
Counting Basics

Sets Counting
•Ways of specifying sets Inclusion-exclusion
•Union and intersection Multiplication principle
•Universal set and complements Addition principle
•Empty set and disjoint sets Tree diagrams
•Venn diagrams



Some special cases

Inclusion-Exclusion Principle can be used to count the
number of elements in the complement of a set, and the
number of elements in a disjoint union.

A special case of the Multiplication principle leads to
Permutations which count certain ordered n-tuples of
elements. This then leads to formulas for counting ordered
tuples where some of the elements are the same.

Another application of the Multiplication principle leads to
Combinations which count certain unordered n-tuples of
elements.



Counting Slogans

P(n,m) counts the number of ordered subsets of size m
selected from a set of n elements.

C(n,m) counts the number of unordered subsets of size m
selected from a set of n elements.



Ordered and unordered partitions

A set with n elements can be partitioned into k subsets of
r1, r2, . . . , rk elements (where r1 + r2 + · · ·+ rk = n ) and
where the subsets are distinguished from one another in the
following number of ways:(

n

r1, r2, . . . , rk

)
=

n!

r1!r2! . . . rk!

A set of n elements can be partitioned into k unordered
subsets of r elements each (kr = n) in the following
number of ways:

1

k!

(
n

r, r, . . . , r

)
=

n!

k! · r! · r! · · · r!
=

n!

k!(r!)k



Basic Probability
Suppose we have a set U of all possible ways an experiment
could work out, and that S is a subset of U consisting of
the outcomes whose occurrence. we are interested in. Then
the probability that any particular experiment yields an

outcome in S is P(S) =
n(S)

n(U)
.

Sometimes probabilities are empirical and sometimes they
can be calculated. Sometimes some probabilities are given
to you and you want to calculate others.

A probability distribution assigns to each element in a finite
set a number between 0 and 1 such that the sum of all the
numbers is 1.

Frequency: number of times something occurs; relative
frequency: proportion of time it occurs



Probability formulae

Most of counting theory applies to enable you to compute
probabilities. E.G.

P(E) + P(E ′) = 1 or P(E ′) = 1− P(E)

Let E and F be events in a sample space S, then

P(E ∪ F ) = P(E) + P(F )− P(E ∩ F )

E and F mutually exclusive implies that
P(E ∪ F ) = P(E) + P(F )

Most of these rules can be visualized with Venn diagrams.



Conditional Probability and Independence

P
(
F
∣∣E) =

n(H ∩ E)

n(E)
=

P(F ∩ E)

P(E)

P(E)P
(
F
∣∣E) = P(E ∩ F )

Two events F and E are said to be independent if

P
(
F
∣∣E) = P(F )

For independent events, E and F

P(E ∩ F ) = P(E)P(F )

P(E ∪ F ) = P(E) + P(F )− P(E) · P(F )



Conditional Probability and Bayes
Tree Diagrams:
Multiply probabilities along a path in a tree and add
probabilities for different paths. The probabilities at every
node must add up to be 1.

Let E1 and E2 be mutually exclusive events (E1 ∩ E2 = ∅)
whose union is the sample space, i.e. E1 ∪ E2 = S. Let F
be an event in S for which P(F ) 6= 0. Then
Bayes Theorem:

P
(
E1

∣∣F) =
P(E1 ∩ F )

P(F )
=

P(E1 ∩ F )

P(E1 ∩ F ) + P(E2 ∩ F )
=

P(E1)P
(
F
∣∣E1

)
P(E1)P

(
F
∣∣E1

)
+ P(E2)P

(
F
∣∣E2

) .



Conditional Probability

There is a version of Bayes Theorem for more than two
mutually exclusive events. Problems along these lines are
best dealt with not with the general formula, but with a
tree diagram, which always gives the same answer.



Charts, histograms . . .

This is all about:

I Organizing data into meaningful groups and
computing frequencies.

I Drawing histograms and graphs adhering to the equal
area principle.

I Extracting frequencies from histograms.



Mean, median and mode

The population mean of m numbers x1, x2, . . . , xm (the
data for every member of a population of size m) is denoted
by µ and is computed as follows:

µ =
x1 + x2 + · · ·+ xm

m

The sample mean of the numbers x1, x2, . . . , xn (data for
a sample of size n from the population) is denoted by x̄ and
is computed similarly:

x̄ =
x1 + x2 + · · ·+ xn

n

The sample mean is just the population mean of the sample
space.



Mean, median and mode

The population median is the middle number if you
order the data by value. If the number of elements in the
data set is even then you need to average two numbers.

The sample median is exactly the same, just for a sample
instead of for the whole population.

The population mode is number which appears most
often. There may be many numbers which are the mode.

The sample mode is exactly the same, just for a sample
instead of for the whole population.



Variance and standard deviation
For a set of data {x1, x2, . . . xn} for a population of size n,
we define the population variance, denoted by σ2, to be
the average squared distance from the mean, µ:

σ2 =
(x1 − µ)2 + (x2 − µ)2 + · · ·+ (xn − µ)2

n

For a sample {x1, x2, . . . xn} from a larger population, with
sample mean x̄, we define the sample variance, denoted
by s2, by

s2 =
(x1 − x̄)2 + (x2 − x̄)2 + · · ·+ (xn − x̄)2

n− 1

In either case the standard deviation is the square root
of the variance.



