Finite Mathematics (Math 10120), Spring 2017

Quiz 1, Friday February 3

Solutions

1. (5 pts) Let A and B be subsets of some universe set U. If $n(U)=40, n(A \cap B)=10$, there are 22 elements that are in neither A nor B, and there are 12 elements in A, then how many elements are there in B ?

Solution: Since there are 40 elements in all, and 22 that are neither in A nor B, there are $40-22=18$ elements in $A \cup B .10$ of these are in $A \cap B$. Since A has 12 elements in all, there must be two elements in A but not in B. That leaves $18-10-2=6$ elements in B but not in A. Combining these 6 with the 10 elements in $A \cap B$, we get $10+6=16$ elements in B.

Notice that the answer is not 6 ; this is the number of elements that are in B but not in A; this is not the same as the number of elements in A, which also must include the elements in both B and A.
2. (5 pts) The Senate has 100 members, 52 of whom are Republicans, 46 of whom are Democrats and 2 of whom are independents. In how many ways can a committee of 9 senators be chosen, if five members of the committee should be Republicans, 3 should be Democrats, and 1 should be independent? Put an \mathbf{X} through the correct answer below.
(a) $\mathbf{C}(52,5)+\mathbf{C}(46,3)+\mathbf{C}(2,1)$
(b) $\mathbf{P}(100,9)$
(c) $\mathbf{C}(52,5) \cdot \mathbf{C}(46,3) \cdot \mathbf{C}(2,1)$
(d) $\mathbf{P}(52,5) \cdot \mathbf{P}(46,3) \cdot \mathbf{P}(2,1)$
(e) $\mathbf{C}(100,9)$
(f) $\mathbf{P}(52,5)+\mathbf{P}(46,3)+\mathbf{P}(2,1)$

Solution: The correct answer is (c): there are $\mathbf{C}(52,5)$ ways to choose 5 Republican senators for the committee (order of selection doesn't matter), $\mathbf{C}(46,3)$ ways to choose 3 Democrats, and $\mathbf{C}(2,1)$ ways to choose 1 independent. We multiply these numbers because we are building up the committee by FIRST choosing the Republicans, AND THEN choosing the Democrats, AND THEN choosing the Independent.

