The multiplication principle

Math 10120, Spring 2013

January 31, 2013

The multiplication principle

Suppose an experiment has two consecutive steps, with

- m choices for the first step, and
- n choices for the second (REGARDLESS OF WHAT CHOICE WAS MADE IN THE FIRST STEP).
Then the total number of possible outcomes for the experiment is

$$
m n
$$

Suppose an experiment has three consecutive steps, with

- m_{1} choices for the first step,
- m_{2} choices for the second (REGARDLESS OF WHAT CHOICE WAS MADE IN THE FIRST STEP), and
- m_{3} choices for the third (REGARDLESS OF WHAT CHOICES WAS MADE IN THE FIRST TWO).
Then the total number of possible outcomes for the experiment is

$$
m_{1} m_{2} m_{3}
$$

The full multiplication principle

Suppose an experiment has t consecutive steps, with

- m_{1} choices for the first step,
- m_{2} choices for the second (REGARDLESS OF WHAT CHOICE WAS MADE IN THE FIRST STEP),
- m_{3} choices for the third (REGARDLESS OF WHAT CHOICES WERE MADE IN THE FIRST TWO STEPS),
- ..., and
- m_{t} choices for the tth (REGARDLESS OF WHAT CHOICES WERE MADE IN EARLIER STEPS).
Then the total number of possible outcomes for the experiment is

$$
m_{1} m_{2} m_{3} \ldots m_{t}
$$

Permutations of n objects taken r at a time

$$
\begin{aligned}
P(n, r) & =n(n-1)(n-2) \ldots(n-(r-1)) \\
& =n(n-1)(n-2) \ldots(n-r+1)
\end{aligned}
$$

This is the number of ways of taking r objects from a set of n objects, and arranging them in order

A special case:

$$
\begin{aligned}
r! & =\text { " factorial" } \\
& =P(r, r) \\
& =r(r-1)(r-2) \ldots 3.2 .1
\end{aligned}
$$

This is the number of ways arranging r objects in order
Convention: $0!=1$

Combinations of n objects taken r at a time

$$
\begin{aligned}
C(n, r) & =\frac{P(n, r)}{r!} \\
& =\frac{n(n-1)(n-2) \ldots(n-r+1)}{r!}
\end{aligned}
$$

This is the number of ways of taking r objects from a set of n objects, without regard to order

Alternate notation and expression:

$$
\begin{aligned}
C(n, r) & =\binom{n}{r}(" n \text { choose } r \text { ") } \\
& =\frac{n(n-1)(n-2) \ldots(n-r+1) \times(n-r)(n-r-1) \ldots 3.2 .1}{r!\times(n-r)(n-r-1) \ldots 3.2 .1} \\
& =\frac{n!}{r!(n-r)!}
\end{aligned}
$$

