Counting, adding, multiplying, dividing

Math 10120, Spring 2014

January 31, 2014

Math 10120 (Spring 2014)

Counting, adding, multiplying, dividing

January 31, 2014 1 / 6

Question: How many elements are in this set? More specifically, how many things are there that satisfy condition *X*?

Question: How many elements are in this set? More specifically, how many things are there that satisfy condition *X*?

Question: How many elements are in this set? More specifically, how many things are there that satisfy condition *X*?

Possible approach:

• Devise a process that you would perform if you were tasked with producing a thing that satisfies condition *X*

Question: How many elements are in this set? More specifically, how many things are there that satisfy condition *X*?

- Devise a process that you would perform if you were tasked with producing a thing that satisfies condition *X*
- Make sure that your process:
 - Always produces something that satisfies condition X

Question: How many elements are in this set? More specifically, how many things are there that satisfy condition *X*?

- Devise a process that you would perform if you were tasked with producing a thing that satisfies condition *X*
- Make sure that your process:
 - Always produces something that satisfies condition X
 - Produces each different thing at most once

Question: How many elements are in this set? More specifically, how many things are there that satisfy condition *X*?

- Devise a process that you would perform if you were tasked with producing a thing that satisfies condition *X*
- Make sure that your process:
 - Always produces something that satisfies condition X
 - Produces each different thing at most once
 - If run in every possible way, will produce every possible thing that satisfies condition X

Question: How many elements are in this set? More specifically, how many things are there that satisfy condition *X*?

- Devise a process that you would perform if you were tasked with producing a thing that satisfies condition *X*
- Make sure that your process:
 - Always produces something that satisfies condition X
 - Produces each different thing at most once
 - If run in every possible way, will produce every possible thing that satisfies condition X
- Try to figure out how many different ways your process could possibly go, by using basic counting principles such as
 - multiplication principle

Question: How many elements are in this set? More specifically, how many things are there that satisfy condition *X*?

- Devise a process that you would perform if you were tasked with producing a thing that satisfies condition *X*
- Make sure that your process:
 - Always produces something that satisfies condition X
 - Produces each different thing at most once
 - If run in every possible way, will produce every possible thing that satisfies condition X
- Try to figure out how many different ways your process could possibly go, by using basic counting principles such as
 - multiplication principle
 - addition principle

Question: How many elements are in this set? More specifically, how many things are there that satisfy condition *X*?

- Devise a process that you would perform if you were tasked with producing a thing that satisfies condition *X*
- Make sure that your process:
 - Always produces something that satisfies condition X
 - Produces each different thing at most once
 - If run in every possible way, will produce every possible thing that satisfies condition X
- Try to figure out how many different ways your process could possibly go, by using basic counting principles such as
 - multiplication principle
 - addition principle
 - overcount principle

The multiplication principle

Suppose a process has two consecutive steps, with

- *m* choices for the first step, and
- *n* choices for the second (REGARDLESS OF FIRST STEP).

Then the total number of possible outcomes for the process is

тn

The multiplication principle

Suppose a process has two consecutive steps, with

• *m* choices for the first step, and

• *n* choices for the second (REGARDLESS OF FIRST STEP).

Then the total number of possible outcomes for the process is

тn

Suppose a process has *t* consecutive steps, with

- *m*₁ choices for the first step,
- m₂ choices for the second (REGARDLESS OF FIRST STEP),
- *m*₃ choices for the third (REGARDLESS OF FIRST TWO STEPS),
- . . ., and
- *m*_t choices for the *t*th (REGARDLESS OF EARLIER STEPS).

Then the total number of possible outcomes for the process is

 $m_1 m_2 m_3 \dots m_t$

The sum principle

Suppose at the beginning of an experiment you have to choose between one of two options, with

- m outcomes if you choose the first option, or
- *n* outcomes if you choose the second.

Then the total number of possible outcomes for the experiment is

m + n

The sum principle

Suppose at the beginning of an experiment you have to choose between one of two options, with

- *m* outcomes if you choose the first option, or
- *n* outcomes if you choose the second.

Then the total number of possible outcomes for the experiment is

m + n

Suppose at the beginning of an experiment you have to choose between one of *t* options, with

- *m*₁ outcomes if you choose the first option,
- *m*₂ outcomes if you choose the second,
- . . ., or
- *m*_t outcomes if you choose the *t*th.

Then the total number of possible outcomes for the experiment is

$$m_1 + m_2 + \ldots + m_t$$

If you have to do *A* and then *B*, and there are always the same number of ways of doing *B*, no matter what you did for *A*: MULTIPLY!

There are five restaurants in town, and eight movies showing. I want to eat, and then go to a movie. I have a total of

If you have to do *A* and then *B*, and there are always the same number of ways of doing *B*, no matter what you did for *A*: MULTIPLY!

There are five restaurants in town, and eight movies showing. I want to eat, and then go to a movie. I have a total of

 $5 \times 8 = 40$ options

If you have to do *A* and then *B*, and there are always the same number of ways of doing *B*, no matter what you did for *A*: MULTIPLY!

There are five restaurants in town, and eight movies showing. I want to eat, and then go to a movie. I have a total of

 $5 \times 8 = 40$ options

If you have to do either A or B, but you don't do both: Add!

 There are five restaurants in town, and eight movies showing. I want to either eat or go to a movie. I have a total of

If you have to do *A* and then *B*, and there are always the same number of ways of doing *B*, no matter what you did for *A*: MULTIPLY!

There are five restaurants in town, and eight movies showing. I want to eat, and then go to a movie. I have a total of

 $5 \times 8 = 40$ options

If you have to do **either** A or B, but you don't do both: Add!

 There are five restaurants in town, and eight movies showing. I want to either eat or go to a movie. I have a total of

5+8=13 options

Suppose you make an initial, naive, count of the elements of a set, and you get *ANSWER*1, but then you realize that you have counted each element of the set *OVERCOUNTFACTOR* number of times. Then the real number of elements in the set is

ANSWER1 OVERCOUNTFACTOR

Suppose you make an initial, naive, count of the elements of a set, and you get *ANSWER*1, but then you realize that you have counted each element of the set *OVERCOUNTFACTOR* number of times. Then the real number of elements in the set is

ANSWER1 OVERCOUNTFACTOR

• There are 80 legs in a field. How many sheep?

Suppose you make an initial, naive, count of the elements of a set, and you get *ANSWER*1, but then you realize that you have counted each element of the set *OVERCOUNTFACTOR* number of times. Then the real number of elements in the set is

ANSWER1 OVERCOUNTFACTOR

• There are 80 legs in a field. How many sheep?

$$\frac{80}{4} = 20$$

Suppose you make an initial, naive, count of the elements of a set, and you get *ANSWER*1, but then you realize that you have counted each element of the set *OVERCOUNTFACTOR* number of times. Then the real number of elements in the set is

ANSWER1 OVERCOUNTFACTOR

• There are 80 legs in a field. How many sheep?

$$\frac{80}{4} = 20$$

• How many different anagrams does the word MUUMUU have?

Suppose you make an initial, naive, count of the elements of a set, and you get *ANSWER*1, but then you realize that you have counted each element of the set *OVERCOUNTFACTOR* number of times. Then the real number of elements in the set is

ANSWER1 OVERCOUNTFACTOR

• There are 80 legs in a field. How many sheep?

$$\frac{80}{4} = 20$$

• How many different anagrams does the word MUUMUU have?

$$\frac{6!}{2!4!} = 15$$