Math 10850, Honors Calculus 1

Homework 6

Solutions

1. In each of the following cases, determine the limit L for the given a, and prove that it is indeed the limit by finding, for each $\varepsilon>0$, a δ (probably depending on ε) such that $|f(x)-L|<\varepsilon$ for all x satisfying $0<|x-a|<\delta$.
(a) $f(x)=100 / x, a=1$.

Solution: We claim that the limit is 100 .
To prove this, suppose that $\varepsilon>0$ is given. We want to find δ such that whenever $0<|x-1|<\delta$, we have $|100 / x-100|<\varepsilon$.
Now $|100 / x-100|<\varepsilon$ is equivalent (after a little algebra) to $|x-1| /|x| \leq \varepsilon / 100$.
Choose $\delta \leq 1 / 2$. Then $0<|x-1|<\delta$ implies $x \in(1 / 2,3 / 2)$, so $|x|>1 / 2$ and $100 /|x|<50$.
Choose also $\delta \leq \varepsilon / 50$. Then $0<|x-1|<\delta$ implies $|x-1|<\varepsilon / 50$.
To get both conditions to hold, we choose $\delta=\min \{1 / 2, \varepsilon / 50\}$; note that $\delta>0$.
For this δ, or any smaller positive δ, we have that if $0<|x-1|<\delta$ then $|100 / x-100|<$ $50(\varepsilon / 50)=\varepsilon$.
This proves that $\lim _{x \rightarrow 1} 100 / x=100$.
(b) $f(x)=x^{4}+1 / x$, arbitrary $a>0$.

Solution: We claim that the limit is $a^{4}+1 / a$.
To prove this, suppose that $\varepsilon>0$ is given. We want to find δ such that whenever $0<|x-a|<\delta$, we have $\mid\left(x^{4}+1 / x-\left(a^{4}+1 / a\right) \mid<\varepsilon\right.$.
Now (using triangle inequality frequently, and using that $a>0, x^{2} \geq 0$)

$$
\begin{aligned}
\mid\left(x^{4}+1 / x-\left(a^{4}+1 / a\right) \mid\right. & =\left|x^{4}-a^{4}+(1 / x-1 / a)\right| \\
& \leq\left|x^{4}-a^{4}\right|+|1 / x-1 / a| \\
& =\left|(x-a)(x+a)\left(x^{2}+a^{2}\right)\right|+\left|\frac{a-x}{x a}\right| \\
& =|x-a||x+a|\left|x^{2}+a^{2}\right|+\frac{|x-a|}{|x| a} \\
& =|x-a|\left(|x+a|\left|x^{2}+a^{2}\right|+\frac{1}{|x| a}\right) \\
& \leq|x-a|\left((|x|+a)\left(x^{2}+a^{2}\right)+\frac{1}{|x| a}\right)
\end{aligned}
$$

If $\delta \leq a / 2$, that $0<|x-a|<\delta$ implies $|x-a|<a / 2$, which in turn implies $x \in(a / 2,3 a / 2)$, so $a / 2<|x|<3 a / 2$. From this it follows that

$$
(|x|+a)\left(x^{2}+a^{2}\right)+\frac{1}{|x| a}<\left(\frac{3 a}{2}+a\right)\left(\frac{9 a^{2}}{4}+a^{2}\right)+\frac{2}{a^{2}}=\frac{65 a^{3}}{8}+\frac{2}{a^{2}}
$$

If also $\delta \leq \frac{\varepsilon}{\frac{653^{2}}{8^{2}}+\frac{2}{a^{2}}}$ then, from the previous algebra, $0<|x-a|<\delta$ implies $\mid\left(x^{4}+1 / x-\left(a^{4}+1 / a\right) \mid<\varepsilon\right.$.
So if we take

$$
\delta=\min \left\{1 / 2, \frac{\varepsilon}{\frac{65 a^{3}}{8}+\frac{2}{a^{2}}}\right\}
$$

then $0<|x-a|<\delta$ implies $\mid\left(x^{4}+1 / x-\left(a^{4}+1 / a\right) \mid<\varepsilon\right.$.
This proves that $\lim _{x \rightarrow a}\left(x^{4}+1 / x\right)=a^{4}+1 / a$.
2. Calculate the following limits, not directly from the definition, but instead using the various theorems we have proven about limits.
(a) $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}$.

