Statistics for the Life Sciences

Math 20340 Section 01, Fall 2009

Homework 11 Solutions

- 10.35:
- a: The p-value is between 2% and 5%; so the difference is significant (we reject H_{0} at 5%) but not highly so (we do not reject H_{0} at 1%)
- b: $(0.014, .586)$
- c: We would need at least 62 pairs (assuming s_{d}^{2} stays at .16)
- 10.40: The description seems to suggests a one-tailed test, but part a) seems instead to ask for a two-tailed test; I've done both.
- a: $\mu_{d}=-16.77$ (taking Albertsons-Ralphs); $s_{d}=11.18$. Assuming differences are normally distributed, test statistic (which has value -2.998) is a t distribution with 3 d.o.f.

The critical values are $t_{.05}=2.353 . t_{.025}=3.182$. So, if we are doing the two-tailed test $H_{0}: \mu_{d}=0$ against $H_{a}: \mu_{d} \neq 0$, the results are not significant; but if we are doing the one-tailed test $H_{0}: \mu_{d}=0$ against $H_{a}: \mu_{d}<0$, the result is significant (we would reject null at 5% but not at 1%).

- b: Two-tailed test: p-value is between 5% and 10%. One-tailed test: p-value is between 2.5% and 5%
- c: $(-49.43,15.89)$. At 1% significance, can't detect a difference between the averages

- 10.41:

- a: There are two populations: drivers approaching Prohibitive signs, and drivers approaching Permissive signs. A random sample of drivers has been picked, and presented with Prohibitive signs. Then that *same* random sample is presented with Permissive signs. So there is a pairing of the two random samples: first driver in first sample goes with first driver of second sample, etc.
- \mathbf{b} : The p-value is $<1 \%$, so there is a significant difference
- c: $(80.47,133.32)$

