Statistics for the Life Sciences

Math 20340 Section 01, Fall 2009

Homework 5 Solutions
-6.3:

- a: . 9452
- b: . 9664
- c: . 8159
- d: almost 1
- 6.5:
- a: $=P(z \leq .68)-P(z \leq-1.43)=.6753$
- b: . 2401
- c: . 2694
- d: $=1-P(z \leq 1.34)=.0901$
- e: almost 0
- 6.13:
- a: . 1596
- b: . 1151
- c: . 1359
- 6.15: $(x-35) / 10$ is a standard normal; the value for a standard normal that has .01 to its right is 2.33 ; so x can be either the solution to $(x-35) / 10=2.33$ of that number which is 2.33 standard deviations above 35 ; either way $x=58.3$.
- 6.17: $(x-\mu) / \sigma$ is $z ; P(z \geq-2)=.9772$ and $P(z \geq-1.5)=.9332$. So we know that when we plug in $x=4$ to $(x-\mu) / \sigma$ we get -2 , and when we plug in $x=5$ we get -1.5 . This gives two equations in two unknowns: $4-\mu=-2 \sigma$ and $5-\mu=-1.5 \sigma$. The solution is $\sigma=2$ and $\mu=8$.
- 6.19: Let x be height of randomly selected man. x is normal with mean 69 , standard deviation 3.5. Standardizing, $(x-69) / 3.5$ is a standard normal.
- a: Taller than 6^{\prime} is same as taller than 72 inches, that is 4 inches or $3 / 3.5=.857$ standard deviations above mean. $p(z>.857)=.1949$, so about 12.7% of men are 6^{\prime} or taller
- b: $p\left(5^{\prime} 8^{\prime \prime} \leq x \leq 6^{\prime} 1^{\prime \prime}\right)=p(68 \leq z \leq 73)=p(-1 / 3.5 \leq z \leq 4 / 3.5)=p(-.29 \leq$ $z \leq 1.14)=.487$
- c: $5^{\prime} 11 "$ is 71 inches, only .57 standard deviations from the mean; not unusual
- d: $18 / 42=.428$ is observed proportion among presidents; .127 is proportion among general population. Observed proportion does seem unusual
- 6.23:
- 1300 is 1.01 standard deviations above mean; probability of exceeding this is .1562
- 1500 is 3.03 standard deviations above mean; probability of exceeding this is .0012
- 6.29: More than 100 is more than $15 / 9=1.66 \ldots$ standard deviations above mean. Probability of this is .0475
- 6.31: Say publisher specifies X words. The number provided is a normal x with mean $X+20000$, standard deviation 10000 . The probability that there will be fewer than 100000 words is
$P(x \leq 100000)=P(z \leq(100000-X-20000) / 10000)=P(z \leq(80000-X) / 10000)$.
We want this to be .95 ; since $P(z \leq 1.645)=.95$, we want $(80000-X) / 10000=1.645$ or $X=63550$.
- 6.37:
- a: Yes, because $n p, n q>5$.
- $\mathbf{b}: \mu=n p=7.5, \sigma=\sqrt{n p q}=2.29 \ldots$
- c: Using continuity correction, we calculate $P(5.5 \leq x \leq 9.5)$ where x is normal, mean 7.5, standard deviation 2.29, and get 6156 .
- d: Exact probability .618 ; not bad!
- 6.47: Number x of no-shows is a binomial distribution with $n=215, p=.1$, so mean 21.5 and standard deviation close to 4.4 . We want $P(x \geq 15)$; using continuity correction we estimate by $P(x \geq 14.5)$ where x is normal with mean 21.5 , standard deviation 4.4 and get probability .9441 .
- 7.5: If we assume that *everyone* in the town passes the corner, then yes. But perhaps, busy as it might be, not all of the population passes by that corner; for example, elderly people who are home-bound might not be included in sample.
- 7.7: Certainly not everyone who is over 18 is registered to vote; a lot of younger people are not, for example. That slack could be picked up by the drivers licence records, since almost everyone has either a drivers licence or a DMV-issued state ID.

