
Math 10850, Honors Calculus 1

Homework 6

Solutions

1. In each of the following cases, determine the limit L for the given a, and prove that it
is indeed the limit by finding, for each ε > 0, a δ (probably depending on ε) such that
|f(x)− L| < ε for all x satisfying 0 < |x− a| < δ.

(a) f(x) = 100/x, a = 1.

Solution: We claim that the limit is 100.

To prove this, suppose that ε > 0 is given. We want to find δ such that whenever
0 < |x− 1| < δ, we have |100/x− 100| < ε.

Now |100/x− 100| < ε is equivalent (after a little algebra) to |x− 1|/|x| ≤ ε/100.

Choose δ ≤ 1/2. Then 0 < |x − 1| < δ implies x ∈ (1/2, 3/2), so |x| > 1/2 and
100/|x| < 50.

Choose also δ ≤ ε/50. Then 0 < |x− 1| < δ implies |x− 1| < ε/50.

To get both conditions to hold, we choose δ = min{1/2, ε/50}; note that δ > 0.

For this δ, or any smaller positive δ, we have that if 0 < |x−1| < δ then |100/x−100| <
50(ε/50) = ε.

This proves that limx→1 100/x = 100.

(b) f(x) = x4 + 1/x, arbitrary a > 0.

Solution: We claim that the limit is a4 + 1/a.

To prove this, suppose that ε > 0 is given. We want to find δ such that whenever
0 < |x− a| < δ, we have |(x4 + 1/x− (a4 + 1/a)| < ε.

Now (using triangle inequality frequently, and using that a > 0, x2 ≥ 0)

|(x4 + 1/x− (a4 + 1/a)| = |x4 − a4 + (1/x− 1/a)|
≤ |x4 − a4|+ |1/x− 1/a|

= |(x− a)(x+ a)(x2 + a2)|+
∣∣∣∣a− xxa

∣∣∣∣
= |x− a||x+ a||x2 + a2|+ |x− a|

|x|a

= |x− a|
(
|x+ a||x2 + a2|+ 1

|x|a

)
≤ |x− a|

(
(|x|+ a)(x2 + a2) +

1

|x|a

)
.
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If δ ≤ a/2, that 0 < |x − a| < δ implies |x − a| < a/2, which in turn implies
x ∈ (a/2, 3a/2), so a/2 < |x| < 3a/2. From this it follows that

(|x|+ a)(x2 + a2) +
1

|x|a
<

(
3a

2
+ a

)(
9a2

4
+ a2

)
+

2

a2
=

65a3

8
+

2

a2
.

If also δ ≤ ε
65a3

8
+ 2

a2

then, from the previous algebra, 0 < |x − a| < δ implies

|(x4 + 1/x− (a4 + 1/a)| < ε.

So if we take

δ = min

{
1/2,

ε
65a3

8
+ 2

a2

}
then 0 < |x− a| < δ implies |(x4 + 1/x− (a4 + 1/a)| < ε.

This proves that limx→a(x
4 + 1/x) = a4 + 1/a.

2. Calculate the following limits, not directly from the definition, but instead using the
various theorems we have proven about limits.

(a) limx→2
x3−8
x−2 .

Solution: The numerator factors as (x−2)(x2 +2x+4). Since 2 is not in the domain
of the function, it is legitimate to cancel the factors of x− 2 above and below. This
leads to

lim
x→2

x3 − 8

x− 2
= lim

x→2
(x2 + 2x+ 4) = 12,

the latter equality since x2 + 2x+ 4 is rational, with 2 in its domain, so the limit is
the value at 2.

(b) limx→y
xn−yn
x−y .

Solution: Viewed as a function of x, with y a constant, the domain of this function
is {x : x 6= y}. This means that we can divide through by x− y without changing
the limit (we are essentially multiplying the function by 1, with 1 written as (1/(x−
y))/(1/(x− y)), which is valid as long as x 6= y). This leads to

lim
x→y

xn − yn

x− y
= lim

x→y
(xn−1 + yxn−2 + · · ·+ yn−2x+ yn−1).

This latter is a rational function (in variable x) with y in the domain, so the limit is
the value of the function at y, that is,

yn−1 + yyn−2 + · · ·+ yn−2y + yn−1 or nyn−1.

