Math 10850, Honors Calculus 1

Homework 6

Solutions

1. In each of the following cases, determine the limit L for the given a, and prove that it is indeed the limit by finding, for each $\varepsilon > 0$, a δ (probably depending on ε) such that $|f(x) - L| < \varepsilon$ for all x satisfying $0 < |x - a| < \delta$.

(a)
$$f(x) = 100/x, a = 1.$$

Solution: We claim that the limit is 100.

To prove this, suppose that $\varepsilon > 0$ is given. We want to find δ such that whenever $0 < |x - 1| < \delta$, we have $|100/x - 100| < \varepsilon$.

Now $|100/x - 100| < \varepsilon$ is equivalent (after a little algebra) to $|x - 1|/|x| \le \varepsilon/100$. Choose $\delta \le 1/2$. Then $0 < |x - 1| < \delta$ implies $x \in (1/2, 3/2)$, so |x| > 1/2 and

100/|x| < 50.

Choose also $\delta \leq \varepsilon/50$. Then $0 < |x - 1| < \delta$ implies $|x - 1| < \varepsilon/50$.

To get both conditions to hold, we choose $\delta = \min\{1/2, \varepsilon/50\}$; note that $\delta > 0$. For this δ , or any smaller positive δ , we have that if $0 < |x-1| < \delta$ then $|100/x-100| < 50(\varepsilon/50) = \varepsilon$.

This proves that $\lim_{x\to 1} 100/x = 100$.

(b) $f(x) = x^4 + 1/x$, arbitrary a > 0.

Solution: We claim that the limit is $a^4 + 1/a$.

To prove this, suppose that $\varepsilon > 0$ is given. We want to find δ such that whenever $0 < |x - a| < \delta$, we have $|(x^4 + 1/x - (a^4 + 1/a))| < \varepsilon$.

Now (using triangle inequality frequently, and using that $a > 0, x^2 \ge 0$)

$$\begin{aligned} |(x^{4} + 1/x - (a^{4} + 1/a)| &= |x^{4} - a^{4} + (1/x - 1/a)| \\ &\leq |x^{4} - a^{4}| + |1/x - 1/a| \\ &= |(x - a)(x + a)(x^{2} + a^{2})| + \left|\frac{a - x}{xa}\right| \\ &= |x - a||x + a||x^{2} + a^{2}| + \frac{|x - a|}{|x|a} \\ &= |x - a|\left(|x + a||x^{2} + a^{2}| + \frac{1}{|x|a}\right) \\ &\leq |x - a|\left((|x| + a)(x^{2} + a^{2}) + \frac{1}{|x|a}\right). \end{aligned}$$

If $\delta \leq a/2$, that $0 < |x - a| < \delta$ implies |x - a| < a/2, which in turn implies $x \in (a/2, 3a/2)$, so a/2 < |x| < 3a/2. From this it follows that

$$(|x|+a)(x^2+a^2) + \frac{1}{|x|a|} < \left(\frac{3a}{2}+a\right)\left(\frac{9a^2}{4}+a^2\right) + \frac{2}{a^2} = \frac{65a^3}{8} + \frac{2}{a^2}$$

If also $\delta \leq \frac{\varepsilon}{\frac{65a^3}{8} + \frac{2}{a^2}}$ then, from the previous algebra, $0 < |x - a| < \delta$ implies $|(x^4 + 1/x - (a^4 + 1/a))| < \varepsilon$.

So if we take

$$\delta = \min\left\{1/2, \frac{\varepsilon}{\frac{65a^3}{8} + \frac{2}{a^2}}\right\}$$

then $0 < |x - a| < \delta$ implies $|(x^4 + 1/x - (a^4 + 1/a)| < \varepsilon$. This proves that $\lim_{x \to a} (x^4 + 1/x) = a^4 + 1/a$.

- 2. Calculate the following limits, *not* directly from the definition, but instead using the various theorems we have proven about limits.
 - (a) $\lim_{x \to 2} \frac{x^3 8}{x 2}$.

Solution: The numerator factors as $(x-2)(x^2+2x+4)$. Since 2 is not in the domain of the function, it is legitimate to cancel the factors of x-2 above and below. This leads to

$$\lim_{x \to 2} \frac{x^3 - 8}{x - 2} = \lim_{x \to 2} (x^2 + 2x + 4) = 12,$$

the latter equality since $x^2 + 2x + 4$ is rational, with 2 in its domain, so the limit is the value at 2.

