
Combinations
Example Five friends, Alan, Cassie, Maggie, Seth and
Roger, have won 3 tickets for a concert. They can’t afford
two more tickets. In how many ways can they choose three
people from among the five to go?

Here (from last time) is the list of all the ways of choosing
three people, when the order of selection matters:

AMC AMS AMR ACS ACR
ACM ASM ARM ASC ARC
CAM MAS MAR CAS CAR
CMA MSA MRA CSA CRA
MAC SAM RAM SAC RCA
MCA SMA RMA SCA RAC
ASR MSR MCR MCS CRS
ARS MRS MRC MSC CSR
SAR SMR RMC CMS RCS
SRA SRM RCM CSM RSC
RSA MRS CRM SMC SCR
RAS MSR CMR SCM SRC
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Combinations

Now order of selection doesn’t matter — AMC is the same
as ACM — so these sixty possibilities bunch up in groups
of 6, with everything in the same group being the same.
That leaves 10 different possibilities:

AMC AMS AMR ACS ACR
ASR MSR MCR MCS CRS

With order mattering, there were P(5, 3) possibilities.
With order not mattering, we have overcounted by a factor
of 6 = 3! (one for each of the ways or putting an order on
three people), so the right count is

60

3!
=

P(5, 3)

3!
=

5!

2!3!
.
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Combinations

We have listed all Combinations of the five friends taken
3 at a time. The number of such combinations is denoted
by C(5, 3).

This is the same as listing all the subsets of size 3 of the set
{A,C,M,R, S}

Definition A Combination of n objects taken r at a
time is a selection of r objects taken from among the n.
The order in which the objects are chosen does not matter.

The key characteristics of a combination are

1. A combination selects elements from a single set.

2. Repetitions are not allowed.

3. The order in which the selected elements are arranged
is not significant.
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Combinations

The number of such combinations is denoted by the
symbol C(n, r) or

(
n
r

)
. We have

C(n, r) =

(
n

r

)
=

P(n, r)

r!
=

n · (n− 1) · . . . · (n− r + 1)

r · (r − 1) · (r − 2) · · · 1
=

n!

r! · (n− r)!

Example Evaluate C(10, 3).

C(10, 3) =
10!

3! · 7!
=

10 · 9 · 8
3 · 2 · 1

= 120
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Combinations

Example How many ways are there to choose 7 people
from a class of 40 students in order to make a team for
Bookstore Basketball?

C(40, 7) =
40!

7! · 33!
= 18, 643, 560

Example In a soccer tournament with 15 teams, each
team must play each other team exactly once. How many
matches must be played?

C(15, 2) =
15!

2! · 13!
=

15 · 14

2 · 1
= 15 · 7 = 105
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Combinations

Example A poker hand consists of five cards dealt at
random from a standard deck of 52. How many different
poker hands are possible?

C(52, 5) =
52!

5! · 47!
= 2, 598, 960

Example A standard deck of cards consists of 13 hearts,
13 diamonds, 13 spades and 13 clubs. How many poker
hands consist entirely of clubs?

C(13, 5) =
13!

5! · 8!
= 1, 287
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Combinations

Example How many poker hands consist of red cards only?

There are 26 red cards so C(26, 5) =
26!

5! · 21!
= 65, 780

Example How many poker hands consist of 2 kings and 3
queens?

There are 4 kings and 4 queens. We can select 2 kings in
C(4, 2) ways and we can select 3 queens in C(4, 3) ways.
We can distinguish kings from queens so the answer is
C(4, 2) ·C(4, 3) = 6 · 4 = 24.
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Combinations

Example (Quality Control) A factory produces light bulbs
and ships them in boxes of 50 to their customers. A quality
control inspector checks a box by taking out a sample of
size 5 and checking if any of those 5 bulbs are defective. If
at least one defective bulb is found the box is not shipped,
otherwise the box is shipped. How many different samples
of size five can be taken from a box of 50 bulbs?

C(50, 5) = 2, 118, 760.

Example If a box of 50 light bulbs contains 20 defective
light bulbs and 30 non-defective light bulbs, how many
samples of size 5 can be drawn from the box so that all of
the light bulbs in the sample are good?

C(30, 5) = 142, 506.
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Problems using a mixture of counting principles

Example How many poker hands have at least two kings?

