Patterns in Modeling: A Case Study on Applying Techniques from Pattern-Oriented Modeling and Design Patterns to Simulation Design

Tim Schoenharl, Matthew Van Antwerp, and Greg Madey University of Notre Dame

This material is based upon work supported in part by the National Science Foundation under Grant No. CNS-0540348.

- Patterns in Modeling
 - Pattern-Oriented Modeling
 - Model development and refinement strategy
 - Systematic approach for reproducing observed natural patterns in simulations
 - Design Patterns
 - Software engineering techniques can provide extensibility without sacrificing performance
 - Object-oriented nature is good fit for agent-based models

- WIPER: Multi-agent system for emergency response
 - Agent-Based Model of human activity
 - Movement and behavior model for crisis scenarios
 - Output is location and cell phone activity
 - Simulation is one aspect of WIPER

- Pattern-Oriented Modeling
 - Collect data and identify patterns
 - Determine parameter values
 - Compare observed patterns to predicted patterns
 - Observe "secondary" information from model
 - Repeat the cycle to refine model (Wiegand, et al, 2003)

- Observed patterns
 - How people call in response to a crisis
 - How people move
 - flock
 - flee
 - jam
 - move and return

- Parameters
 - Call frequency
 - Movement speed
 - Movement direction
- Comparison between observed and predicted patterns
 - Remove models and reduce parameter ranges when patterns do not emerge
 - Patterns must not be reproducible by arbitrary parameters

- Secondary information?
 - Nothing of note with limited implemented patterns and lacking environmental aspects
- Repeating the cycle
 - More patterns to be added
 - More environmental aspects to be added
 - Will likely yield "secondary" information
 - pedestrian clustering

- Design Patterns
 - Technique for object-oriented design
 - Offer solutions to commonly occurring problems by specifying inter-object relationships
 - Can increase extensibility without sacrificing performance

- Singleton pattern
 - Restricts instantiation of a class to one object
 - Saves space
 - Allows easy updates of all agents with same movement model
- Strategy pattern
 - Encapsulates behavior in an object
 - Leverages polymorphism
 - All agents make same move() call regardless of movement model

- Other useful patterns for simulations
 - Memento pattern
 - Pattern for serialization
 - Would allow simulation to run in a distributed environment
 - Observer pattern
 - Approach for event-driven simulation
 - Can help manage agent interaction when events are infrequent and broadcasting information is costly

- Pattern-Oriented Modeling
 - Guides model development to reduce parameter range and validate model
- Design Patterns
 - Software engineering techniques to guide actual implementation of the simulation for increased flexibility and maintainability without sacrificing performance

- Lessons learned: POM
 - Repeat POM cycle to add more patterns and increase predictive power of model
 - POM can increase model development speed in early stages (although reducing parameter range can require lots of CPU time)
- Design Patterns
 - Good object-oriented coding practice when implemented early helps ensure simulation development goes smoothly

- Works Cited
 - Design Patterns, Gamma, et al, 1995
 - Individual-based Modeling and Ecology, Grimm and Railsback, 2005
 - Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology, Grimm, et al, 2005
 - Using pattern-oriented modeling for revealing hidden information: a key for reconciling ecological theory and application, Wiegand, et al, 2003