(b) $\lim_{x \to y} \frac{x^n - y^n}{x - y}$.

Solution: Viewed as a function of x, with y a constant, the domain of this function is $\{x : x \neq y\}$. This means that we can divide through by x - y without changing the limit (we are essentially multiplying the function by 1, with 1 written as (1/(x - y))/(1/(x - y)), which is valid as long as $x \neq y$). This leads to

$$\lim_{x \to y} \frac{x^n - y^n}{x - y} = \lim_{x \to y} (x^{n-1} + yx^{n-2} + \dots + y^{n-2}x + y^{n-1}).$$

This latter is a rational function (in variable x) with y in the domain, so the limit is the value of the function at y, that is,

$$y^{n-1} + yy^{n-2} + \dots + y^{n-2}y + y^{n-1}$$
 or ny^{n-1} .

(c) $\lim_{h\to 0} \frac{\sqrt{a+h}-\sqrt{a}}{h}$.

Solution: Here the answer depends on a. If $a \leq 0$ then the function f defined by $f(h) = (\sqrt{a+h} - \sqrt{a})/h$ is not defined near 0 (because for any negative value of h, a - h < 0), so the limit does not exists.

If a > 0 then the function is defined near 0 (though not at 0), so we can study the limit. As long as $h \neq 0$ we have

$$\frac{\sqrt{a+h} - \sqrt{a}}{h} = \left(\frac{\sqrt{a+h} - \sqrt{a}}{h}\right) \left(\frac{\sqrt{a+h} + \sqrt{a}}{\sqrt{a+h} + \sqrt{a}}\right)$$
$$= \frac{(a+h) - a}{h(\sqrt{a+h} + \sqrt{a})}$$
$$= \frac{h}{h(\sqrt{a+h} + \sqrt{a})}$$
$$= \frac{1}{\sqrt{a+h} + \sqrt{a}}.$$

So

$$\lim_{h \to 0} \frac{\sqrt{a+h} - \sqrt{a}}{h} = \lim_{h \to 0} \frac{1}{\sqrt{a+h} + \sqrt{a}} = \frac{1}{2\sqrt{a}}$$

The last equality is obtained by direct evaluation, valid by the sum-product-reciprocal theorem, the composition theorem, and the fact (not yet proven) that the square root function is continuous on its domain.

- 3. For this question, the usual rules apply: if it is your understanding that a certain phenomenon holds in general, then you should provide a proof/justification that that is the case; if it does not hold in general, a single explicit counterexample is enough.
 - (a) If $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ both do not exist, can $\lim_{x\to a} (f(x) + g(x))$ exist? Solution: Yes. Consider, for example,

$$f(x) = \begin{cases} 1 & \text{if } x > 0\\ -1 & \text{if } x < 0 \end{cases}$$

and

$$g(x) = \begin{cases} -1 & \text{if } x > 0\\ 1 & \text{if } x < 0 \end{cases}$$

Certainly $\lim_{x\to 0} f(x)$ and $\lim_{x\to 0} g(x)$ do not exist. But (f+g)(x) = 0 unless x = 0 (at which point the sum is undefined), so $\lim_{x\to 0} (f+g)(x) = 0$.

(b) If $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ both do not exist, can $\lim_{x\to a} f(x)g(x)$ exist?

Solution: Yes. Consider, for example, exactly the same functions f and g from the previous part. (fg)(x) = -1 unless x = 0 (at which point the product is undefined), so $\lim_{x\to 0} (fg)(x) = -1$.

(c) If $\lim_{x\to a} f(x)$ and $\lim_{x\to a} (f(x) + g(x))$ both exist, must $\lim_{x\to a} g(x)$ exist?

Solution: Yes. If $\lim_{x\to a} f(x)$ exists, and $\lim_{x\to a} (f(x) + g(x))$ exists, then by the sum-product-reciprocal theorem,

$$\lim_{x \to a} ((f(x) + g(x)) - f(x)) = \lim_{x \to a} g(x)$$

exists.