There are C(4, 2) ways to get 2 kings and C(48, 3) ways to
fill out the hand. Hence there are C(4, 2) ·C(48, 3) hands
with exactly 2 kings. There are C(4, 3) ·C(48, 2) hands
with exactly 3 kings and there are C(4, 4) ·C(48, 1) hands
with exactly 4 kings. Hence there are
C(4, 2) ·C(48, 3) + C(4, 3) ·C(48, 2) + C(4, 4) ·C(48, 1)
hands with at least two kings. The number is
6 · 17, 296 + 4 · 1, 128 + 1 · 48 = 108, 336.
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Problems using a mixture of counting principles

Example In the Notre Dame Juggling club, there are 5
graduate students and 7 undergraduates. Student
Activities will fund 5 people to attend, as long as at least
three are undergraduates. In how many ways can 5 people
be chosen to go to the performance so that the funding will
be granted?

Break the problem up, by number of undergraduates
chosen to attend. Three undergraduates: C(7, 3) ·C(5, 2);
Four undergraduates: C(7, 4) ·C(5, 1); Five
undergraduates: C(7, 5) ·C(5, 0). The number is
35 · 10 + 35 · 5 + 21 · 1 = 546.

Remark: C(7, 3) ·C(9, 2) = 1, 260. Why is this NOT the
right answer?
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Problems using a mixture of counting principles

Example Gino’s Pizza Parlor offers 3 three types of crust,
2 types of cheese, 4 vegetable toppings and 3 meat
toppings. Pat always chooses one type of crust, one type of
cheese, 2 vegetable toppings and two meat toppings. How
many different pizzas can Pat create?

Pat’s choices are independent so
C(3, 1) ·C(2, 1) ·C(4, 2) ·C(3, 2) = 3 · 2 · 6 · 3 = 108.

Example How many subsets of a set of size 5 have at least
4 elements?

C(5, 4) + C(5, 5).
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Special Cases and Formulas

I It is immediate from the formula C(n, k) = n!
k!(n−k)!

that C(n, k) = C(n, n− k) — choosing k things from a
set on n to be “in” is the same as choosing n− k
things to be “out”

I C(n, 0) = 1 — there is exactly one subset with zero
elements in a set. For the formula to always hold, we
want n!

0!(n−0)!
= 1, so we define 0! = 1.

I C(n, 1) = n!
(n−1)!

= n — there are n one-element subsets
in a set with n elements.

I C(n, n) = 1.
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How many subsets does a set have?

A set of size 1, say {A}, has two subsets: ∅ and {A}

A set of size 2, say {A,B}, has four subsets: ∅, {A}, {B}
and {A,B}

A set of size 3, say {A,B,C}, has eight subsets: ∅, {A},
{B}, {C}, {A,B}, {A,C}, {B,C} and {A,B,C}

A set of size n has 2n subsets — we can choose a subset by
going through each element in turn, and deciding whether
it is in the subset of not. By the multiplication principle
this experiment has 2× 2× . . .× 2 = 2n possible outcomes.

Also, a set of size n has C(n, 0) subsets of size 0, C(n, 1)
subsets of size 1, C(n, 2) subsets of size 2, etc., so
C(n, 0) + C(n, 1) + C(n, 2) + . . . + C(n, n− 1) + C(n, n)
subsets in all



How many subsets does a set have?

A set of size 1, say {A}, has two subsets: ∅ and {A}

A set of size 2, say {A,B}, has four subsets: ∅, {A}, {B}
and {A,B}

A set of size 3, say {A,B,C}, has eight subsets: ∅, {A},
{B}, {C}, {A,B}, {A,C}, {B,C} and {A,B,C}

A set of size n has 2n subsets — we can choose a subset by
going through each element in turn, and deciding whether
it is in the subset of not. By the multiplication principle
this experiment has 2× 2× . . .× 2 = 2n possible outcomes.

Also, a set of size n has C(n, 0) subsets of size 0, C(n, 1)
subsets of size 1, C(n, 2) subsets of size 2, etc., so
C(n, 0) + C(n, 1) + C(n, 2) + . . . + C(n, n− 1) + C(n, n)
subsets in all



How many subsets does a set have?