(c) limh→0

√
a+h−

√
a

h
.

Solution: Here the answer depends on a. If a ≤ 0 then the function f defined by
f(h) = (

√
a+ h−

√
a)/h is not defined near 0 (because for any negative value of h,

a− h < 0), so the limit does not exists.
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If a > 0 then the function is defined near 0 (though not at 0), so we can study the
limit. As long as h 6= 0 we have

√
a+ h−

√
a

h
=

(√
a+ h−

√
a

h

)(√
a+ h+

√
a√

a+ h+
√
a

)
=

(a+ h)− a
h(
√
a+ h+

√
a)

=
h

h(
√
a+ h+

√
a)

=
1√

a+ h+
√
a
.

So

lim
h→0

√
a+ h−

√
a

h
= lim

h→0

1√
a+ h+

√
a

=
1

2
√
a
.

The last equality is obtained by direct evaluation, valid by the sum-product-reciprocal
theorem, the composition theorem, and the fact (not yet proven) that the square
root function is continuous on its domain.

3. For this question, the usual rules apply: if it is your understanding that a certain
phenomenon holds in general, then you should provide a proof/justification that that is
the case; if it does not hold in general, a single explicit counterexample is enough.

(a) If limx→a f(x) and limx→a g(x) both do not exist, can limx→a(f(x) + g(x)) exist?

Solution: Yes. Consider, for example,

f(x) =

{
1 if x > 0
−1 if x < 0

and

g(x) =

{
−1 if x > 0
1 if x < 0.

Certainly limx→0 f(x) and limx→0 g(x) do not exist. But (f + g)(x) = 0 unless x = 0
(at which point the sum is undefined), so limx→0(f + g)(x) = 0.

(b) If limx→a f(x) and limx→a g(x) both do not exist, can limx→a f(x)g(x) exist?

Solution: Yes. Consider, for example, exactly the same functions f and g from the
previous part. (fg)(x) = −1 unless x = 0 (at which point the product is undefined),
so limx→0(fg)(x) = −1.

(c) If limx→a f(x) and limx→a(f(x) + g(x)) both exist, must limx→a g(x) exist?

Solution: Yes. If limx→a f(x) exists, and limx→a(f(x) + g(x)) exists, then by the
sum-product-reciprocal theorem,

lim
x→a

((f(x) + g(x))− f(x)) = lim
x→a

g(x)

exists.
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(d) If limx→a f(x) exists and limx→a g(x) does not exist, can limx→a(f(x) + g(x)) exist?

Solution: No. If limx→a(f(x) + g(x)) existed then (by part b) limx→a g(x) would
also exist, a contradiction.

(e) If limx→a f(x) exists and limx→a f(x)g(x) exists, does it follow that limx→a g(x) exists?

Solution: It is tempting to say “yes”. If limx→a f(x) exists, and limx→a f(x)g(x)
exists, then by the sum-product-reciprocal theorem,

lim
x→a

(f(x)g(x))/f(x)) = lim
x→a

g(x)

should exist; but this assumes that limx→a f(x) is not zero. So to find a counter-
example, we need to find functions f and g, and an a, with limx→a f(x) = 0,
limx→a f(x)g(x) existing, and limx→a g(x) not existing.

Taking f to be the constant 0 function, g to be the function g(x) = sin(1/x) and
a = 0 works nicely.

4. (a) Prove that limx→0 f(x) = limx→0 f(x3). Clarification: Show that if limx→0 f(x) = L
then limx→0 f(x3) exists and equals L.

Solution: There is an implicit assumption here, that both limits exists. We will
show that if limx→0 f(x) = L then limx→0 f(x3) = L.

Suppose that limx→0 f(x) = L, so that for all ε > 0 there is δ > 0 such that
0 < |x| < δ implies |f(x)− L| < ε.

Now, given ε > 0, consider 0 < |x| < δ1/3, where δ is exactly as in the last paragraph
(we use here the as-yet-unproven fact that for every positive number t, there is
a positive number s such that s3 = t; we call this the cubed root of t, or t1/3).
Now 0 < |x| < δ1/3 is the same as −δ1/3 < x < δ1/3, x 6= 0, which is the same as
−δ3 < x3 < δ, x 6= 0, which is the same as 0 < |x3| < δ. In this range we have
|f(x3)− L| < ε, so that limx→0 f(x3) = L, as claimed.

