Counting, adding, multiplying, dividing

Math 10120, Spring 2014

January 31, 2014

A strategy for counting (sort of)

Question: How many elements are in this set? More specifically, how many things are there that satisfy condition X ?

A strategy for counting (sort of)

Question: How many elements are in this set? More specifically, how many things are there that satisfy condition X ?

Possible approach:

A strategy for counting (sort of)

Question: How many elements are in this set? More specifically, how many things are there that satisfy condition X ?

Possible approach:

- Devise a process that you would perform if you were tasked with producing a thing that satisfies condition X

A strategy for counting (sort of)

Question: How many elements are in this set? More specifically, how many things are there that satisfy condition X ?

Possible approach:

- Devise a process that you would perform if you were tasked with producing a thing that satisfies condition X
- Make sure that your process:
- Always produces something that satisfies condition X

A strategy for counting (sort of)

Question: How many elements are in this set? More specifically, how many things are there that satisfy condition X ?

Possible approach:

- Devise a process that you would perform if you were tasked with producing a thing that satisfies condition X
- Make sure that your process:
- Always produces something that satisfies condition X
- Produces each different thing at most once

A strategy for counting (sort of)

Question: How many elements are in this set? More specifically, how many things are there that satisfy condition X ?

Possible approach:

- Devise a process that you would perform if you were tasked with producing a thing that satisfies condition X
- Make sure that your process:
- Always produces something that satisfies condition X
- Produces each different thing at most once
- If run in every possible way, will produce every possible thing that satisfies condition X

A strategy for counting (sort of)

Question: How many elements are in this set? More specifically, how many things are there that satisfy condition X ?

Possible approach:

- Devise a process that you would perform if you were tasked with producing a thing that satisfies condition X
- Make sure that your process:
- Always produces something that satisfies condition X
- Produces each different thing at most once
- If run in every possible way, will produce every possible thing that satisfies condition X
- Try to figure out how many different ways your process could possibly go, by using basic counting principles such as
- multiplication principle

A strategy for counting (sort of)

Question: How many elements are in this set? More specifically, how many things are there that satisfy condition X ?

Possible approach:

- Devise a process that you would perform if you were tasked with producing a thing that satisfies condition X
- Make sure that your process:
- Always produces something that satisfies condition X
- Produces each different thing at most once
- If run in every possible way, will produce every possible thing that satisfies condition X
- Try to figure out how many different ways your process could possibly go, by using basic counting principles such as
- multiplication principle
- addition principle

A strategy for counting (sort of)

Question: How many elements are in this set? More specifically, how many things are there that satisfy condition X ?

Possible approach:

- Devise a process that you would perform if you were tasked with producing a thing that satisfies condition X
- Make sure that your process:
- Always produces something that satisfies condition X
- Produces each different thing at most once
- If run in every possible way, will produce every possible thing that satisfies condition X
- Try to figure out how many different ways your process could possibly go, by using basic counting principles such as
- multiplication principle
- addition principle
- overcount principle

The multiplication principle

Suppose a process has two consecutive steps, with

- m choices for the first step, and
- n choices for the second (REGARDLESS OF FIRST STEP).

Then the total number of possible outcomes for the process is

$$
m n
$$

The multiplication principle

Suppose a process has two consecutive steps, with

- m choices for the first step, and
- n choices for the second (REGARDLESS OF FIRST STEP).

Then the total number of possible outcomes for the process is

$$
m n
$$

Suppose a process has t consecutive steps, with

- m_{1} choices for the first step,
- m_{2} choices for the second (REGARDLESS OF FIRST STEP),
- m_{3} choices for the third (REGARDLESS OF FIRST TWO STEPS),
- ..., and
- m_{t} choices for the t th (REGARDLESS OF EARLIER STEPS).

Then the total number of possible outcomes for the process is

$$
m_{1} m_{2} m_{3} \ldots m_{t}
$$

The sum principle

Suppose at the beginning of an experiment you have to choose between one of two options, with

- m outcomes if you choose the first option, or
- n outcomes if you choose the second.