A set of size 1, say {A}, has two subsets: ∅ and {A}

A set of size 2, say {A,B}, has four subsets: ∅, {A}, {B}
and {A,B}

A set of size 3, say {A,B,C}, has eight subsets: ∅, {A},
{B}, {C}, {A,B}, {A,C}, {B,C} and {A,B,C}

A set of size n has 2n subsets — we can choose a subset by
going through each element in turn, and deciding whether
it is in the subset of not. By the multiplication principle
this experiment has 2× 2× . . .× 2 = 2n possible outcomes.

Also, a set of size n has C(n, 0) subsets of size 0, C(n, 1)
subsets of size 1, C(n, 2) subsets of size 2, etc., so
C(n, 0) + C(n, 1) + C(n, 2) + . . . + C(n, n− 1) + C(n, n)
subsets in all



How many subsets does a set have?

A set of size 1, say {A}, has two subsets: ∅ and {A}

A set of size 2, say {A,B}, has four subsets: ∅, {A}, {B}
and {A,B}

A set of size 3, say {A,B,C}, has eight subsets: ∅, {A},
{B}, {C}, {A,B}, {A,C}, {B,C} and {A,B,C}

A set of size n has 2n subsets — we can choose a subset by
going through each element in turn, and deciding whether
it is in the subset of not. By the multiplication principle
this experiment has 2× 2× . . .× 2 = 2n possible outcomes.

Also, a set of size n has C(n, 0) subsets of size 0, C(n, 1)
subsets of size 1, C(n, 2) subsets of size 2, etc., so
C(n, 0) + C(n, 1) + C(n, 2) + . . . + C(n, n− 1) + C(n, n)
subsets in all



How many subsets does a set have?

A set of size 1, say {A}, has two subsets: ∅ and {A}

A set of size 2, say {A,B}, has four subsets: ∅, {A}, {B}
and {A,B}

A set of size 3, say {A,B,C}, has eight subsets: ∅, {A},
{B}, {C}, {A,B}, {A,C}, {B,C} and {A,B,C}

A set of size n has 2n subsets — we can choose a subset by
going through each element in turn, and deciding whether
it is in the subset of not. By the multiplication principle
this experiment has 2× 2× . . .× 2 = 2n possible outcomes.

Also, a set of size n has C(n, 0) subsets of size 0, C(n, 1)
subsets of size 1, C(n, 2) subsets of size 2, etc., so
C(n, 0) + C(n, 1) + C(n, 2) + . . . + C(n, n− 1) + C(n, n)
subsets in all



How many subsets does a set have?

2
n

=

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+

(
n

3

)
+ · · · +

(
n

n

)
2
n

=C(n, 0) + C(n, 1) + C(n, 2) + C(n, 3) + · · · + C(n, n)

Example A set has ten elements. How many of its subsets
have at least two elements?

C(10, 2) + C(10, 3) + C(10, 4) + C(10, 5) + C(10, 6) +
C(10, 7) + C(10, 8) + C(10, 9) + C(10, 10). To actually
compute this number it is easier to compute

210 −
(
C(10, 0) + C(10, 1)

)
= 1024− (1 + 10) = 1013

Example How many tips could you leave at a restaurant,
if you have a half-dollar, a one dollar coin, a two dollar note
and a five dollar note?

You can leave any subset of your money. You have 4 items
so there are 24 = 16 possibilities.
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The Binomial Theorem

How does this pattern continue?

I x + y = x + y

I (x + y)2 = x2 + 2xy + y2

I (x + y)3 = x3 + 3x2y + 3xy2 + y3

I (x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

The Binomial theorem says that for any positive integer n
and any two numbers x and y, we have
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n

=

(
n

0

)
x
n
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(
n

1

)
x
n−1

y +

(
n
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)
x
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y
2
+ · · · +

(
n

n − 1

)
xy

n−1
+

(
n

n

)
y
n

Example If I fully multiply out (x + y)11, what’s the term
involving x4y7? From the binomial theorem it is

(
11
4

)
= 330.
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Taxi Cab Geometry revisited
Recall that the number of taxi cab routes (always traveling
south or east) from A to B is the number of different
rearrangements of the sequence SSSSEEEEE which is

9!

4!5!
= C(9, 4) = C(9, 5).

Sequences SSSSEEEEE (in red) and ESSEEESES (in blue) are

shown below.

A

B

s

s

The number of routes equals
the number of ways to
choose 4 objects from a set
of 9 objects, because to de-
termine a route we can start
with nine blank slots, and
pick 4 of them to be “S”’s
(then the remaining 5 slots
are forced to be “E”’s)