Solution: The numerator factors as $(x-2)\left(x^{2}+2 x+4\right)$. Since 2 is not in the domain of the function, it is legitimate to cancel the factors of $x-2$ above and below. This leads to

$$
\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}=\lim _{x \rightarrow 2}\left(x^{2}+2 x+4\right)=12
$$

the latter equality since $x^{2}+2 x+4$ is rational, with 2 in its domain, so the limit is the value at 2 .
(b) $\lim _{x \rightarrow y} \frac{x^{n}-y^{n}}{x-y}$.

Solution: Viewed as a function of x, with y a constant, the domain of this function is $\{x: x \neq y\}$. This means that we can divide through by $x-y$ without changing the limit (we are essentially multiplying the function by 1 , with 1 written as $(1 /(x-$ $y)) /(1 /(x-y))$, which is valid as long as $x \neq y)$. This leads to

$$
\lim _{x \rightarrow y} \frac{x^{n}-y^{n}}{x-y}=\lim _{x \rightarrow y}\left(x^{n-1}+y x^{n-2}+\cdots+y^{n-2} x+y^{n-1}\right)
$$

This latter is a rational function (in variable x) with y in the domain, so the limit is the value of the function at y, that is,

$$
y^{n-1}+y y^{n-2}+\cdots+y^{n-2} y+y^{n-1} \text { or } n y^{n-1} .
$$

(c) $\lim _{h \rightarrow 0} \frac{\sqrt{a+h}-\sqrt{a}}{h}$.

Solution: Here the answer depends on a. If $a \leq 0$ then the function f defined by $f(h)=(\sqrt{a+h}-\sqrt{a}) / h$ is not defined near 0 (because for any negative value of h, $a-h<0)$, so the limit does not exists.

If $a>0$ then the function is defined near 0 (though not at 0), so we can study the limit. As long as $h \neq 0$ we have

$$
\begin{aligned}
\frac{\sqrt{a+h}-\sqrt{a}}{h} & =\left(\frac{\sqrt{a+h}-\sqrt{a}}{h}\right)\left(\frac{\sqrt{a+h}+\sqrt{a}}{\sqrt{a+h}+\sqrt{a}}\right) \\
& =\frac{(a+h)-a}{h(\sqrt{a+h}+\sqrt{a})} \\
& =\frac{h}{h(\sqrt{a+h}+\sqrt{a})} \\
& =\frac{1}{\sqrt{a+h}+\sqrt{a}} .
\end{aligned}
$$

So

$$
\lim _{h \rightarrow 0} \frac{\sqrt{a+h}-\sqrt{a}}{h}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{a+h}+\sqrt{a}}=\frac{1}{2 \sqrt{a}}
$$

The last equality is obtained by direct evaluation, valid by the sum-product-reciprocal theorem, the composition theorem, and the fact (not yet proven) that the square root function is continuous on its domain.
3. For this question, the usual rules apply: if it is your understanding that a certain phenomenon holds in general, then you should provide a proof/justification that that is the case; if it does not hold in general, a single explicit counterexample is enough.
(a) If $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both do not exist, can $\lim _{x \rightarrow a}(f(x)+g(x))$ exist?

Solution: Yes. Consider, for example,

$$
f(x)=\left\{\begin{array}{cl}
1 & \text { if } x>0 \\
-1 & \text { if } x<0
\end{array}\right.
$$

and

$$
g(x)=\left\{\begin{array}{cc}
-1 & \text { if } x>0 \\
1 & \text { if } x<0
\end{array}\right.
$$

Certainly $\lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow 0} g(x)$ do not exist. But $(f+g)(x)=0$ unless $x=0$ (at which point the sum is undefined), so $\lim _{x \rightarrow 0}(f+g)(x)=0$.
(b) If $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both do not exist, can $\lim _{x \rightarrow a} f(x) g(x)$ exist?

Solution: Yes. Consider, for example, exactly the same functions f and g from the previous part. $(f g)(x)=-1$ unless $x=0$ (at which point the product is undefined), so $\lim _{x \rightarrow 0}(f g)(x)=-1$.
(c) If $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a}(f(x)+g(x))$ both exist, must $\lim _{x \rightarrow a} g(x)$ exist?

Solution: Yes. If $\lim _{x \rightarrow a} f(x)$ exists, and $\lim _{x \rightarrow a}(f(x)+g(x))$ exists, then by the sum-product-reciprocal theorem,

$$
\lim _{x \rightarrow a}((f(x)+g(x))-f(x))=\lim _{x \rightarrow a} g(x)
$$

exists.
(d) If $\lim _{x \rightarrow a} f(x)$ exists and $\lim _{x \rightarrow a} g(x)$ does not exist, can $\lim _{x \rightarrow a}(f(x)+g(x))$ exist?

