WIPER: The Integrated Wireless Phone Based Emergency Response System

Greg Madey
University of Notre Dame
Dept of Computer Science and
Engineering

Gábor Szabó Albert-László Barabási University of Notre Dame Dept of Physics

Notre Dame, IN, USA

WIPER is supported by NSF grant - CISE/CNS DDDAS Award # 0540348

ICCS 2006, Reading, UK May 29, 2006

Overview

- Motivation
- Using Cell Phones as Sensors
- The WIPER/DDDAS System
 - Design Considerations
 - Detailed description of proposed system
- Discussion
- Summary

Problem Domain

- Disasters, crises, emergencies, civil disorders, humanitarian relief efforts, transportation disruptions, ... events involving large numbers of people.
 - Natural origins: hurricanes, tornados, earthquakes, tsunami, snow storms, floods, volcanoes, epidemics, ...
 - Human origins: terrorists attacks, political unrest, civil unrest/disorder, industrial accidents, transportation accidents, ...

Emergency Response Management

Problems

- Communication
- Co-ordination
- Situation Awareness (SA)
- Sharing SA
- Information Needs
 - Alerts Has something happened?
 - Location Where, extent?
 - Numbers How many people?
 - Movement Stationary, moving?
 - What is nature of the event?
 - How should we respond?

Cell Phones: An In-Place Mobile Sensor Network

- Increasing ubiquity in urban areas
- Approaching 100% in some regions
- Often more popular than wired systems, especially in developing economies
- Cell tower and handset continually exchange "signal strength" info
- Location data
 - Closest cell-tower cells, distance estimates possible
 - Ability to triangulate
 - Growing availability of GPS data
- Collective knowledge of the location, numbers, and movement of a large sample of population in a region is potentially available

WIPER

- Wireless Integrated Phone-Based Emergency Response System
- Ties into the existing cellular phone infrastructure to detect, monitor, predict anomalies
 - Fact: people make cell phone calls during a disaster
 - Family, friends, E911
 - New calling patterns
 - Increased numbers of calls placed
- Streaming data
 - Calls placed per cell tower
 - Calling patterns

WIPER/DDDAS - System Structure

- Four components:
 - Data Source
 - Historic data from cellular service provider
 - Eventually will use live data streams
 - DAS Detection and Alert System
 - SPS Simulation and Prediction System
 - DSS Decision Support System

WIPER/DDDAS Overview

WIPER - Data Source

- Data collection occurs at the cellular service provider
- WIPER receives anonymized, preprocessed, encrypted data
- No personally identifiable information leaves the service provider's network

WIPER - Detection and Alert

Detection and Alert System

- Will use data stream mining to detect crisis events
- Monitors call activity, location, social network for anomalies
- When an anomaly is detected, alert is raised, state is passed on to SPS

Detection and Alert System

- Detection system trained on historic data
- Currently we are analyzing historic data to understand periodic normal events
- Working with experts in Sociology, Social Network Analysis to develop models that reflect current understanding of social systems

Simulation Prediction System

- For all alerts, from DAS or the DSS, WIPER generates an ensemble of Agent-Based Simulations
- Simulations used to determine nature of anomaly, predict evolution of event
- Simulations use direct stream of information to monitor real world and dynamically validate simulations

Simulation Prediction System

- WIPER uses DDDAS concepts
- Dynamic, Data-Driven Application Systems:
 - Couple simulations with sensors
 - Use streaming data to refine simulations
 - Allow simulations to steer sensors, adapt data collection

Simulation Prediction System

- Agent-Based/GIS-Based Simulations used to test hypotheses about realworld phenomena
- Geo-spatial constraints embodied in the simulations
 - Rivers, roads, coast-lines
 - Accurate cell-tower coordinates
 - Overlaid on maps to support emergency response managers

Decision Support System

Activity View

Simulation Output

Simulations Dispatched

Evaluating Potential Anomaly....

Possible Match Found: Benign Pedestrian Event

Validation:

KS Test Value

Chi-Square Value

Continuing to Track Anomaly...

System Log

Potential Anomaly Detected

Time - 2006-04-15

Location - Lat XX.XXX Long YY.YYY

Console User

Decision Support System

- Web-based console that provides access to real-world info, results from simulations
- Emergency responders can compare the real-world information with the simulation predictions, decide course of action
- If desired, console can be shared with responders in the field over encrypted web connection
- Alerts could be sent from DSS directly to cell phones in affected area

- Geo-spatial data maps of crises area
- Temporal data timelines, events
- Numerical data graphs, charts, tables
- Predictions animations

Discussion

- WIPER System provides complimentary tools for monitoring and predicting crisis events - improved Situation Awareness
- Connection to cellular service provider allows multimodal monitoring of real time events without need for new sensor infrastructure
- Architecture protects privacy while providing access to information, but potential for privacy concerns
- Open standards/software Service Oriented Architecture and AJAX
- Computational challenges: real-time detection, faster-than real-time agent-based GIS-based simulations
- Limitations of cell phones during prolonged power outage

Summary

- WIPER is a demonstration project using existing cell phone system a a mobile sensor network
- Employs DDDAS principles
 - Simulation prediction system
 - Large amounts of streaming data
 - Simulation system adapts to new data
 - Simulation system requests higher fidelity data for dynamic validation of simulations

Contributors

Albert-László Barabási, Physics Ryan Bravo, Computer Science & Engineering Gabe Diaz, Computer Science & Engineering David Hachen, Sociology Brett Lentz, Sociology Greg Madey, Computer Science & Engineering Alec Pawling, Computer Science & Engineering Nick Ransom, Computer Science & Engineering Gábor Szabó, Physics Tim Schoenlharl, Computer Science & Engineering Ping Yan, Computer Science & Engineering

Thank You

Questions?

WIPER - Service Oriented Architecture

Cell Tower Locations