We could easily reverse this argument to show that if limx→0 f(x3) = L then
limx→0 f(x) = L, and so prove that if either one of the two limits exist then they
both do, and they are equal.

(b) Give an example where limx→0 f(x2) exists, but limx→0 f(x) doesn’t.

Solution: Let

f(x) =

{
1 if x > 0
−1 if x < 0,

so that f(x2) = 1 if x 6= 0 (and is undefined at x = 0). We have limx→0 f(x2) = 1
but limx→0 f(x) does not exist.

5. Let f, g, h be three functions, and let a be some real number. Suppose that there is some
number ∆ > 0 such that on the interval (a−∆, a+ ∆) it holds that f(x) ≤ g(x) ≤ h(x)
(except possibly at a, which might or might not be in the domains of any of the three
functions). Suppose further that limx→a f(x) and limx→a h(x) both exist and both equal
L. Prove that limx→a g(x) exists and equals L.
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(This is an example of a squeeze theorem: the function g is being squeezed between f and
h near a.)

Solution: Let L be the common value of limx→a f(x) and limx→a h(x). We aim to show
limx→a g(x) = L.

To that end, let ε > 0 be given. There is a δ1 > 0 such that for x satisfying 0 < |x−a| < δ1,
we have |f(x)− L| < ε, and there is a δ2 > 0 such that for x satisfying 0 < |x− a| < δ2,
we have |h(x)− L| < ε. Let δ > 0 be any number no bigger than δ1, δ2 and ∆ (e.g.,

δ = min{δ1, δ2,∆}.)

For x satisfying 0 < |x− a| < δ, we have both |f(x)− L| < ε and |h(x)− L| < ε, in other
words,

L− ε < f(x) ≤ h(x) < L+ ε.

But now, we know f(x) ≤ g(x) ≤ h(x) for all such x (this is where we use δ ≤ ∆); so in
particular, for x satisfying 0 < |x− a| < δ we have

L− ε < g(x) < L+ ε

so |g(x)− L| < ε. This shows that limx→a g(x) = L.

6. Prove that limx→1 1/(x− 1) does not exist.

Solution: Let L be given. We will show that limx→1 1/(x− 1) 6= L.

The main point is this: by taking x close enough to 1 (and, for definiteness, positive)
we can make 1/(x− 1) as large as we want, and in particular larger than |L|+ 1. Note
specifically that if

x =
|L|+ 2

|L|+ 1

then
1

x− 1
= |L|+ 1,

and that if 1 < y < x then f(y) > f(x).

So, take ε = 1/2. Let δ > 0 be given.

• If δ > 1/(|L| + 1) then take x = (|L| + 2)/(|L| + 1) (note that 0 < |x − 1| < δ) to
get f(x) = |L| + 1, so |f(x) − L| ≥ 1/2 (if L ≥ 0, |f(x) − L| = 1, and if L < 0,
|f(x)− L| = 2|L|+ 1 > 1).

• If δ ≤ 1/(|L| + 1) then take x = 1 + δ/2 (note that 0 < |x − 1| < δ). Since
1 < x < (|L| + 2)/(|L| + 1), get f(x) > f((|L| + 2)/(|L| + 1)) = |L| + 1, so again
|f(x)− L| ≥ 1/2.

This shows that limx→1 1/(x− 1) 6= L.

7. (a) Prove that if limx→a g(x) = 0, then limx→a g(x) sin(1/x) = 0.

Solution: Part (a) is implied by part (b), because | sin(1/x)| ≤ 1 for all x 6= 0, so
we just prove part (b).
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(b) Suppose that limx→0 g(x) = 0 and |h(x)| ≤M for all x, for some M ≥ 0. Prove that
limx→0 g(x)h(x) = 0.

Solution: Suppose that limx→0 g(x) = 0 and |h(x)| ≤M for all x, for some M ≥ 0.
We claim that limx→0 g(x)h(x) = 0.

Let ε > 0 be given. We need to find δ > 0 such that 0 < |x| < δ implies |g(x)h(x)| < ε.
But

|g(x)h(x)| = |g(x)||h(x)| ≤M |g(x)|,

so it is enough to find a δ > 0 such that 0 < |x| < δ implies M |g(x)| < ε, or
equivalently |g(x)| < ε/M . Now because limx→0 g(x) = 0 (and because ε/M > 0),
there is such a δ.

