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CREATING, UPDATING AND VALIDATING SIMULATIONS IN A
DYNAMIC DATA-DRIVEN APPLICATION SYSTEM

Abstract
by
Timothy W. Schoenharl

This work addresses research questions important to the Dynamic, Data-
Driven Application Systems (DDDAS) community: specifically how to create,
update and validate simulations instantiated from streaming sensor data. The
use of Agent-Based Modeling simulations in an online context presents several
challenges: simulations must demonstrate good runtime characteristics, yet in or-
der to fit in our validation framework, the simulations must be modular and allow
for alternative models of human behavior. We present a simulation of pedestrian
movement we have developed according to our revised simulation design crite-
ria, built using techniques from Design Patterns and Pattern Oriented Modeling.
We present a thorough evaluation of the simulation in terms of model validation,
simulation design and runtime characteristics. We present and evaluate methods
for online validation of Agent-Based Models (ABM). We introduce an aggregate
method for online creation and updating of ABM simulations and evaluate the
approach against alternatives. We have developed answers to these questions
through the design and implementation of a DDDAS application, the WIPER
system. The Wireless Integrated Phone-based Emergency Response system is de-

signed to provide emergency responders with timely information on the status of a
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city or region, as well as the capability to detect, follow and possibly predict crisis
events. WIPER uses the DDDAS approach to process streaming information from
a cellular phone service provider to detect and predict crisis events.

We demonstrate that real time simulation of pedestrian crowds is possible with
our Agent-Based Modeling simulation and present upper bounds on the popula-
tion size that can be simulated in real time. We show that for certain validation
measures, our validation approach yields 100% accuracy at selecting model type
based on simulation output. The results of our updating approach demonstrates
that aggregate updating outperforms one-to-one agent-to-referent reparameteri-
zation under certain conditions and provides empirical evidence suggesting the

effects of naive realism.
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION AND MOTIVATION

Creating, updating and validating Agent-Based Modeling simulations against
streaming data changes the rules of simulation development and requires modelers
to reconsider conventional notions about data collection, the modeling process
and how much human interaction should be required to judge the results of a
simulation. In this Dissertation we challenge the conventional usage scenario for
simulations and consider how to address the challenges of designing simulations
that interface with streaming data.

Simulation has become an important paradigm for conducting research in sci-
ence and engineering. Traditionally, a scientist will observe a phenomenon in the
real world, either through direct observation or via some type of sensors. Data is
collected, processed and analyzed. The scientist then will pose a hypothesis, often
a model that explains the phenomenon, and will design and implement a simula-
tion that can test the model, where the simulation is instantiated and validated
based on observations from the real world [44]. At every step in the process, the
scientist is an active participant. This approach needs to be augmented to address
situations where data collection is continuous and simulations are “in the loop”

with the data collection process. Under such circumstances it is not possible to



continute to rely on human decision makers to interpret intermediate simulation
results.

Recently, the NSF Blue Ribbon Panel on Simulation-Based Engineering Sci-
ence identified key challenges to the advancement of simulation-based research
[75]. Among these challenges was the ability to close the loop between obser-
vation and simulation, integrating simulations with measurement systems. The
DDDAS approach seeks to address that challenge by incorporating real time sensor
data into running simulations[95]. Dynamic, Data-Driven Application Systems is
an approach to developing systems incorporating sensors and simulations where
the simulations receive streaming data from the sensors and the sensors receive
control information from the simulations.

We present work that addresses several open research questions relating to
DDDAS: how to create, update and validate Agent-Based Modeling simulations
against streaming sensor data. These questions have been addresses through the
design and implementation of the Wireless Phone-based Emergency Response
(WIPER) system, a DDDAS application. WIPER works to detect and predict
the course of crisis events and advise emergency response planners with up to
date information on crisis scenarios. WIPER works by monitoring a stream of cell
phone activity data to detect anomalies, then uses Agent-Based Modeling simu-
lations, created from and updated against the streaming data, to provide more
thorough understanding of crisis events. Finally, the information regarding po-
tential anomalies, call information and simulation output is presented to users in

a web-based console.



1.2 RESEARCH QUESTIONS

In order to successfully develop the WIPER project, several challenges from
the DDDAS approach needed to be addressed. Here we lay out the research

questions and outline our approach to answering them.