Solution: No. If $\lim _{x \rightarrow a}(f(x)+g(x))$ existed then (by part b) $\lim _{x \rightarrow a} g(x)$ would also exist, a contradiction.
(e) If $\lim _{x \rightarrow a} f(x)$ exists and $\lim _{x \rightarrow a} f(x) g(x)$ exists, does it follow that $\lim _{x \rightarrow a} g(x)$ exists?

Solution: It is tempting to say "yes". If $\lim _{x \rightarrow a} f(x)$ exists, and $\lim _{x \rightarrow a} f(x) g(x)$ exists, then by the sum-product-reciprocal theorem,

$$
\left.\lim _{x \rightarrow a}(f(x) g(x)) / f(x)\right)=\lim _{x \rightarrow a} g(x)
$$

should exist; but this assumes that $\lim _{x \rightarrow a} f(x)$ is not zero. So to find a counterexample, we need to find functions f and g, and an a, with $\lim _{x \rightarrow a} f(x)=0$, $\lim _{x \rightarrow a} f(x) g(x)$ existing, and $\lim _{x \rightarrow a} g(x)$ not existing.
Taking f to be the constant 0 function, g to be the function $g(x)=\sin (1 / x)$ and $a=0$ works nicely.
4. (a) Prove that $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} f\left(x^{3}\right)$. Clarification: Show that if $\lim _{x \rightarrow 0} f(x)=L$ then $\lim _{x \rightarrow 0} f\left(x^{3}\right)$ exists and equals L.

Solution: There is an implicit assumption here, that both limits exists. We will show that if $\lim _{x \rightarrow 0} f(x)=L$ then $\lim _{x \rightarrow 0} f\left(x^{3}\right)=L$.
Suppose that $\lim _{x \rightarrow 0} f(x)=L$, so that for all $\varepsilon>0$ there is $\delta>0$ such that $0<|x|<\delta$ implies $|f(x)-L|<\varepsilon$.
Now, given $\varepsilon>0$, consider $0<|x|<\delta^{1 / 3}$, where δ is exactly as in the last paragraph (we use here the as-yet-unproven fact that for every positive number t, there is a positive number s such that $s^{3}=t$; we call this the cubed root of t, or $t^{1 / 3}$). Now $0<|x|<\delta^{1 / 3}$ is the same as $-\delta^{1 / 3}<x<\delta^{1 / 3}, x \neq 0$, which is the same as $-\delta^{3}<x^{3}<\delta, x \neq 0$, which is the same as $0<\left|x^{3}\right|<\delta$. In this range we have $\left|f\left(x^{3}\right)-L\right|<\varepsilon$, so that $\lim _{x \rightarrow 0} f\left(x^{3}\right)=L$, as claimed.
We could easily reverse this argument to show that if $\lim _{x \rightarrow 0} f\left(x^{3}\right)=L$ then $\lim _{x \rightarrow 0} f(x)=L$, and so prove that if either one of the two limits exist then they both do, and they are equal.
(b) Give an example where $\lim _{x \rightarrow 0} f\left(x^{2}\right)$ exists, but $\lim _{x \rightarrow 0} f(x)$ doesn't.

Solution: Let

$$
f(x)=\left\{\begin{array}{cc}
1 & \text { if } x>0 \\
-1 & \text { if } x<0
\end{array}\right.
$$

so that $f\left(x^{2}\right)=1$ if $x \neq 0$ (and is undefined at $x=0$). We have $\lim _{x \rightarrow 0} f\left(x^{2}\right)=1$ but $\lim _{x \rightarrow 0} f(x)$ does not exist.
5. Let f, g, h be three functions, and let a be some real number. Suppose that there is some number $\Delta>0$ such that on the interval $(a-\Delta, a+\Delta)$ it holds that $f(x) \leq g(x) \leq h(x)$ (except possibly at a, which might or might not be in the domains of any of the three functions). Suppose further that $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} h(x)$ both exist and both equal L. Prove that $\lim _{x \rightarrow a} g(x)$ exists and equals L.
(This is an example of a squeeze theorem: the function g is being squeezed between f and h near a.)