- (d) If $\lim_{x\to a} f(x)$ exists and $\lim_{x\to a} g(x)$ does not exist, can $\lim_{x\to a} (f(x) + g(x))$ exist? **Solution**: No. If $\lim_{x\to a} (f(x) + g(x))$ existed then (by part b) $\lim_{x\to a} g(x)$ would also exist, a contradiction.
- (e) If $\lim_{x\to a} f(x)$ exists and $\lim_{x\to a} f(x)g(x)$ exists, does it follow that $\lim_{x\to a} g(x)$ exists?

Solution: It is tempting to say "yes". If $\lim_{x\to a} f(x)$ exists, and $\lim_{x\to a} f(x)g(x)$ exists, then by the sum-product-reciprocal theorem,

$$\lim_{x \to a} (f(x)g(x))/f(x)) = \lim_{x \to a} g(x)$$

should exist; but this assumes that $\lim_{x\to a} f(x)$ is not zero. So to find a counterexample, we need to find functions f and g, and an a, with $\lim_{x\to a} f(x) = 0$, $\lim_{x\to a} f(x)g(x)$ existing, and $\lim_{x\to a} g(x)$ not existing.

Taking f to be the constant 0 function, g to be the function $g(x) = \sin(1/x)$ and a = 0 works nicely.

4. (a) Prove that $\lim_{x\to 0} f(x) = \lim_{x\to 0} f(x^3)$. Clarification: Show that if $\lim_{x\to 0} f(x) = L$ then $\lim_{x\to 0} f(x^3)$ exists and equals L.

Solution: There is an implicit assumption here, that both limits exists. We will show that if $\lim_{x\to 0} f(x) = L$ then $\lim_{x\to 0} f(x^3) = L$.

Suppose that $\lim_{x\to 0} f(x) = L$, so that for all $\varepsilon > 0$ there is $\delta > 0$ such that $0 < |x| < \delta$ implies $|f(x) - L| < \varepsilon$.

Now, given $\varepsilon > 0$, consider $0 < |x| < \delta^{1/3}$, where δ is exactly as in the last paragraph (we use here the as-yet-unproven fact that for every positive number t, there is a positive number s such that $s^3 = t$; we call this the cubed root of t, or $t^{1/3}$). Now $0 < |x| < \delta^{1/3}$ is the same as $-\delta^{1/3} < x < \delta^{1/3}$, $x \neq 0$, which is the same as $-\delta^3 < x^3 < \delta$, $x \neq 0$, which is the same as $0 < |x^3| < \delta$. In this range we have $|f(x^3) - L| < \varepsilon$, so that $\lim_{x\to 0} f(x^3) = L$, as claimed.

We could easily reverse this argument to show that if $\lim_{x\to 0} f(x^3) = L$ then $\lim_{x\to 0} f(x) = L$, and so prove that if either one of the two limits exist then they both do, and they are equal.

(b) Give an example where $\lim_{x\to 0} f(x^2)$ exists, but $\lim_{x\to 0} f(x)$ doesn't.

Solution: Let

$$f(x) = \begin{cases} 1 & \text{if } x > 0\\ -1 & \text{if } x < 0, \end{cases}$$

so that $f(x^2) = 1$ if $x \neq 0$ (and is undefined at x = 0). We have $\lim_{x\to 0} f(x^2) = 1$ but $\lim_{x\to 0} f(x)$ does not exist.

5. Let f, g, h be three functions, and let a be some real number. Suppose that there is some number $\Delta > 0$ such that on the interval $(a - \Delta, a + \Delta)$ it holds that $f(x) \leq g(x) \leq h(x)$ (except possibly at a, which might or might not be in the domains of any of the three functions). Suppose further that $\lim_{x\to a} f(x)$ and $\lim_{x\to a} h(x)$ both exist and both equal L. Prove that $\lim_{x\to a} g(x)$ exists and equals L. (This is an example of a squeeze theorem: the function g is being squeezed between f and h near a.)

Solution: Let *L* be the common value of $\lim_{x\to a} f(x)$ and $\lim_{x\to a} h(x)$. We aim to show $\lim_{x\to a} g(x) = L$.