Variance and standard deviation

If a population data set (with n data points) has the values
c1, c2, . . . , cm occurring with frequencies f1, f2, . . . , fm (so c1
occurs f1 times, etc.), then

σ2 =

(
c1 − µ

)2
f1 +

(
c2 − µ

)2
f2 + · · ·+

(
cm − µ

)2
fm

n

with a similar formula for s2 (if the data is a sample).



Random Variables
We perform an experiment, and to each outcome we
associate a numerical value (a subject’s weight; the time it
took until something happened, the number of times we
were successful in some number of attempts).

For each possible numerical value that could come up, we
can ask “what is the probability that value comes up”?

The resulting table of values and probabilities:

Outcomes Probability
X P(X)
x1 p1
x2 p2
...

...
xn pn

is a Random Variable



Expected Value of a Random Variable
The expected value of a random variable is a measure of
the average value the random variable takes, averaged over
many repetitions.

If X is a random variable with possible values x1, x2, . . . , xn
and corresponding probabilities p1, p2, . . . , pn, then the
expected value of X, denoted by E(X), is

E(X) = x1p1 + x2p2 + · · ·+ xnpn.

Outcomes Probability Out.×Prob.
X P(X) X ·P(X)
x1 p1 x1p1
x2 p2 x2p2
...

...
...

xn pn xnpn
Sum = E(X)



Variance of a random variable

If X is a random variable with values x1, x2, . . . , xn,
corresponding probabilities p1, p2, . . . , pn, and expected
value µ = E(X), then

Variance = σ2(X) = p1(x1 − µ)2 + p2(x2 − µ)2 + · · ·+ pn(xn − µ)2

and

Standard Deviation = σ(X) =
√

Variance .



Calculating via a table

Variance = σ2(X) = p1(x1 − µ)2 + p2(x2 − µ)2 + · · ·+ pn(xn − µ)2

Standard Deviation = σ(X) =
√

Variance .

xi pi xipi (xi − µ) (xi − µ)2 pi(xi − µ)2

x1 p1 x1p1 (x1 − µ) (x1 − µ)2 p1(x1 − µ)2

x2 p2 x2p2 (x2 − µ) (x2 − µ)2 p2(x2 − µ)2

...
...

...
...

...
...

xn pn xnpn (xn − µ) (xn − µ)2 pn(xn − µ)2

Sum = µ Sum = σ2(X)



Bernoulli experiments and binomial distribution

A Bernoulli experiment is some fixed number n of
repetitions of independent, identical trials, where in each
trial what is measured is either “Success” (which happens
with probability p) or “failure” (which happens with
probability q = 1− p).
If X is the number of successes then

P(X = k) = C(n, k)pkqn−k =

(
n

k

)
pkqn−k

for k = 0, 1, 2, · · · , n.
The expected value of X is E(X) = np and the

standard deviation of X is σ(X) =
√
npq .

X is a Binomial distribution with parameters n and p.



Normal distributions

1. All Normal Curves have the same general bell shape.

2. The curve is symmetric with respect to a vertical line
that passes through the peak of the curve.

3. The curve is centered at the mean µ which coincides
with the median and the mode and is located at the
point beneath the peak of the curve.

4. The area under the curve is always 1.

5. The curve is completely determined by the mean µ and
the standard deviation σ. For the same mean, µ, a
smaller value of σ gives a taller and narrower curve,
whereas a larger value of σ gives a flatter curve.



Standard Normal

The standard normal curve has µ = 0 and σ = 1. For the
standard normal curve, you can compute

P(a ≤ Z ≤ b)

either by

P(a ≤ Z ≤ b) = P(Z ≤ b)−P(Z ≤ a)

and consulting a table for these probabilities (table will be
provided), or by using the Normalcdf function on your
calculator.

For the Normal, there’s no difference between P(Z ≤ b)
and P(Z < b).



Standard Normal
For a general normal with mean µ and standard deviation
σ, the z-score of an observation a is

za =
a− µ
σ

For a general normal, the probability of seeing a value
between a and b is the same as the probability that a
standard normal takes a value between za and zb

z-scores allow you to

I convert non-standard normal distributions to the
standard one;

I to compare two values from different normally
distributed data sets;

I to find percentiles for a normal distribution.



Linear programing

Main points:

Given a collection of inequalities, identify the region of the
plane where all the inequalities are satisfied simultaneously.
In other words, given a finite set of constraints, find the
feasible set (which may be empty).

Find the coordinates of the corners of the feasible set

Given a linear objective function, figure out where it is
maximized/minimized on the feasible set — the corners of
the feasible set are key.



Game theory

Main points:

Construct payoff matrices for zero-sum and constant sum
games.

Find saddle points (if there are any), and figure out if
games are strictly determined. Find the values of games,
and figure out if they are fair.

Find expected payoffs for mixed strategies.

Use strategy lines the find optimal mixed strategies for
players with 2 play options.