Solution: Let L be the common value of $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} h(x)$. We aim to show $\lim _{x \rightarrow a} g(x)=L$.
To that end, let $\varepsilon>0$ be given. There is a $\delta_{1}>0$ such that for x satisfying $0<|x-a|<\delta_{1}$, we have $|f(x)-L|<\varepsilon$, and there is a $\delta_{2}>0$ such that for x satisfying $0<|x-a|<\delta_{2}$, we have $|h(x)-L|<\varepsilon$. Let $\delta>0$ be any number no bigger than δ_{1}, δ_{2} and Δ (e.g.,

$$
\left.\delta=\min \left\{\delta_{1}, \delta_{2}, \Delta\right\} .\right)
$$

For x satisfying $0<|x-a|<\delta$, we have both $|f(x)-L|<\varepsilon$ and $|h(x)-L|<\varepsilon$, in other words,

$$
L-\varepsilon<f(x) \leq h(x)<L+\varepsilon
$$

But now, we know $f(x) \leq g(x) \leq h(x)$ for all such x (this is where we use $\delta \leq \Delta$); so in particular, for x satisfying $0<|x-a|<\delta$ we have

$$
L-\varepsilon<g(x)<L+\varepsilon
$$

so $|g(x)-L|<\varepsilon$. This shows that $\lim _{x \rightarrow a} g(x)=L$.
6. Prove that $\lim _{x \rightarrow 1} 1 /(x-1)$ does not exist.

Solution: Let L be given. We will show that $\lim _{x \rightarrow 1} 1 /(x-1) \neq L$.
The main point is this: by taking x close enough to 1 (and, for definiteness, positive) we can make $1 /(x-1)$ as large as we want, and in particular larger than $|L|+1$. Note specifically that if

$$
x=\frac{|L|+2}{|L|+1}
$$

then

$$
\frac{1}{x-1}=|L|+1
$$

and that if $1<y<x$ then $f(y)>f(x)$.
So, take $\varepsilon=1 / 2$. Let $\delta>0$ be given.

- If $\delta>1 /(|L|+1)$ then take $x=(|L|+2) /(|L|+1)$ (note that $0<|x-1|<\delta)$ to get $f(x)=|L|+1$, so $|f(x)-L| \geq 1 / 2$ (if $L \geq 0,|f(x)-L|=1$, and if $L<0$, $|f(x)-L|=2|L|+1>1)$.
- If $\delta \leq 1 /(|L|+1)$ then take $x=1+\delta / 2$ (note that $0<|x-1|<\delta)$. Since $1<x<(|L|+2) /(|L|+1)$, get $f(x)>f((|L|+2) /(|L|+1))=|L|+1$, so again $|f(x)-L| \geq 1 / 2$.

This shows that $\lim _{x \rightarrow 1} 1 /(x-1) \neq L$.
7. (a) Prove that if $\lim _{x \rightarrow a} g(x)=0$, then $\lim _{x \rightarrow a} g(x) \sin (1 / x)=0$.

Solution: Part (a) is implied by part (b), because $|\sin (1 / x)| \leq 1$ for all $x \neq 0$, so we just prove part (b).
(b) Suppose that $\lim _{x \rightarrow 0} g(x)=0$ and $|h(x)| \leq M$ for all x, for some $M \geq 0$. Prove that $\lim _{x \rightarrow 0} g(x) h(x)=0$.

Solution: Suppose that $\lim _{x \rightarrow 0} g(x)=0$ and $|h(x)| \leq M$ for all x, for some $M \geq 0$. We claim that $\lim _{x \rightarrow 0} g(x) h(x)=0$.
Let $\varepsilon>0$ be given. We need to find $\delta>0$ such that $0<|x|<\delta$ implies $|g(x) h(x)|<\varepsilon$. But

$$
|g(x) h(x)|=|g(x)||h(x)| \leq M|g(x)|,
$$

so it is enough to find a $\delta>0$ such that $0<|x|<\delta$ implies $M|g(x)|<\varepsilon$, or equivalently $|g(x)|<\varepsilon / M$. Now because $\lim _{x \rightarrow 0} g(x)=0$ (and because $\varepsilon / M>0$), there is such a δ.
8. Here's the definition of $\lim _{x \rightarrow a} f(x)=L$, in symbols:

$$
(\forall \varepsilon>0)(\exists \delta>0)(\forall x)((0<|x-a|<\delta) \Rightarrow(|f(x)-L|<\varepsilon))
$$

(a) Here's a very similar-looking statement (with some <'s changed to \leq 's):

$$
(\forall \varepsilon>0)(\exists \delta>0)(\forall x)((0<|x-a| \leq \delta) \Rightarrow(|f(x)-L| \leq \varepsilon))
$$

i. Does ($(\star \star)$ imply ((\star) ?

