Finite Mathematics (Math 10120), Spring 2016

Quiz 1, Friday January 29

Solutions

1. (5 pts) Let A and B be subsets of some universe set U. If $n(U)=36, n\left((A \cup B)^{c}\right)=16$, $n(A \cap B)=7$ and $n(A)=14$, how many elements are in B but not in A ?

Solution: There are 16 elements in $(A \cup B)^{c}$ and 36 elements in U, so there are $36-16=20$ elements in $A \cup B$. Now use inclusion-exclusion:

$$
n(A \cup B)=n(A)+n(B)-n(A \cap B)
$$

so

$$
20=14+n(B)-7
$$

and so $n(B)=13$. But if B has 13 elements, and $A \cap B$ has 7 , there must be $13-7=6$ elements that are in B but not in A.
2. (5 pts) A College of Science club has 30 members, 20 which are math majors, 7 physics majors and 3 biology majors. In how many ways can we choose a committee from the club consisting of 4 math majors, 2 physics majors and 1 biology major? Put an \mathbf{X} through the correct answer below.
(a) $\mathbf{P}(20,4) \cdot \mathbf{P}(7,2) \cdot \mathbf{P}(3,1)$
(b) $\mathbf{C}(20,4)+\mathbf{C}(7,2)+\mathbf{C}(3,1)$
(c) $\mathbf{P}(30,7)$
(d) $\mathbf{P}(20,4)+\mathbf{P}(7,2)+\mathbf{P}(3,1)$
(e) $\mathbf{C}(20,4) \cdot \mathbf{C}(7,2) \cdot \mathbf{C}(3,1)$

Solution: The correct answer is the last one: there are $\mathbf{C}(20,4)$ ways to choose 4 math majors from the $20, \mathbf{C}(7,2)$ ways to choose 2 physics majors from the 7 , and $\mathbf{C}(3,1)$ ways to choose 1 biology majors from the 3 . We multiply these numbers because we are building up the committee first by choosing the math majors, AND THEN choosing the physics majors, AND THEN choosing the biology majors.

