R's and C's optimal mixed strategies

Math 10120, Spring 2014

April 30, 2014

Math 10120 (Spring 2014)

Review: finding R's optimal mixed strategy

R and C play game w. payoff matrix $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$, all payoffs positive

Here's what R does to find his optimal mixed (random) strategy $[r_1 \ r_2]$: R finds the **minimum** value of

 $y_1 + y_2$

subject to the constraints (one for each column of the payoff matrix)

R then sets $v = 1/(y_1 + y_2)$, $r_1 = vy_1$ and $r_2 = vy_2$

R's worst-case expected payoff in this case is v (given that C plays best possible counter strategy); no other mixed strategy for R gives a better worst-case expected payoff than v

Math 10120 (Spring 2014)

Review: finding C's optimal mixed strategy The same game, w. payoff matrix $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$, all payoffs positive Here's what C does to find his optimal mixed (random) strategy $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$: C finds the **maximum** value of

 $x_1 + x_2$

subject to the constraints (one for each row of the payoff matrix)

C then sets $v = 1/(x_1 + x_2)$, $c_1 = vx_1$ and $c_2 = vx_2$

C's worst-case expected payout in this case is v (given that R plays best possible counter strategy); no other mixed strategy for C gives a better worst-case expected payout than v

Math 10120 (Spring 2014)

Optimal mixed strategies

The fundamental fact about optimal mixed strategies

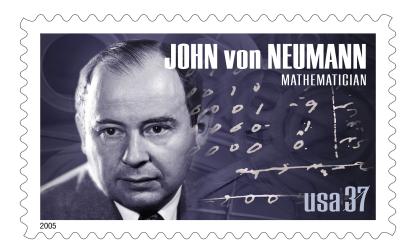
The v that R finds, and the v that C finds, are always the same v

R has a mixed strategy that on average gives him a payoff of v, no matter how C responds; any other strategy has the potential to lead to a lower payoff, if C chooses his counterstrategy carefully; so if R moves away to another mixed strategy, C may notice this after a while and take advantage to reduce R's payoff

C has a mixed strategy that on average makes him pay out v, no matter how R responds; any other strategy has the potential to lead to a higher payout, if R chooses his counterstrategy carefully; so if C moves away to another mixed strategy, R may notice this after a while and take advantage to increase C's payout

Conclusion: It's in R's best interest to play his optimal mixed strategy, and in C's best interest to play his optimal mixed strategy; the game is **stable** under these strategies

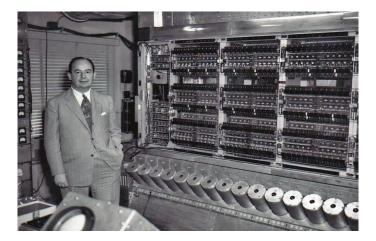
John Von Neumann, 1903–1957



Showed (in 1928) that every two-player, zero-sum game is stable

Math 10120 (Spring 2014)

John Von Neumann, 1903–1957



Von Neumann's 1951 computer (5k memory, 1 million times less than my laptop) (Von Neumann also designed the first computer virus in 1952...)

Math 10120 (Spring 2014)

Optimal mixed strategies

What to do if some entries are non-positive

The linear programming problems that R and C set up depend on all entries of the payoff matrix being **positive**

Problem: How do we deal with negative entries?

Solution: Add a number N to each entry (the same number for each entry), to make them all positive (think of it as: the referee of the game picks C's pocket before the game begins, stealing N dollars, and gives the N dollars to R; so R's payoff is increased by N, no matter how the game is played, and C's pay out is increased by N)

This action doesn't change R and C's thinking about strategies

Once the value of the new, positive, game has been found, subtract N to get the value of the original game (think of it as: the referee fesses up after the game, and makes R give the N dollars back to C)

A typical feasible set in three dimensions