Then the total number of possible outcomes for the experiment is

$$
m+n
$$

The sum principle

Suppose at the beginning of an experiment you have to choose between one of two options, with

- m outcomes if you choose the first option, or
- n outcomes if you choose the second.

Then the total number of possible outcomes for the experiment is

$$
m+n
$$

Suppose at the beginning of an experiment you have to choose between one of t options, with

- m_{1} outcomes if you choose the first option,
- m_{2} outcomes if you choose the second,
- ..., or
- m_{t} outcomes if you choose the t th.

Then the total number of possible outcomes for the experiment is

$$
m_{1}+m_{2}+\ldots+m_{t}
$$

The bottom line

If you have to do A and then B, and there are always the same number of ways of doing B, no matter what you did for A : MULTIPLY!

- There are five restaurants in town, and eight movies showing. I want to eat, and then go to a movie. I have a total of

The bottom line

If you have to do A and then B, and there are always the same number of ways of doing B, no matter what you did for A : MULTIPLY!

- There are five restaurants in town, and eight movies showing. I want to eat, and then go to a movie. I have a total of

$$
5 \times 8=40 \text { options }
$$

The bottom line

If you have to do A and then B, and there are always the same number of ways of doing B, no matter what you did for A : MULTIPLY!

- There are five restaurants in town, and eight movies showing. I want to eat, and then go to a movie. I have a total of

$$
5 \times 8=40 \text { options }
$$

If you have to do either A or B, but you don't do both: Add!

- There are five restaurants in town, and eight movies showing. I want to either eat or go to a movie. I have a total of

The bottom line

If you have to do A and then B, and there are always the same number of ways of doing B, no matter what you did for A : MULTIPLY!

- There are five restaurants in town, and eight movies showing. I want to eat, and then go to a movie. I have a total of

$$
5 \times 8=40 \text { options }
$$

If you have to do either A or B, but you don't do both: Add!

- There are five restaurants in town, and eight movies showing. I want to either eat or go to a movie. I have a total of

$$
5+8=13 \text { options }
$$

The overcount principle

Suppose you make an initial, naive, count of the elements of a set, and you get ANSWER1, but then you realize that you have counted each element of the set OVERCOUNTFACTOR number of times. Then the real number of elements in the set is

ANSWER1
$\overline{\text { OVERCOUNTFACTOR }}$

The overcount principle

Suppose you make an initial, naive, count of the elements of a set, and you get ANSWER1, but then you realize that you have counted each element of the set OVERCOUNTFACTOR number of times. Then the real number of elements in the set is

ANSWER1
 $\overline{\text { OVERCOUNTFACTOR }}$

- There are 80 legs in a field. How many sheep?

The overcount principle

Suppose you make an initial, naive, count of the elements of a set, and you get ANSWER1, but then you realize that you have counted each element of the set OVERCOUNTFACTOR number of times. Then the real number of elements in the set is

ANSWER1
 $\overline{\text { OVERCOUNTFACTOR }}$

- There are 80 legs in a field. How many sheep?

$$
\frac{80}{4}=20
$$

The overcount principle

Suppose you make an initial, naive, count of the elements of a set, and you get ANSWER1, but then you realize that you have counted each element of the set OVERCOUNTFACTOR number of times. Then the real number of elements in the set is

ANSWER1
 $\overline{\text { OVERCOUNTFACTOR }}$

- There are 80 legs in a field. How many sheep?

$$
\frac{80}{4}=20
$$

- How many different anagrams does the word MUUMUU have?

The overcount principle

Suppose you make an initial, naive, count of the elements of a set, and you get ANSWER1, but then you realize that you have counted each element of the set OVERCOUNTFACTOR number of times. Then the real number of elements in the set is

ANSWER1
 $\overline{\text { OVERCOUNTFACTOR }}$

- There are 80 legs in a field. How many sheep?

$$
\frac{80}{4}=20
$$

- How many different anagrams does the word MUUMUU have?

$$
\frac{6!}{2!4!}=15
$$

