
Intuition test
Around one million people in the U.S. (population around 308
million) have a certain particularly nasty condition, condition
X. It’s a condition with no obvious external symptoms, and
susceptibility can’t be inferred from medical or family history.
It strikes at random.

A test exists for X, which is 95% accurate — the test correctly
identifies the presence of X 95% of the time that it is present,
and correctly identifies the absence of X 95% of the time that is
not present.

Being a hypocondriac, I have myself tested for X, and the test
comes back positive. What is the probability that I have X?

A: more than 90%

B: around 75%

C: around 50%

D: around 25%

E: less than 10%



Bayes’ Theorem

Now we look at how we can use information about conditional
probabilities to calculate reverse conditional probabilities —
i.e., how we calculate P

(
A
∣∣B)

when we know P
(
B
∣∣A)

(and
some other things). We will generally solve these problems with
tree diagrams, but we will also see a formula that says what’s
going on algebraically.

Example Suppose that a factory has two machines, Machine A
and Machine B, both producing jPhone touch screens. 40% of
production is from Machine A and 60% is from Machine B. 10%
of the touch screens produced by Machine A are defective and
5% of those from Machine B are.

If I randomly choose a touch screen produced in the factory,
then there is a 40% probability that it came from Machine A.

Suppose that I test the randomly chosen screen, and find that it

is defective, now what is the probability that it came from

Machine A? Greater or less than 40%?



Factory example

We can draw a tree diagram representing the information
we are given. If we choose a touch screen at random from
those produced in the factory, we let MA be the event that
it came from Machine A and let MB be the event that it
came from Machine B. We let D denote the event that the
touch screen is defective and let ND denote the event that
it is not defective. Fill in the appropriate probabilities on
the tree diagram on the left on the next page.



Factory example
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Factory example

We can now calculate P
(
MA

∣∣D)
=

P(MA ∩D)

P(D)
=

P(MA ∩D)

P
(
D
∣∣MA

)
·P(MA) + P

(
D
∣∣MB

)
·P(MB)

. Note the

event D is shown in red above and the event MA ∩D is
shown in blue.
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Factory example
D

MA

0.1

0.9
ND

0

0.6

0.4

MB
0.05

0.95

D

ND

P
(
MA

∣∣D)
=

P(MA ∩D)

P(D)
=

P(MA ∩D)

P
(
D
∣∣MA

)
·P(MA) + P

(
D
∣∣MB

)
·P(MB)

=

0.4 · 0.1
0.4 · 0.1 + 0.6 · 0.05

=
0.04

0.07
=

4

7
≈ 57% > 40% = P(MA)



Bayes’ Theorem

Let E1 and E2 be mutually exclusive events (E1 ∩ E2 = ∅)
whose union is the sample space, i.e. E1 ∪ E2 = S. Let F
be an event in S for which P(F ) 6= 0. Then

P
(
E1

∣∣F)
=
P(E1 ∩ F )

P(F )
=

P(E1 ∩ F )

P(E1 ∩ F ) + P(E2 ∩ F )
=

P(E1)P
(
F
∣∣E1

)
P(E1)P

(
F
∣∣E1

)
+ P(E2)P

(
F
∣∣E2

) .
Note that if we cross-classify outcomes in the sample space
according to whether they belong to E1 or E2 and whether
they belong to F or F ′, we get a tree diagram as above
from which we can calculate the probabilities.



Bayes’ Theorem
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A more general Bayes’ Theorem

Let E1, E2, . . . , En be (pairwise) mutually exclusive events
such that E1 ∪ E2 ∪ · · · ∪ En = S, where S denotes the
sample space. Let F be an event such that P(F ) 6= 0, Then

P
(
E1

∣∣F)
=

P(E1 ∩ F )

P(F )
=

P(E1 ∩ F )

P(E1 ∩ F ) + P(E2 ∩ F ) + · · ·+ P(En ∩ F )
=

P(E1)P
(
F
∣∣E1

)
P(E1)P

(
F
∣∣E1

)
+ P(E2)P

(
F
∣∣E2

)
+ · · ·+ P(En)P

(
F
∣∣En

)



A more general Bayes’ Theorem

Example A pile of 8 playing cards has 4 aces, 2 kings and
2 queens. A second pile of 8 playing cards has 1 ace, 4
kings and 3 queens. You conduct an experiment in which
you randomly choose a card from the first pile and place it
on the second pile. The second pile is then shuffled and you
randomly choose a card from the second pile. If the card
drawn from the second deck was an ace, what is the
probability that the first card was also an ace?



