Math 10850, Honors Calculus 1

Quiz 1, Thursday September 5

${\bf Name:}$

1.	Let $p(x,y)$ be the predicate " $x \cdot y = 1$ ", where the universe of discourse for x is the natural numbers $\{1,2,3,\ldots\}$, the universe of discourse for y is the real numbers, and " \cdot " is ordinary multiplication. Which of the following statements is true, and which is false? For each one, <i>briefly</i> explain your reasoning.
	(a) $(\forall x)(\forall y)p(x,y)$.
	(b) $(\forall x)(\exists y)p(x,y)$.
	(c) $(\exists y)(\forall x)p(x,y)$.
2.	We defined \Leftrightarrow in terms of \Rightarrow and \land , and we can express \Rightarrow as a combination of \lor and \neg . So: (a) Write down an expression involving \land , \lor and \neg that is equivalent to $p \Leftrightarrow q$.
	(b) Go further: write down an expression involving $only \land$ and \neg that is equivalent to $p \Leftrightarrow q$.