Statistics for the Life Sciences

Math 20340 Section 01, Fall 2009
Homework 4 Solutions

- 5.40:
- a: . 109
- b: . 958
- c: . 257
- d: . 809
- 5.42: $n=25, p=.05$ so $\mu=n p=1.25$ for Poisson approximation
- $p(0)=.2865 \ldots$ using Poisson; actually $.277 \ldots$
- $p(1)=.35813 \ldots$ using Poisson; actually $.365 \ldots$
- 5.43: Model number of near misses by Poisson with $\mu=5$
- a: $p(0)=.007$
- b: $p(5)=.171$
- $\mathbf{c}: p(\geq 5)=1-p(\leq 4)=.56$
- 5.47:

Probability that count will exceed maximum is probability that Poisson with $\mu=2$ is six or greater; this is .017 ; so it is unlikely that count will exceed maximum.

- 5.48: Model number of occurrences per 100,000 as Poisson with $\mu=2.5$
- a: $p(\leq 5)=.958$
- b: $p(>5)=1-p(\leq 5)=.042$
- c: At most 5 (95.8%)

