## Some (possibly) useful formulae

## - Binomial distribution

$-n$ trials, probability $p$ of success:

$$
P(X=k)=C_{k}^{n} p^{k} q^{n-k}, k=0,1, \ldots, n
$$

where $C_{k}^{n}=\frac{n!}{k!(n-k)!}$

## - Central Limit Theorem

- Version 1: If $x_{1}, \ldots, x_{n}$ is a random sample from a population with mean $\mu$ and standard deviation $\sigma$, then for large enough $n$ the distribution of $\bar{x}$ is approximately normal with mean $\mu$, standard deviation $\sigma / \sqrt{n}$.
- Version 2: If $x_{1}, \ldots, x_{n}$ is a random sample from a population with mean $\mu$ and standard deviation $\sigma$, then for large enough $n$ the distribution of $\sum_{i=1}^{n} x_{i}$ is approximately normal with mean $n \mu$, standard deviation $\sqrt{n} \sigma$.
- Sampling from a general population
- Sample mean of a sample of size $n: \bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}$
- Sample standard deviation of sample of size $n$ :

$$
s=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}
$$

- Mean and standard deviation of $\bar{x}: \mu$ and $\frac{\sigma}{\sqrt{n}}$
- Distribution of $\bar{x}(n \geq 30)$ :

$$
\frac{\bar{x}-\mu}{s / \sqrt{n}} \approx z, \text { a standard normal }
$$

- Distribution of $\bar{x}$ (population normal):

$$
\frac{\bar{x}-\mu}{s / \sqrt{n}}=t, \text { a } t \text { distribution with } n-1 \text { degrees of freedom }
$$

- Distribution of $\bar{x}_{1}-\bar{x}_{2}\left(n_{1}, n_{2} \geq 30\right)$ :

$$
\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}} \approx z
$$

- Pooled estimator for $s^{2}$, the common variance:

$$
s^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}
$$

- Distribution of $\bar{x}_{1}-\bar{x}_{2}$ (populations normal, variances equal):

$$
\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{s^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}=t \text { with } n_{1}+n_{2}-2 \text { degrees of freedom }
$$

where $s^{2}$ is the pooled estimator for variance

- Distribution of $s^{2}$ (population normal):

$$
\frac{(n-1) s^{2}}{\sigma^{2}}=\chi^{2}, \text { a } \chi^{2} \text { distribution with } n-1 \text { degrees of freedom }
$$

- Drawing samples from a binomial population
- Sample proportion of a sample of size $n: \hat{x}=\frac{\text { Number of successes }}{n}$
- Mean and standard deviation of $\hat{p}: p$ and $\sqrt{\frac{p q}{n}}$
- Distribution of $\hat{p}(n \hat{p}, n \hat{q}>5)$ :

$$
\frac{\hat{p}-p}{\sqrt{p q / n}} \approx \frac{\hat{p}-p}{\sqrt{\hat{p} \hat{q} / n}} \approx z
$$

- Distribution of $\hat{p}_{1}-\hat{p}_{2}\left(n_{1} \hat{p}_{1}, n_{1} \hat{q}_{1}, n_{2} \hat{p}_{2}, n_{2} \hat{q}_{2}>5\right):$

$$
\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-\left(p_{1}-p_{2}\right)}{\sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}}} \approx z
$$

- Pooled estimator for $p$, the common proportion:

$$
\hat{p}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}}
$$

- Distribution of $\hat{p}_{1}-\hat{p}_{2}\left(n_{1} \hat{p}_{1}, n_{1} \hat{q}_{1}, n_{2} \hat{p}_{2}, n_{2} \hat{q}_{2}>5\right.$, proportions equal):

$$
\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\frac{\hat{p} \hat{q}}{n_{1}}+\frac{\hat{p} q}{n_{2}}}} \approx z
$$

where $\hat{p}$ is pooled estimator for variance