To that end, let $\varepsilon > 0$ be given. There is a $\delta_1 > 0$ such that for x satisfying $0 < |x-a| < \delta_1$, we have $|f(x) - L| < \varepsilon$, and there is a $\delta_2 > 0$ such that for x satisfying $0 < |x-a| < \delta_2$, we have $|h(x) - L| < \varepsilon$. Let $\delta > 0$ be any number no bigger than δ_1 , δ_2 and Δ (e.g.,

$$\delta = \min\{\delta_1, \delta_2, \Delta\}.)$$

For x satisfying $0 < |x - a| < \delta$, we have both $|f(x) - L| < \varepsilon$ and $|h(x) - L| < \varepsilon$, in other words,

$$L - \varepsilon < f(x) \le h(x) < L + \varepsilon.$$

But now, we know $f(x) \leq g(x) \leq h(x)$ for all such x (this is where we use $\delta \leq \Delta$); so in particular, for x satisfying $0 < |x - a| < \delta$ we have

$$L - \varepsilon < g(x) < L + \varepsilon$$

so $|g(x) - L| < \varepsilon$. This shows that $\lim_{x \to a} g(x) = L$.

6. Prove that $\lim_{x\to 1} 1/(x-1)$ does not exist.

Solution: Let *L* be given. We will show that $\lim_{x\to 1} 1/(x-1) \neq L$.

The main point is this: by taking x close enough to 1 (and, for definiteness, positive) we can make 1/(x-1) as large as we want, and in particular larger than |L| + 1. Note specifically that if

$$x = \frac{|L| + 2}{|L| + 1}$$

then

$$\frac{1}{x-1} = |L| + 1,$$

and that if 1 < y < x then f(y) > f(x). So, take $\varepsilon = 1/2$. Let $\delta > 0$ be given.

- If $\delta > 1/(|L|+1)$ then take x = (|L|+2)/(|L|+1) (note that $0 < |x-1| < \delta$) to get f(x) = |L|+1, so $|f(x) L| \ge 1/2$ (if $L \ge 0$, |f(x) L| = 1, and if L < 0, |f(x) L| = 2|L|+1 > 1).
- If $\delta \leq 1/(|L|+1)$ then take $x = 1 + \delta/2$ (note that $0 < |x-1| < \delta$). Since 1 < x < (|L|+2)/(|L|+1), get f(x) > f((|L|+2)/(|L|+1)) = |L|+1, so again $|f(x) L| \geq 1/2$.

This shows that $\lim_{x\to 1} 1/(x-1) \neq L$.

7. (a) Prove that if $\lim_{x\to a} g(x) = 0$, then $\lim_{x\to a} g(x) \sin(1/x) = 0$.

Solution: Part (a) is implied by part (b), because $|\sin(1/x)| \le 1$ for all $x \ne 0$, so we just prove part (b).

(b) Suppose that $\lim_{x\to 0} g(x) = 0$ and $|h(x)| \le M$ for all x, for some $M \ge 0$. Prove that $\lim_{x\to 0} g(x)h(x) = 0$.

Solution: Suppose that $\lim_{x\to 0} g(x) = 0$ and $|h(x)| \le M$ for all x, for some $M \ge 0$. We claim that $\lim_{x\to 0} g(x)h(x) = 0$.

Let $\varepsilon > 0$ be given. We need to find $\delta > 0$ such that $0 < |x| < \delta$ implies $|g(x)h(x)| < \varepsilon$. But

$$|g(x)h(x)| = |g(x)||h(x)| \le M|g(x)|,$$

so it is enough to find a $\delta > 0$ such that $0 < |x| < \delta$ implies $M|g(x)| < \varepsilon$, or equivalently $|g(x)| < \varepsilon/M$. Now because $\lim_{x\to 0} g(x) = 0$ (and because $\varepsilon/M > 0$), there is such a δ .

8. Here's the definition of $\lim_{x\to a} f(x) = L$, in symbols:

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x)((0 < |x - a| < \delta) \Rightarrow (|f(x) - L| < \varepsilon)). \quad (\star)$$

(a) Here's a very similar-looking statement (with some <'s changed to \leq 's):

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x)((0 < |x - a| \le \delta) \Rightarrow (|f(x) - L| \le \varepsilon)). \quad (\star \star)$$

i. Does $(\star\star)$ imply (\star) ?