1.2.1 CREATING AND UPDATING OF SIMULATIONS FROM STREAMING
DATA

The primary research question addressed by this work is how to periodically
update Agent-Based Simulations with real time streaming sensor data. This is an
open question. It is possible to update an equation-based simulation, as new in-
formation simply leads to a re-parameterization of the equations. In an equation-
based simulation, the parameters of the equations define the state of the phe-
nomenon to be studied. Researchers in the area of discrete event simulations as
far back as 1998 have recognized the challenges posed to updating simulations
with streaming data [29]. The problem becomes potentially more challenging in
an Agent-Based Modeling simulation. Here, the phenomenon to be studied is an
emergent property of the system [44]. As in chaotic systems, these systems often
display sensitivity to initial conditions and path dependency, where slight changes
in input parameters can cause large fluctuations in future system states. Simply
creating an agent to represent each individual in the sensor stream, then updating
the individual’s parameters (location, call activity, movement, etc) may not be
sufficient. To do so may emphasize unimportant aspects of agent behavior, and
fails to recognize that it is the aggregate behavior of all of the agents that defines
the phenomenon.

What we propose instead is a novel approach that draws its inspiration from



empirical science (specifically the paradigm of hypothesis generation and testing
against observation)[I12] and pattern-oriented modeling[44]. We create ensembles
of Agent-Based Simulations, covering several variations of crisis events and with a
range of parameters. These simulations run for a short period of time and are then
validated against streaming data from the actual crisis location. Simulations that
are within an acceptable threshold given our validation framework are carried over
to the next round and the ensemble is filled out with simulations that are variations
on the validated simulations. The details of this approach and an evaluation of

its implementation in the context of the WIPER project are given in Chapter

1.3 CONTRIBUTIONS

The design and implementation of the WIPER system has required solving
important research problems that can be generalized and transmitted to the com-
munity at large. Below we briefly outline these research contributions and direct
interested readers to the appropriate chapters. Figure shows the research

contributions that are presented in this dissertation.

1.3.1 WIPER: OVERVIEW OF A DDDAS SYSTEM

The WIPER system is a proof-of-concept DDDAS system. An overview of the
system and its contributions to the DDDAS community are given in Chapter [3]
The work presented there is an introduction to the goals of the project and its

contributions to the Emergency Response and Crisis Management field.
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1.3.2 DESIGN AND IMPLEMENTATION OF THE WIPER SIMULATION

A simulation is an important component of any DDDAS system. We have
created a simulation using the Agent-Based Modeling paradigm that is designed
to simulate cell phone-using pedestrians. As the simulation will be used in the
WIPER project, it was important to design it to be created from and updated
with streaming data. A thorough description of the design and implementation
of the WIPER simulation is given in Chapter [ The description includes an
overview of the traditional model development process, including the application

of verification and validation techniques.

1.3.3 UPDATING RUNNING SIMULATIONS WITH STREAMING DATA

The primary contribution of this research is to demonstrate our approach, in
the context of the WIPER system, for adaptively updating Agent-Based Simula-
tions with real time, streaming sensor data. As outlined above, the criteria for
success are stringent: The simulations cannot be constructed with “naive realism”
[70] ( as cited in [44]), they should model the phenomenon but not attempt to
accurately predict the movements of every individual. The method we use, en-
sembles of simulations with updating based on streaming data, is presented and

analyzed in Chapter [}

1.3.4 EVALUATION OF APPROACHES FOR ONLINE VALIDATION OF AGENT-
BASED MODELS

In Chapter[6] we present an evaluation of several approaches to online validation
of Agent-Based Models in the context of the WIPER project. The process of

validating simulations is iterative and often involves subjective judgments made



by domain experts [7]. The need for human interpretation is a serious limitation
of traditional validation approaches and limits their usefulness in the context of
online validation. Simulation researchers have defined a need for online validation
but recognize the challenges to the approach [29]. The development of techniques

for online validation is an open research question in the DDDAS community [26].

1.3.5 PRESENTATIONS AND PUBLICATIONS

The WIPER system is intended to be a proof-of-concept of a system to aid
Emergency Response professionals. As credence to its importance to that field, a
description of the WIPER system has been presented at the premier conference for
Emergency Response research: the Information Systems for Crisis Response and
Management (ISCRAM) 2006 conference [91]. Additionally, a full length version
of the system description, the work that comprises Chapter [3] is an invited paper
to the International Journal of Intelligent Control and Systems [90]. Work from
Chapter [4] is under review at the Journal of Defense Modeling and Simulation
Special Issue on Modeling and Simulation in Homeland Security. Work from
Chapters [0] and [5| is being revised and adapted for submission to appropriate

simulation journals.

