Some probability problems

Math 10120, Spring 2013

February 27, 2013

What sort of questions does probability answer?

- In Monopoly, you must roll a double-six before you get to start. How many rounds before you get to start?
- If you toss a coin 100 times, how many heads do you get?
- On Who Wants to be a Millionaire, I have won $\$ 60,000$. I see a 4-option multiple choice question. If I get it right, I now win $\$ 100,000$. If I get it wrong, I now win $\$ 25,000$. If I don't answer, I stay at $\$ 60,000$. If I don't know the answer, should I guess?
- 2% of the population have condition X. There's a test for X. Used on subjects who have X, it correctly detects $X 98 \%$ of the time. Used on subjects who do not have X, it correctly detects the absence of $X 97 \%$ of the time. I take the test, and it comes up positive. Do I have X?

Some basic elements of probability

- Experiment: Some well defined process that has an observable result. Usually the result can't be predicted in advance, because it involves some chance
- Outcome: Any one particular result of a particular running of the experiment
- Sample space: The set of all possible outcomes (as the experiment runs in all its possible ways)
- Event: A set of possible outcomes (not necessarily all possible outcomes); described either as a list of outcomes or as a rule that you can apply to test is an outcome in the event or not

Assigning probabilities

Given an experiment with finite sample space (finite set of possible outcomes)

$$
S=\left\{s_{1}, s_{2}, s_{3}, \ldots, s_{N}\right\}
$$

we want to assign a number p_{i} to each outcome s_{i}, representing

- how likely s_{i} is to occur when we run the experiment
- the long-run proportion of time s_{i} occurs, if we repeat the experiment many times
We'll sometimes write

$$
p_{i}=\operatorname{Pr}\left(s_{i}\right)
$$

- Fundamental rule 1: each p_{i} is between 0 and 1
- Fundamental rule 2: probabilities add to 1:

$$
p_{1}+p_{2}+p_{3}+\ldots+p_{N}=1
$$

