SOLUTIONS TO PRACTICE EXAM 2, MATH 10560

1. Which of the following expressions gives the partial fraction decomposition of the function

$$
f(x)=\frac{x^{2}-2 x+6}{x^{3}(x-3)\left(x^{2}+4\right)} ?
$$

Solution: Since x is a linear factor of multiplicity $3,(x-3)$ is a linear factor of multiplicity 1 and $\left(x^{2}+4\right)$ is an irreducible quadratic factor of multiplicity 1 , then

$$
\frac{x^{2}-2 x+6}{x^{3}(x-3)\left(x^{2}+4\right)}=\frac{A}{x^{3}}+\frac{B}{x^{2}}+\frac{C}{x}+\frac{D}{x-3}+\frac{E x+F}{x^{2}+4} .
$$

2. Use the trapezoidal rule with step size $\Delta x=2$ to approximate the integral $\int_{0}^{4} f(x) d x$.

Solution: Note

$$
n=\frac{4-0}{2}=2 .
$$

Then by the trapezoidal rule

$$
\int_{0}^{4} f(x) d x \approx \frac{\Delta x}{2}\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+f\left(x_{2}\right)\right)=\frac{2}{2}(2+8+0)=10 .
$$

3. Evaluate the following improper integral:

$$
\int_{e}^{\infty} \frac{1}{x(\ln x)^{2}} d x
$$

Solution: Use the definition of improper integral and make the substitution $u=\ln x$ with $d x=x d u$. Then

$$
\begin{aligned}
\int_{e}^{\infty} \frac{1}{x(\ln x)^{2}} d x & =\lim _{t \rightarrow \infty} \int_{e}^{t} \frac{1}{x(\ln x)^{2}} d x=\lim _{t \rightarrow \infty} \int_{1}^{\ln t} \frac{1}{u^{2}} d u \\
& =\lim _{t \rightarrow \infty}\left[-\frac{1}{u}\right]_{1}^{\ln t}=\lim _{t \rightarrow \infty}\left(-\frac{1}{\ln t}+1\right)=1
\end{aligned}
$$

4. Find $\int_{-2}^{2} \frac{1}{x+1} d x$.

Solution: The function $\frac{1}{x+1}$ has an infinite discontinuity at the point $x=-1$. Therefore

$$
\int_{-2}^{2} \frac{1}{x+1} d x=\int_{-2}^{-1} \frac{1}{x+1} d x+\int_{-1}^{2} \frac{1}{x+1} d x
$$

where each of the integrals is improper. Compute the first integral as follows
$\int_{-2}^{-1} \frac{1}{x+1} d x=\lim _{t \rightarrow-1^{-}} \int_{-2}^{t} \frac{1}{x+1} d x=\left.\lim _{t \rightarrow-1^{-}} \ln |x+1|\right|_{-2} ^{t}=\lim _{t \rightarrow-1^{-}} \ln |t+1|-\ln 1=-\infty$.
Since $\int_{-2}^{-1} \frac{1}{x+1} d x$ diverges, then the initial integral diverges as well.
5. Which of the following is an expression for the area of the surface formed by rotating the curve $y=5^{x}$ between $x=0$ and $x=2$ about the y-axis?

Solution: Distance from the axis of revolution (the y-axis) and the graph of the function $y=5^{x}$ is x. Therefore

$$
S=\int_{a}^{b} 2 \pi r d s=\int_{a}^{b} 2 \pi x \sqrt{1+\left(y^{\prime}\right)^{2}} d x=\int_{0}^{2} 2 \pi x \sqrt{1+(\ln 5)^{2} \cdot 25^{x}} d x
$$

6. Find the centroid of the region bounded by $y=1 / x, y=0, x=1$, and $x=2$.

Solution: Use

$$
\begin{aligned}
& \bar{x}=\frac{1}{A} \int_{a}^{b} x f(x) d x \\
& \bar{y}=\frac{1}{2 A} \int_{a}^{b} f^{2}(x) d x
\end{aligned}
$$

where A is the area of the given region. Since $A=\int_{1}^{2}(1 / x) d x=\ln 2$,

$$
\begin{aligned}
& \bar{x}=\frac{1}{\ln 2} \int_{1}^{2} x \frac{1}{x} d x=\frac{1}{\ln 2} \int_{1}^{2} 1 d x=\left.\frac{1}{\ln 2} x\right|_{1} ^{2}=\frac{1}{\ln 2}(2-1)=\frac{1}{\ln 2} \\
& \bar{y}=\frac{1}{2 \ln 2} \int_{1}^{2} \frac{1}{x^{2}} d x=\left.\frac{1}{2 \ln 2}\left(-\frac{1}{x}\right)\right|_{1} ^{2}=\frac{1}{2 \ln 2}\left(-\frac{1}{2}+1\right)=\frac{1}{4 \ln 2}
\end{aligned}
$$

7. Use Euler's method with step size 0.5 to estimate $y(1)$ where $y(x)$ is the solution to the initial value problem

$$
y^{\prime}=y+2 x y, \quad y(0)=1
$$

Solution: Note $\Delta x=0.5, a=0, b=1, n=\frac{1-0}{0.5}=2$. Therefore using $F(x, y)=$ $y+2 x y$ for Euler's method,