1.4 CONCLUSION

This Chapter outlines work towards completion of the Ph.D. degree in Com-
puter Science and Engineering. This work addresses areas that the NSF' considers
important research directions: the ability to create and update running simula-
tions with dynamic, streaming sensor input and the creation of a proof-of-concept

DDDAS system. The research has been conducted in the context of the WIPER



system, an NSF-funded research project under the DDDAS initiative, grant award
number CISE/CNS-DDDAS #0540348.



CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 INTRODUCTION

In this Chapter we present relevant background for the dissertation research.
This research has all been conducted in the context of the WIPER project, a
DDDAS system for emergency response and management. First, we introduce the
Dynamic Data-Driven Application Systems (DDDAS) concept, which is a novel
approach for tightly coupling sensors into the simulation process. There are many
open research questions related to DDDAS, especially related to Agent-Based
Modeling and online verification and validation. Then we introduce Agent-Based
Modeling and Simulation, our approach to modeling the behavior of cell phone
users in the WIPER project. Finally we introduce the field of verification and
validation, the process of quantifying the applicability of a simulation. There
are some challenges when attempting to apply accepted verification and valida-
tion techniques to Agent-Based Models. These issues are explained and prior

approaches are presented.

2.2 THE WIPER SIMULATION: RESEARCH CONTEXT

The WIPER system is a software system that provides emergency responders

and planners with information on unfolding crisis events [60]. WIPER monitors a



realtime stream of cell phone activity information, monitors the stream for poten-
tial crisis events, evaluates crises using Agent-Based Models that are created and
updated using streaming data and finally presents all these results to emergency
responders and planners through a web-based console. The WIPER system is an
example of a Dynamic-Data Driven Application System, where simulations are
tightly coupled to sensors. For more information about the WIPER system, see

Chapter [3|

2.3 DDDAS

Dynamic Data-Driven Application Systems are systems that incorporate stream-
ing data into running simulations and allow the simulations to influence the mea-
surement process [26]. The applications for DDDAS systems include weather mon-
itoring and prediction, fault monitoring, a variety of sensor network applications,
biological and medical applications and homeland security/emergency response
systems[19, 28]. The DDDAS approach seeks to put simulations into close con-
tact with the data collection process, enabling simulations to be validated against

streaming data and refining their predictive ability.

2.3.1 DDDAS GOALS AND CHALLENGES

In a traditional simulation, input parameters can be generated offline either by
empirical data or via a researcher’s educated guess. When using empirical data
in this fashion there is always a manual step of processing the data so that it is
appropriate to the simulation, adjusting the time or space of the data collection,
removal of outliers, etc. However DDDAS systems are more time-critical and

must be parameterized online from streaming data, without human interaction.
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Moreover, simulations must be designed in such a way that they can be run in
faster than real time and be updated with live, streaming data.
Darema lists the benefits and challenges posed by DDDAS systems in [27].

The two main goals of DDDAS stated succinctly are:

e The ability to incorporate additional data into an executing application.

e The ability of applications to dynamically steer the measurement process.

The thesis is that by incorporating streaming data into a running simulation
the output from the simulation will yield “more accurate analysis, more accurate
predictions and more precise controls”. Similarly, by directing the data collection,
“steering”, simulations can reduce the overall number of measurements required
by focusing on only a relevant subset of measurements. This may reduce the
overall costs, the time required to collect measurements or improve the overall

quality of the data collected.

2.3.2 DDDAS AND MODELING AND SIMULATION

There exist several other DDDAS research projects that use Agent-Based Mod-
eling and Simulation. Among these are SAMAS [23] and the work of Michopoulos
et al [68]. The SAMAS project is focused on multi-scale agent-based simulations
in DDDAS systems, where the critical challenge is solving temporal multi-scale
challenges. In [68], Michopoulos et al focus on using DDDAS concepts for updat-
ing the environment in an ABM, but no mention was made about updating the
agents themselves, which is the primary challenge in the WIPER system.