8. Here’s the definition of limx→a f(x) = L, in symbols:

(∀ε > 0)(∃δ > 0)(∀x)((0 < |x− a| < δ)⇒ (|f(x)− L| < ε)). (?)

(a) Here’s a very similar-looking statement (with some <’s changed to ≤’s):

(∀ε > 0)(∃δ > 0)(∀x)((0 < |x− a| ≤ δ)⇒ (|f(x)− L| ≤ ε)). (??)

i. Does (??) imply (?)?

Solution: Yes. Suppose we know (??). We aim to prove (?). Let ε > 0 be given.
Apply (??) with “ε” replaced by “ε/2” (valid, since ε/2 > 0). We get that there
is δ > 0 such that for all x,

[0 < |x− a| ≤ δ]⇒ [|f(x)− L| ≤ ε/2].

But then it is certainly true that

[0 < |x− a| < δ]⇒ [|f(x)− L| ≤ ε/2],

since all x satisfying 0 < |x − a| ≤ δ also satisfy 0 < |x − a| < δ. But then,
further, it is certainly true that

[0 < |x− a| < δ]⇒ [|f(x)− L| < ε],

since ε/2 < ε. So (?) holds, since for all ε > 0 we have found a δ > 0 such that
for all x, [0 < |x− a| < δ]⇒ [|f(x)− L| < ε].

ii. Does (?) imply (??)?

Solution: Yes. Suppose we know (?). We aim to prove (??). Let ε > 0 be given.
Apply (?) to find a δ′ > 0 such that for all x, [0 < |x−a| < δ′]⇒ [|f(x)−L| < ε].
Take δ = δ′/2. If 0 < |x− a| ≤ δ, then it is certainly true that 0 < |x− a| < δ′,
so it follows that [|f(x)− L| < ε], which in turn implies [|f(x)− L| ≤ ε]. Hence
(??) is true.

NOTE: This exercise shows that there is no change to the definition of a limit,
if we replace “< δ” and/or “< ε” with “≤ δ” and/or “≤ ε”
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(b) Here’s another very similar-looking statement (with the order of quantifiers changed
at the beginning):

(∃δ > 0)(∀ε > 0)(∀x)((0 < |x− a| < δ)⇒ (|f(x)− L| < ε)). (? ? ?)

i. Does (? ? ?) imply (?)?

Solution: Yes. Suppose we know (? ? ?). Let ε > 0 be given. By (? ? ?) we
know that there is a particular δ > 0 (which has nothing to do with ε), such
that for any particular ε′ > 0, whenever we have 0 < |x− a| < δ we also have
|f(x)− L| < ε′. In particular that means that for our specified ε > 0, whenever
we have 0 < |x− a| < δ we also have |f(x)− L| < ε. So (?) holds.

ii. Does (?) imply (? ? ?)?

Solution: No. To show this, all we need is a single counter-example. Consider
the function f(x) = x, and take a = 0, L = 0. (?) certainly holds:

(∀ε > 0)(∃δ > 0)(∀x)([0 < |x| < δ]⇒ [|x| < ε]);

indeed, we may take δ = ε.
However, (? ? ?) claims

(∃δ > 0)(∀ε > 0)(∀x)([0 < |x| < δ]⇒ [|x| < ε]).

We claim this is false. Indeed, given any δ > 0, take ε = δ/2. The statement

(∀x)([0 < |x| < δ]⇒ [|x| < δ/2])

is clearly false, as witnessed for example by x = 3δ/4.

iii. If f satisfies (? ? ?), what must it look like near a?
Solution: If (? ? ?) holds, then there is some number δ > 0 such that for any x
in both (a− δ, a) and (a, a+ δ), it holds that for any ε > 0, |f(x)−L| < ε. This
says that f(x) = L on both these intervals. (Proof: Indeed, suppose there is
some x0 ∈ (a− δ, a) ∪ (a, a+ δ) with f(x0) 6= L. Then |f(x0)− L| > 0. Picking
any ε > 0 that is smaller than |f(x0)− L|, we cannot have |f(x0)− L| < ε.)
So: if f satisfies (? ? ?), near a it must be constant, and take the value L.
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