Step 0: $x_{0}=0, y(0)=y_{0}=1$,
Step 1: $x_{1}=0.5, y(0.5) \approx y_{1}=y_{0}+F\left(x_{0}, y_{0}\right) \Delta x=y_{0}+\left(y_{0}+2 x_{0} y_{0}\right) \Delta x=1+(1+0) 0.5=1.5$,
Step 2: $x_{2}=1.0, y(1.0) \approx y_{2}=y_{1}+F\left(x_{1}, y_{1}\right) \Delta x=y_{1}+\left(y_{1}+2 x_{1} y_{1}\right) \Delta x=1.5+(1.5+1.5) 0.5=3$.
8. Find the solution to the initial value problem

$$
y^{\prime}=\frac{\sin x}{2 y+1}, \quad y(0)=2
$$

Solution: Separate variables and then integrate

$$
(2 y+1) y^{\prime}=\sin x
$$

or

$$
\int(2 y+1) d y=\int \sin x d x
$$

We get

$$
y^{2}+y=-\cos x+C .
$$

Now use the initial condition $y(0)=2$ to find C as follows

$$
2^{2}+2=-1+C
$$

Hence $C=7$, and

$$
y^{2}+y=7-\cos x .
$$

9. Find the integral

$$
\int \frac{3 x+1}{x^{3}+x^{2}} d x
$$

Solution: Use partial fraction decomposition

$$
\frac{3 x+1}{x^{3}+x^{2}}=\frac{3 x+1}{x^{2}(x+1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+1}=\frac{A x(x+1)+B(x+1)+C x^{2}}{x^{2}(x+1)} .
$$

Therefore

$$
3 x+1=(A+C) x^{2}+(A+B) x+B .
$$

It follows that

$$
\begin{gathered}
A+C=0, \quad A+B=3, \quad B=1, \\
A=2, \quad B=1, \quad C=-2,
\end{gathered}
$$

and

$$
\int \frac{3 x+1}{x^{3}+x^{2}} d x=\int\left(\frac{2}{x}+\frac{1}{x^{2}}-\frac{2}{x+1}\right) d x=2 \ln |x|-\frac{1}{x}-2 \ln |x+1|+C .
$$

10. Calculate the integral

$$
\int \frac{d x}{x+\sqrt[3]{x}}
$$

Solution: Make substitution $u=x^{1 / 3}$. Then $u^{3}=x$ and with $d x=3 u^{2} d u$

$$
\int \frac{d x}{x+\sqrt[3]{x}}=\int \frac{3 u^{2} d u}{u^{3}+u}=\int \frac{3 u d u}{u^{2}+1}=\frac{3}{2} \ln \left(u^{2}+1\right)+C=\frac{3}{2} \ln \left(x^{2 / 3}+1\right)+C .
$$

11. Calculate the arc length of the curve if $y=\frac{x^{2}}{4}-\ln (\sqrt{x})$, where $2 \leq x \leq 4$.

Solution: Recall

$$
L=\int_{a}^{b} \sqrt{1+\left(y^{\prime}\right)^{2}} d x .
$$

Note

$$
y^{\prime}=\frac{x}{2}-\frac{1}{\sqrt{x}} \cdot \frac{1}{2 \sqrt{x}}=\frac{1}{2}\left(x-\frac{1}{x}\right) .
$$

Thus

$$
\begin{aligned}
& 1+\left(y^{\prime}\right)^{2}=1+\frac{1}{4}\left(x-\frac{1}{x}\right)^{2}=1+\frac{1}{4}\left(x^{2}-2 x \frac{1}{x}+\frac{1}{x^{2}}\right)=1+\frac{1}{4}\left(x^{2}-2+\frac{1}{x^{2}}\right) \\
= & 1+\frac{1}{4} x^{2}-\frac{1}{2}+\frac{1}{4 x^{2}}=\frac{1}{4} x^{2}+\frac{1}{2}+\frac{1}{4 x^{2}}=\frac{1}{4}\left(x^{2}+2 x \frac{1}{x}+\frac{1}{x^{2}}\right)=\frac{1}{4}\left(x+\frac{1}{x}\right)^{2} .
\end{aligned}
$$

Therefore

$$
L=\int_{2}^{4} \sqrt{1 / 4(x+1 / x)^{2}} d x=\int_{2}^{4} \frac{1}{2}\left(x+\frac{1}{x}\right) d x=\frac{1}{2}\left[\frac{x^{2}}{2}+\ln x\right]_{2}^{4}=3+\frac{1}{2} \ln 2 .
$$

12. Solve the initial value problem

$$
\begin{aligned}
x y^{\prime}+x y+y & =e^{-x} \\
y(1) & =\frac{2}{e} .
\end{aligned}
$$

Solution: This is a linear differential equation. Since it can be reduced to the form

$$
y^{\prime}+\left(1+\frac{1}{x}\right) y=\frac{e^{-x}}{x},
$$

an integrating factor is

$$
I(x)=e^{\int\left(1+\frac{1}{x}\right) d x}=e^{x+\ln x}=x e^{x}
$$

Multiply both sides of the differential equation by $I(x)$ to get

$$
x e^{x} y^{\prime}+y(x+1) e^{x}=1,
$$

and hence

$$
\left(x e^{x} y\right)^{\prime}=1 .
$$

Integrate both sides to obtain

$$
x e^{x} y=x+C \text {, }
$$

or

$$
y=e^{-x}\left(1+\frac{C}{x}\right) .
$$

Using the initial value, we have

$$
y(1)=\frac{2}{e}=\frac{1}{e}(1+C), \quad C=1 .
$$

Hence

$$
y=e^{-x}\left(1+\frac{1}{x}\right)
$$