In [I], the authors describe a DDDAS for “characterizing the three-dimensional

geological structure and mechanical properties of individual sites and complete
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basins in earthquake-prone regions.” The system takes inputs from seismic sensors
and uses this information along with simulations to infer the structure of a region.

In [62], the authors present a DDDAS for real-time modeling of the spread of
wildfires. The simulations take streaming data from a variety of sensors, including
weather (wind speed and direction, precipitation, etc) and geographic sensors

(terrain, vegetation, moisture content) and feed the results into simulations.

2.4 AGENT BASED MODELING AND SIMULATION

Agent-Based Models are well suited to simulating the behavior of complex sys-
tems, such as ecological systems, biological simulations and simulations of human
behavior and movement [11) 24] [82] 88|, [92]. These simulations cover a vast range
of application domains, but there are similarities in the systems that make them
amenable to the ABM approach. First, the system is composed of heterogeneous
actors, which are called agents when simulated. Next, the desired output of the
system is an aggregate over all the agents in the system. This can be some mea-
sure of the state of the agents, such as location, emotional state, etc. Finally, the
simulation output is generated as a result of the interactions of the agents with
themselves and the environment.

Agent-Based Modeling techniques grew out of a merging of the Discrete Event
Simulation and Cellular Automata paradigms [9, [73]. Cellular Automata are
simulations that exist in an environmental space, such as a grid, and the cells
have certain behaviors or properties that develop over time and in relation to
neighboring cells [104]. A common example of a cellular automaton is Conway’s
Game of Life, where grid cells live or die depending on the state of neighboring

cells [39].
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According to [9], a Discrete Event Simulations is a simulation where the “state
variables change only at a discrete set of points in time”. Examples include event-
based simulations that model processes, including many important to industry,
such as scheduling the processing of parts in an assembly plant [20]. In these
simulations events occur on a timeline, a schedule of events ordered by time.
Simulations that use a timeline are considered “discrete” due to the discrete nature
of time, as the simulation can produce a snapshot of system state at any given
time during the execution of the schedule.

An Agent-Based Model is comprised of a set of actors, the agents, which
can be heterogenous and have individual movements, behaviors and goals and an
environment (often spatially explicit, as on a cellular automata grid) where the
agents exists. The behavior of the simulation is a result of the interactions among
agents and of the agents with their environment.

Agent-Based Modeling (ABM) is an approach to simulating social, ecological
and biological systems where the system-level behavior is an emergent property
of the interaction of many independent individuals (agents) with each other and
the environment. ABM is an approach often used to model complex systems
[48]. The approach is well suited to social systems where the agents may display
complex behaviors and interactions. Agent-Based Models are often contrasted
with equation-based approaches for modeling systems, such as coupled differen-
tial equations. In an equation-based model, the output from the equations is
the system-level property. Consider the following example taken from ecology:
The populations of predator and prey species can be modeled very well using
equation-based models (such as the Lotka-Volterra equation[I13]). The popula-

tion levels can also be simulated in an Agent-Based Model by creating populations
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of predator and prey agents, giving them appropriate behaviors, e.g. the prey con-
sume resources from the environment and the predators consume the prey, and
allowing them to interact. (For an example of the predator-prey simulation in
an Agent-Based Model, see [I19].) A case study comparing Agent-Based and
Equation-Based models can be found in [106].

Agent-Based Modeling is characterized by creating an encapsulated unit, an
agent, defining behaviors and interactions for the agents and placing them in an
environment. An agent is a self-contained entity with basic actions and decision
making, including interaction with an environment and the other agents around
it.

The term agent is used in many different contexts to mean many different
things. Unlike Artificial Intelligence agents, ABM agents tend to be less so-
phisticated in their ability to react and influence the surrounding environment
and normally do not encompass behavior such as planning, learning or reasoning
[61]. Mobile agents are self-contained executing bundles of code that can move
autonomously around a network[T10]. Multi-Agent Systems are composed of soft-
ware agents that can operate independently, are distributed and communicate

over a network [34, 121].

