 1

a12x ′1 + a22x ′2 + . . .+ am2x ′m ≥ 1

. . .

a1nx ′1 + a2nx ′2 + . . .+ amnx ′m ≥ 1

and all x ′i ≥ 0. Minimization problem, constraints read off columns of A.
v1 = w ′ at min; optimum strategy X0 = (x1, . . . , xm) found by xi = v1x ′i
P2’s linear program to find v2: Maximize 1/z = y ′1 + y ′2 + . . .+ y ′m subject to

a11y ′1 + a12y ′2 + . . .+ a1ny ′n ≤ 1

a21y ′1 + a22y ′2 + . . .+ a2ny ′n ≤ 1

. . .

am1y ′1 + am2y ′2 + . . .+ amny ′n ≤ 1

and all y ′i ≥ 0. Maximization problem, constraints read off rows of A.
v2 = z′ at max; optimum strategy Y0 = (y1, . . . , yn) found by yi = v2y ′i
Duality: v1 = v2 since P1 and P2’s problems are dual to one another

Math 30210 (Fall 2014) Lecture slides December 10, 2014 73 / 78

Gale-Shapley algorithm [December 10]
Input: n men, n women, their full preference lists.

Algorithm: As long as there are some unengaged men and women:

Choose an unengaged women, W say, arbitrarily.

W proposes to the highest ranked man on her list to whom she has not yet
proposed, m say.

m responds by
I accepting W ’s proposal (and becoming engaged to W) if either

F — m is currently unengaged, or
F — m prefers W to his current partner (in which case his current partner

becomes unengaged)
I rejecting W ’s proposal if — m prefers his current partner to W .

When there are no unengaged men and women, all engaged couples marry, and
algorithm stops.

Gale-Shapley theorem (1962): For all n!n
2

possible input preference lists, output is a
stable marriage.

Math 30210 (Fall 2014) Lecture slides December 10, 2014 74 / 78

Proof of Gale-Shapley I [December 10]
Algorithm terminates with matching:

Algorithm doesn’t allow for polygamy in engagements, so while there are
unengaged people there are as many unengaged women as men.

A man will always accept first proposal received.

So, while there are unengaged people, there is an unengaged woman W , and
there is at least one m who has not yet received a proposal, and will accept a
proposal from W .

This shows that algorithm will terminate in no more than n2 steps (time taken for
each woman to go completely through her preference list).

Math 30210 (Fall 2014) Lecture slides December 10, 2014 75 / 78

Proof of Gale-Shapley II [December 10]
Output matching is stable:

Pick pair (W ,m) with Wm not in the matching.

Let n be W ’s partner, and V be m’s partner, in the final matching.

Suppose that m >W n (W prefers m to her current partner). Is it possible that
W >m V (m prefers W to his current partner)?

Well: since m >W n, we know that at some point W proposed to m (W works
down her preference list to her final partner), and since W ended up matched to n
in final matching, we know that at some subsequent point (or maybe at the
moment of proposal) m rejected W .

Why would m reject W? Because he was either engaged to at the time of the
proposal, or received a proposal later from, some women Z that he preferred to
W . Maybe Z = V , or maybe V came later still, but either way, since m works up
his preference list as the algorithm goes on, we conclude that m prefers V to W .

Hence, (W ,m) is not an instability, and the final matching is stable.

Math 30210 (Fall 2014) Lecture slides December 10, 2014 76 / 78

Whom does the Gale-Shapley algorithm favour?
[December 10]
Women propose: The resulting stable matching is independent of the order in which
proposals happen. It is best-case for the women: each women ends up matched with
the highest ranked man on her list that she could ever be matched with in any stable
matching. It is worst-case for the men: each man ends up matched with the lowest
ranked woman on his list that he could ever be matched with in any stable matching.

Men propose: The resulting stable matching is independent of the order in which
proposals happen. It is best-case for the men, worst-case for the women.

Median matching: Each woman looks at all possible stable matchings. She writes
down a list of all the men she could possibly be matched with in a stable matching,
with repetitions if there are multiple stable matchings in which she is matched to the
same man. She orders that multi-list in order of her preference, and finds the man
whose name appears in the middle of the list. This man is her median partner. Fact: if
m is W ’s median partner, then W is m’s median partner. The matching in which each
women is matched with her median partner (equivalently, each man is matched with
his median partner) is stable. Another fact: know efficient algorithm is known to find
this “median” stable matching.

Math 30210 (Fall 2014) Lecture slides December 10, 2014 77 / 78

Variants of the problem [December 10]

Hospitals-residents: partial preferences allowed, “polygamy” allowed (hospitals
take in multiple residents) (Google: “National Resident Matching Program”).

Maximum weight assignment: each possible partnership gets a score; aim is to
pair all of the men and women into n partnerships in a way that maximizes the
sum of the scores

Stable roommates: 2n people, each has preference ranking of other 2n − 1,
what’s required is n pairs without an instability (gender-blind).

2012 Nobel prize for Economics was awarded to Alvin Roth and Lloyd Shapely, for
their work on these problems.

Math 30210 (Fall 2014) Lecture slides December 10, 2014 78 / 78