Solution: Yes. Suppose we know $(\star\star)$. We aim to prove (\star) . Let $\varepsilon > 0$ be given. Apply $(\star\star)$ with " ε " replaced by " $\varepsilon/2$ " (valid, since $\varepsilon/2 > 0$). We get that there is $\delta > 0$ such that for all x,

$$[0 < |x - a| \le \delta] \Rightarrow [|f(x) - L| \le \varepsilon/2].$$

But then it is certainly true that

$$[0 < |x - a| < \delta] \Rightarrow [|f(x) - L| \le \varepsilon/2],$$

since all x satisfying $0 < |x - a| \le \delta$ also satisfy $0 < |x - a| < \delta$. But then, further, it is certainly true that

$$[0 < |x - a| < \delta] \Rightarrow [|f(x) - L| < \varepsilon],$$

since $\varepsilon/2 < \varepsilon$. So (*) holds, since for all $\varepsilon > 0$ we have found a $\delta > 0$ such that for all x, $[0 < |x - a| < \delta] \Rightarrow [|f(x) - L| < \varepsilon].$

ii. Does (\star) imply ($\star\star$)?

Solution: Yes. Suppose we know (*). We aim to prove (**). Let $\varepsilon > 0$ be given. Apply (*) to find a $\delta' > 0$ such that for all x, $[0 < |x - a| < \delta'] \Rightarrow [|f(x) - L| < \varepsilon]$. Take $\delta = \delta'/2$. If $0 < |x - a| \le \delta$, then it is certainly true that $0 < |x - a| < \delta'$, so it follows that $[|f(x) - L| < \varepsilon]$, which in turn implies $[|f(x) - L| \le \varepsilon]$. Hence (**) is true.

NOTE: This exercise shows that there is no change to the definition of a limit, if we replace " $< \delta$ " and/or " $\leq \varepsilon$ " with " $\leq \delta$ " and/or " $\leq \varepsilon$ "

(b) Here's another very similar-looking statement (with the order of quantifiers changed at the beginning):

$$(\exists \delta > 0)(\forall \varepsilon > 0)(\forall x)((0 < |x - a| < \delta) \Rightarrow (|f(x) - L| < \varepsilon)). \qquad (\star \star \star)$$

i. Does $(\star \star \star)$ imply (\star) ?

Solution: Yes. Suppose we know $(\star \star \star)$. Let $\varepsilon > 0$ be given. By $(\star \star \star)$ we know that there is a particular $\delta > 0$ (which has nothing to do with ε), such that for any particular $\varepsilon' > 0$, whenever we have $0 < |x - a| < \delta$ we also have $|f(x) - L| < \varepsilon'$. In particular that means that for our specified $\varepsilon > 0$, whenever we have $0 < |x - a| < \delta$ we also have $|f(x) - L| < \varepsilon$. So (\star) holds.

ii. Does (\star) imply $(\star \star \star)$?

Solution: No. To show this, all we need is a single counter-example. Consider the function f(x) = x, and take a = 0, L = 0. (*) certainly holds:

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x)([0 < |x| < \delta] \Rightarrow [|x| < \varepsilon]);$$

indeed, we may take $\delta = \varepsilon$. However, $(\star \star \star)$ claims

$$(\exists \delta > 0)(\forall \varepsilon > 0)(\forall x)([0 < |x| < \delta] \Rightarrow [|x| < \varepsilon]).$$

We claim this is false. Indeed, given any $\delta > 0$, take $\varepsilon = \delta/2$. The statement

$$(\forall x)([0 < |x| < \delta] \Rightarrow [|x| < \delta/2])$$

is clearly false, as witnessed for example by $x = 3\delta/4$.

- iii. If f satisfies $(\star \star \star)$, what must it look like near a?
 - **Solution**: If $(\star \star \star)$ holds, then there is some number $\delta > 0$ such that for any x in both $(a \delta, a)$ and $(a, a + \delta)$, it holds that for any $\varepsilon > 0$, $|f(x) L| < \varepsilon$. This says that f(x) = L on both these intervals. (**Proof**: Indeed, suppose there is some $x_0 \in (a \delta, a) \cup (a, a + \delta)$ with $f(x_0) \neq L$. Then $|f(x_0) L| > 0$. Picking any $\varepsilon > 0$ that is smaller than $|f(x_0) L|$, we cannot have $|f(x_0) L| < \varepsilon$.) So: if f satisfies $(\star \star \star)$, near a it must be constant, and take the value L.