2.4.1 THE MODELING PROCESS
2.4.2 EVALUATION OF THE AGENT-BASED MODELING APPROACH

Developing simulations intended to describe complex systems is a challenging
task. One advantage of Agent-Based Models over equation-based models is that
constructing the simulation is often more intuitive for the modeler. A comparative

study of Agent-Based Models and System Dynamics models is given in [106]. In
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that paper, Wakeland give a case study where the same system was modeled
with an Agent-Based Modeling tool (StarLogo[96]) and with a Systems Dynamics
tool (STELLA[9T]). The study demonstrated that the Agent-Based approach was

attractive because it more closely resembled a traditional (physical) experiment.

2.4.2.1 ADVANTAGES OF THE AGENT-BASED MODELING APPROACH

In [8], Bankes argues that Agent-Based Modeling is a revolutionary tool for

advancing social science for the following reasons:

e Alternative modeling formalisms are not able to address problems of social

science
e Agents form a “natural ontology” for social problems

e ABM can display emergence

In the context of the WIPER project, our agents will be a person carrying a
cell phone. WIPER agents move around on a simulated GIS landscape, make calls
based on sampling from an empirical call distribution and are designed to react

to various crisis scenarios.

2.4.2.2 CHALLENGES IN THE DEVELOPMENT OF AGENT-BASED MOD-
ELS

One of the challenges when designing Agent-Based Models is deciding how
much complexity, in terms of agent behaviors and observed characteristics of
agents or environment, to include in the model. Modelers must resist the desire
to attempt to accurately represent every aspect of the system. This approach is

often referred to as “naive realism” [44] and is counterproductive to the modeling
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process. An approach to provide some guidance in the development of Agent-
Based Models is the Pattern-Oriented Modeling (POM) concept[45]. POM is a
model development heuristic where a modeler first seeks to identify motifs (pat-
terns) that are observed in the real world, such as foraging behavior under certain
conditions, response to stresses, seasonal patterns of movement, etc. The model
is then constructed by the composition of these patterns. Patterns are added

incrementally until the model displays the desired system-level properties.

2.4.3 AGENT-BASED MODELING FOR EMERGENCY RESPONSE AND PLAN-
NING

The emergency response community has recently become aware of the applica-
bility of Agent-Based Modeling for the simulation of disaster scenarios. Using an
ABM, it is possible to evaluate policies and procedures for dealing with natural
and man-made disasters.

Takahashi et al describe an Agent-Based Simulation for disaster rescue in [98].
The system, now in use as the platform for the annual RoboCup Rescue compe-
tition, uses a GIS space and information from the 1995 Kobe, Japan earthquake
to create a realistic disaster. Teams compete by creating fire, rescue and police

agents that attempt to subdue fires, control crowds and move civilians to safety.

244 CROWD MODELING

Agent-Based Models are well suited to representing crowd/pedestrian models.
Pedestrians are autonomous, goal-directed agents whose spatial properties (slow
movement, relatively constrained behavior) are amenable to representation in an

ABM. The WIPER simulation is an Agent-Based pedestrian movement model.
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Simulating the movements of individuals and groups is vitally important to the
usefulness of the WIPER simulation.

In [71] a method for modeling crowds is presented. This approach is designed
to model crowds in a visually convincing manner. The intended application is for
visual simulations and video games and thus may not be able to provide useful
data for emergency responders and planners.

Reynolds provides a basic movement model for flocking bird in [86]. The ad-
vantages of this approach are that the decision making process for the group is
distributed, there is no leader agent that directs the group, and that group move-
ment is an emergent phenomenon. This approach to modeling movement may be
useful for the WIPER project, but the approach will need to be validated against
empirical movement studies and adapted to take into account the complexity of

human intentions.

2.4.5 TRAFFIC MODELING

Several Agent-Based Models of traffic flow currently exist [I1] [47]. These
models are useful in that they can produce useful information over a variety of
traffic conditions, from traffic jams to steady state traffic flow, which is a limitation

of earlier approaches [42, [43].

2.4.6 AGENT-BASED MODELING AND GIS

In GIS Data Sources, Decker covers GIS data types, sources, common issues
with data sets and attendant solutions [30]. GIS is a powerful paradigm for repre-
senting geographic data because it allows users to store and access multiple layers

of data on top of one another. These layers can contain information on roads,
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structures, elevation, property lines, aerial photos, etc. GIS layers can come in
either raster or vector format and usually a presentation of a data set contains
a raster data layer on the bottom with one or more vector data layers above it.
One important data layer is a digital elevation model (DEM). This is a 2D raster
that stores elevation information at every (z,y) coordinate. Vector data represents
important features with lines, curves or areas. Several important types of vector
data are Digital Line Graphs (DLG), where each file represents one feature, such
as transportation, elevation or water features, and Digital Chart of the World
(DCW), which is an older format that provides data on the entire globe. GIS
files contain metadata that describe the contents of the file. These attributes may
include scale, author /creator, time (usually when file was created), subject/theme
(highways, census, hydrology, etc) and Projection. Decker provides a large listing
of GIS data repositories, but these seem to be quite outdated [30].

