Statistics for the Life Sciences

Math 20340 Section 01, Fall 2009

Homework 8 Solutions

- 8.40:
- a: 90% confidence interval: $-2.2 \pm 1.645 * \sqrt{\frac{.83}{64}+\frac{1.67}{64}}=-2.2 \pm .32 \ldots$ " 90% confident" means (informally) that the probability that the true difference between the means lies in the constructed interval is .9 ; formally it means that a process is being used to construct the interval that 90% of the time it is performed will lead to an interval which contains the true difference.
- b: 99% confidence interval: $-2.2 \pm 2.58 * \sqrt{\frac{83}{64}+\frac{1.67}{64}}=-2.2 \pm .50 \ldots$. Since 0 is not in this confidence interval, and we would expect it to be if the two means were the same, then we can be reasonably (99%, at least) confident that the two means are different.
- 8.42: 90% confidence interval: $-.7 \pm 1.645 * \sqrt{\frac{1.44}{100}+\frac{2.64}{100}}=-.7 \pm .332 \ldots$ Since 0 is not in this confidence interval, and we would expect it to be if the two means were the same, then we can be reasonably (90%, at least) confident that the two means are different; and more over that region 2 has a greater number of calls on average.
- 8.48:
- a: 99% confidence interval: $-8 \pm 2.58 * \sqrt{\frac{4^{2}}{30}+\frac{10^{2}}{40}}=-8 \pm 4.49 \ldots$.
- b: Since 0 is not in this confidence interval, and we would expect it to be if the two means were the same, then we can be reasonably (99%, at least) confident that the two means are different; and more over that the experimental group has a greater mean.
- 8.50:
- a: $\frac{120}{500}-\frac{147}{500}=-.054$.
- b: $S E \approx \sqrt{\frac{.24 * 76}{500}+\text { frac. } 294 * .706500}=.0279 \ldots$
- c: 95% margin of error: $\pm 1.96 * .0279 \ldots= \pm .0547 \ldots$.
- 8.54: Estimate for difference of proportion $(D-R)$: . $44-.41=.03 .95 \%$ confidence margin of error: $\pm 1.96 * \sqrt{\frac{.44 * 56}{1094}+\text { frac. } 41 * .59995}= \pm .0424$. Since 0 is within the margin of error of the observed difference, we can't really conclude anything about whether
there is a difference between proportion of Republicans and Democrats who consider the economy an important issue.
- 8.59: $\hat{p}_{G}=126 / 180=.7 ; \hat{p}_{N G}=54 / 100=.54 .90 \%$ confidence interval for the difference: $.16 \pm 1.645 * \sqrt{\frac{.7 * .3}{180}+\frac{.54 * .46}{100}}=.16 \pm .099 \ldots$. Since the interval contains only positive values, we can be (at least) 90% confident that the proportion of first-borns among college grads is higher than the proportion among non college grads.
- 8.62:
- $\mathbf{a}: \hat{p}_{>1000}=\frac{23}{41}=.56 \ldots ; 95 \%$ confidence margin of error is $\pm 1.96 \sqrt{\frac{\frac{23}{41} \frac{18}{41}}{41}}= \pm .1519 \ldots$
- $\mathbf{b}: \hat{p}_{>1000}-\hat{p}_{<1000}=.24 \ldots ; 95 \%$ confidence margin of error is $\pm 1.96 \sqrt{\frac{\frac{23}{41} \frac{18}{41}}{41}}+\frac{\frac{10}{32} \frac{22}{32}}{32}=$ $\pm .221 \ldots$
- 8.65:
- a: $\leq \bar{x}+1.28 * \frac{s}{\sqrt{n}}=76.63 \ldots$.
- $\mathbf{b}: \leq 1.8944$.
- 8.66: $\geq \hat{p}-2.33 * \sqrt{\frac{\hat{p} \hat{q}}{n}}=.4317 \ldots$.
- 8.68: Want $1.96 * \frac{12.7}{\sqrt{n}} \leq 1.6$ or $n \geq 243$ (n must be a whole number).
- 8.70: Want $1.645 \sqrt{\frac{27.8}{n}+\frac{27.8}{n}} \leq .17$ or $n \geq 5207$.
- 8.75: Range is 104 , so use $104 / 4=26$ as estimate for σ. Want $2.58 \sqrt{\frac{26^{2}}{n}+\frac{26^{2}}{n}} \leq 5$ or $n \geq 360$.
- 8.80: Want $1.96 \sqrt{\frac{.6^{2}}{n}+\frac{.6^{2}}{n}} \leq .2$ or $n \geq 70$.