Solution: Yes. Suppose we know ($\star \star$). We aim to prove (\star). Let $\varepsilon>0$ be given. Apply ($* \star$) with " ε " replaced by " $\varepsilon / 2$ " (valid, since $\varepsilon / 2>0$). We get that there is $\delta>0$ such that for all x,

$$
[0<|x-a| \leq \delta] \Rightarrow[|f(x)-L| \leq \varepsilon / 2]
$$

But then it is certainly true that

$$
[0<|x-a|<\delta] \Rightarrow[|f(x)-L| \leq \varepsilon / 2]
$$

since all x satisfying $0<|x-a| \leq \delta$ also satisfy $0<|x-a|<\delta$. But then, further, it is certainly true that

$$
[0<|x-a|<\delta] \Rightarrow[|f(x)-L|<\varepsilon]
$$

since $\varepsilon / 2<\varepsilon$. So (\star) holds, since for all $\varepsilon>0$ we have found a $\delta>0$ such that for all $x,[0<|x-a|<\delta] \Rightarrow[|f(x)-L|<\varepsilon]$.
ii. Does (\star) imply $(\star \star)$?

Solution: Yes. Suppose we know (\star). We aim to prove ($\star \star$). Let $\varepsilon>0$ be given. Apply (\star) to find a $\delta^{\prime}>0$ such that for all $x,\left[0<|x-a|<\delta^{\prime}\right] \Rightarrow[|f(x)-L|<\varepsilon]$. Take $\delta=\delta^{\prime} / 2$. If $0<|x-a| \leq \delta$, then it is certainly true that $0<|x-a|<\delta^{\prime}$, so it follows that $[|f(x)-L|<\varepsilon]$, which in turn implies $[|f(x)-L| \leq \varepsilon]$. Hence ($* \star$) is true.
NOTE: This exercise shows that there is no change to the definition of a limit, if we replace " $<\delta$ " and/or " $<\varepsilon$ " with " $\leq \delta$ " and/or " $\leq \varepsilon$ "
(b) Here's another very similar-looking statement (with the order of quantifiers changed at the beginning):

$$
(\exists \delta>0)(\forall \varepsilon>0)(\forall x)((0<|x-a|<\delta) \Rightarrow(|f(x)-L|<\varepsilon)) . \quad(\star \star \star)
$$

i. Does $(\star \star \star)$ imply (\star) ?

Solution: Yes. Suppose we know ($\star \star \star$). Let $\varepsilon>0$ be given. By ($\star \star \star$) we know that there is a particular $\delta>0$ (which has nothing to do with ε), such that for any particular $\varepsilon^{\prime}>0$, whenever we have $0<|x-a|<\delta$ we also have $|f(x)-L|<\varepsilon^{\prime}$. In particular that means that for our specified $\varepsilon>0$, whenever we have $0<|x-a|<\delta$ we also have $|f(x)-L|<\varepsilon$. So ((\star) holds.
ii. Does (\star) imply $(\star \star \star)$?

Solution: No. To show this, all we need is a single counter-example. Consider the function $f(x)=x$, and take $a=0, L=0$. (\star) certainly holds:

$$
(\forall \varepsilon>0)(\exists \delta>0)(\forall x)([0<|x|<\delta] \Rightarrow[|x|<\varepsilon])
$$

indeed, we may take $\delta=\varepsilon$.
However, ($\star \star \star$) claims

$$
(\exists \delta>0)(\forall \varepsilon>0)(\forall x)([0<|x|<\delta] \Rightarrow[|x|<\varepsilon])
$$

We claim this is false. Indeed, given any $\delta>0$, take $\varepsilon=\delta / 2$. The statement

$$
(\forall x)([0<|x|<\delta] \Rightarrow[|x|<\delta / 2])
$$

is clearly false, as witnessed for example by $x=3 \delta / 4$.
iii. If f satisfies $(\star \star \star)$, what must it look like near a ?

Solution: If $(\star \star \star)$ holds, then there is some number $\delta>0$ such that for any x in both $(a-\delta, a)$ and $(a, a+\delta)$, it holds that for any $\varepsilon>0,|f(x)-L|<\varepsilon$. This says that $f(x)=L$ on both these intervals. (Proof: Indeed, suppose there is some $x_{0} \in(a-\delta, a) \cup(a, a+\delta)$ with $f\left(x_{0}\right) \neq L$. Then $\left|f\left(x_{0}\right)-L\right|>0$. Picking any $\varepsilon>0$ that is smaller than $\left|f\left(x_{0}\right)-L\right|$, we cannot have $\left|f\left(x_{0}\right)-L\right|<\varepsilon$.) So: if f satisfies $(\star \star \star)$, near a it must be constant, and take the value L.

