R's and C's optimal mixed strategies

Math 10120, Spring 2013

April 30, 2013

Review: finding R's optimal mixed strategy

R and C play game w. payoff matrix $\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$, all payoffs positive Here's what R does to find his optimal mixed (random) strategy [$r_{1} r_{2}$]: R finds the minimum value of

$$
y_{1}+y_{2}
$$

subject to the constraints (one for each column of the payoff matrix)

$$
\begin{aligned}
a_{11} y_{1}+a_{21} y_{2} & \geq 1 \\
a_{12} y_{1}+a_{22} y_{2} & \geq 1 \\
y_{1} & \geq 0 \\
y_{2} & \geq 0
\end{aligned}
$$

R then sets $v=1 /\left(y_{1}+y_{2}\right), r_{1}=v y_{1}$ and $r_{2}=v y_{2}$
R's worst-case expected payoff in this case is v (given that C plays best possible counter strategy); no other mixed strategy for R gives a better worst-case expected payoff than v

Review: finding C's optimal mixed strategy

The same game, w. payoff matrix $\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$, all payoffs positive Here's what C does to find his optimal mixed (random) strategy $\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$:
C finds the maximum value of

$$
x_{1}+x_{2}
$$

subject to the constraints (one for each row of the payoff matrix)

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2} & \leq 1 \\
a_{21} x_{1}+a_{22} x_{2} & \leq 1 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

C then sets $v=1 /\left(x_{1}+x_{2}\right), c_{1}=v x_{1}$ and $c_{2}=v x_{2}$
C's worst-case expected payout in this case is v (given that R plays best possible counter strategy); no other mixed strategy for C gives a better worst-case expected payout than v

The fundamental fact about optimal mixed strategies

 The v that R finds, and the v that C finds, are always the same v R has a mixed strategy that on average gives him a payoff of v, no matter how C responds; any other strategy has the potential to lead to a lower payoff, if C chooses his counterstrategy carefully; so if R moves away to another mixed strategy, C may notice this after a while and take advantage to reduce R's payoffC has a mixed strategy that on average makes him pay out v, no matter how R responds; any other strategy has the potential to lead to a higher payout, if R chooses his counterstrategy carefully; so if C moves away to another mixed strategy, R may notice this after a while and take advantage to increase C's payout

Conclusion: It's in R's best interest to play his optimal mixed strategy, and in C's best interest to play his optimal mixed strategy; the game is stable under these strategies

John Von Neumann, 1903-1957

Showed (in 1928) that every two-player, zero-sum game is stable

John Von Neumann, 1903-1957

Von Neumann's 1951 computer (5k memory, 1 million times less than my laptop)
(Von Neumann also designed the first computer virus in 1952...)

What to do if some entries are non-positive

The linear programming problems that R and C set up depend on all entries of the payoff matrix being positive
Problem: How do we deal with negative entries?
Solution: Add a number N to each entry (the same number for each entry), to make them all positive (think of it as: the referee of the game picks C's pocket before the game begins, stealing N dollars, and gives the N dollars to R; so R's payoff is increased by N, no matter how the game is played, and C's pay out is increased by N)
This action doesn't change R and C's thinking about strategies
Once the value of the new, positive, game has been found, subtract N to get the value of the original game (think of it as: the referee fesses up after the game, and makes R give the N dollars back to C)

A typical feasible set in three dimensions