A more general Bayes’ Theorem
Let A be the event that you draw an ace, K the event that
you draw a king and Q be the event that you draw a queen.
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A more general Bayes’ Theorem

In the first round there are 4 + 2 + 2 = 8 cards so the
probabilities in the first round are
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A more general Bayes’ Theorem
In the second round there are 1 + 4 + 3 + 1 = 9 cards and
the probabilities are different at the various nodes. If you
draw an ace in round 1 the cards are 2 aces, 4 kings and 3
queens so we get
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A more general Bayes’ Theorem
If you draw a king in round 1 the cards are 1 ace, 5 kings
and 3 queens so we get
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A more general Bayes’ Theorem

If you draw a queen in round 1 the cards are 1 ace, 4 kings
and 4 queens so we get
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A more general Bayes’ Theorem
A2
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The question asks for

P
(
A
∣∣A2

)
=

P(A ∩ A2)

P(A2)
=

1
2
· 2
9

1
2
· 2
9

+ 1
4
· 1
9

+ 1
4
· 1
9

=
2
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.



Predictive value of diagnostic test

Bayes’ theorem allows us to gain insight about the accuracy
of tests for diseases and drugs.

Example: Around one million people in the US
(population around 308 million) have a certain particularly
nasty condition, condition X. A test exists for X, which is
95% accurate — the test correctly identifies the presence of
X 95% of the time, and correctly identifies the absence of X
95% of the time.

Being a hypocondriac, I have myself tested for X, and the
test comes back positive. What is the probability that I
have X? That is, letting P denote the event that a person
chosen at random from the population tests positive, and
letting I denote the event that a person chosen at random
has X, what is P

(
I
∣∣P)

?



Predictive value of diagnostic test
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P

P
(
I
∣∣P)
≈

1
308
· 0.95

307
308
· 0.05 + 1

308
· 0.95

≈ 0.00308

0.0498 + 0.00308
≈

0.00308

0.0529
≈ 0.0583 = 5.83%



Predictive value of diagnostic test

In country C, 40% of the residents have condition X.
Suppose a random resident of Country C tests positive for
X. What is the probability that the person actually has X?

P

NI NP

0

I NP

P

P

NI

0.05

0.95
NP

0

0.4

0.6

I 0.05

0.95

NP

P

P
(
I
∣∣P)

=
0.4 · 0.95

0.6 · 0.05 + 0.4 · 0.95
≈ 93%



Predictive value of diagnostic test
Example A test for Lyme disease is 60% accurate when a
person has the disease and 99% accurate when a person
does not have the disease. In Country Y, 0.01% of the
population has Lyme disease. What is the probability that
a person chosen randomly from the population who test
positive for the disease actually has the disease?

P

NI NP

0

I NP

P

P

NI

0.01

0.99
NP

0

0.0001

0.9999

I 0.4

0.6

NP

P

P
(
I
∣∣P)

= 0.0001 · 0.06
0.9999 · 0.01 + 0.0001 · 0.06

≈ 0.006.



A legal example

A crime has been committed and the only evidence is a
blood spatter that could only have come from the
perpetrator. The chance of a random individual having the
same blood type as that of the spatter is 10%. Joe has
been arrested and charged. The trial goes as follows.
Prosecutor: Since there is only a 10% chance that Joe’s
blood would match, there is a 90% chance that Joe did it.
That’s good enough for me.
Defence Lawyer: There are two hundred people in the
neighborhood who could have done the crime. Twenty of
them will have the same blood type as the sample. Hence

the chances that Joe did it are
1

20
= 5% so there is a 95%

chance that Joe is innocent. That’s good enough for me.



The ghost of the Reverend Thomas Bayes: You’re all
nuts!
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If P(I) = x and so P(G) = 1− x then

P
(
I
∣∣M)

=
0.1 · x

0.1 · x + 1 · (1− x)
=

0.1x

1− 0.9x



If P(I) = x then P
(
I
∣∣M)

=
0.1x

1− 0.9x

If you are initially certain that Joe is guilty, then x = 0 and
after seeing the evidence you are still certain, P

(
I
∣∣M)

= 0.

If you are initially certain that Joe is innocent, then x = 1
and after seeing the evidence you are still certain,
P
(
I
∣∣M)

= 1.

If you initially think that there is a 40% chance that Joe is
guilty, then x = 0.4 and after seeing the evidence
P
(
I
∣∣M)

= 0.0625.

If you suspect that the police searched a blood-type
database until they came up with a name in the
neighborhood, then you might initially think that

x = P (I) =
19

20
= 95%. Now after seeing the evidence

Bayes suggests revising to P
(
I
∣∣M)

= 0.66.



Some resources

Here’s an article on the predictive value of diagnostic tests:
Doctors flunk quiz on screening-test math

If you are more legally inclined, here is a discussion of
Bayes Theorem as it applies to criminal trials.

https://www.sciencenews.org/blog/context/doctors-flunk-quiz-screening-test-math
http://www.agenarisk.com/resources/probability_puzzles/bayes_evidence.shtml