GIS, Environmental Modelling and Engineering [18] deals with the use of GIS
data in environmental simulations. In order for GIS layers to be stacked or super-
imposed upon one another, ”they must all conform to the same coordinate system
and map projection”. GIS data can be stored as layers/records in a relational
database system. The data can then be referenced by coordinate and layers con-
structed from the database as needed. Issues of data quality are address, as well
as specific issues to the use of GIS in simulations as well as several Case Studies.

Batty and Jiang discuss the idea of placing simulations on top of GIS spaces
[14]. The authors give several examples, such as the design of pedestrian friendly
spaces and land use simulations.

Hare and Deadman survey the field of Agent-Based Modeling specifically

related to environmental modeling [46]. The authors collect and attempt to
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classify the disparate terms surrounding Agent-Based Modeling and Simulation:
Individual-Based Modeling, Agent-Based Modeling, Agent-Based Simulation Mod-
eling, Multi-Agent Simulation, Multi-Agent-Based Simulation, Agent-Based So-
cial Simulation and Individual-Based Configuration Modeling.

Itami and Gimblett present two examples of agent-based simulations that are
built on top of GIS information[50]. (In their paper, Itami and Gimblett refer to
the simulations as Multi-Agent Simulations.) The two examples are the Grand
Canyon River Trip Simulator (GCRTS) to simulate rafting trips at Grand Canyon
National Park and the Recreation Behavior Simulation (RMSim 2), a general sim-
ulation package for building GIS-based recreation simulations. The simulations
are intended to allow recreation managers to determine usage for different areas
of parks and recreation locations. The agents are goal-directed (with goals such
as exercise, appreciation of the local ecology, social interaction, etc) and use fuzzy
reasoning to execute plans to achieve these goals. The simulation uses trans-
portation networks (footpaths, roads), elevation information, vegetation/ecology
and facilities to represent the park or recreation area. The agents move about
within the park, seeking to achieve their goals. The simulation outputs a time-
ordered visualization of agents’ movements, as well as plots of agent population

size at various locations of interest over time.

2.5 AGENT-BASED MODELING TOOLKITS

The standard practice when developing Agent-Based Models is to build a
model with an existing toolkit. Tools such as RePast [74], Swarm [69] and Net-
Logo [119] provide modelers with APIs to reduce the amount of programming

required when creating and developing models. Each toolkit provides access to a
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pseudo-random number generator, spaces for agents to inhabit (commonly used
spaces include 2D grids and network spaces) and controls for starting, stopping
and probing the simulation. Toolkits may represent time as time steps, integer
units of time, or may implement a timeline, a discrete time structure where events
can be scheduled at times down to a given resolution (such as a double).

Tobias and Hofmann present a study of four popular agent-based modeling
toolkits used for social science simulationas in [102]. The authors examine RePast
[74], Swarm [69], Quicksilver [2I] and VSEit [I7]. There is a proliferation of
agent-based simulation tools, so the authors began by selecting the four packages
by dropping from consideration any package which did not meet the following

criteria:

e The simulation tool must allow models to be built on social science theo-
ries and observation. An agent in the tool should be able to represent a
real human being or an institution, as opposed to an abstract or aggregate

representation.
e The simulation tool must be freely available.

e The simulation tool must be able to run simulations created in Java. (The
authors use the phrase “implemented in Java”, but this must apply to the
simulation and not the base toolkit, as Swarm uses Objective C in its run-

time.)

The simulation tools were scored on a scale of 1 to 6 on the several questions

in the following areas:
e General features (Licensing, support, documentation, etc)

e Modeling and Experimentation (Ease of use, programming support)
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e Modeling Options (Size of simulations, representation ability, creating and

managing agents)

The ratings were based on reading available documentation, user feedback
and experiences with developing simulations and using demos from the tool. The
study concluded that RePast and Swarm were the best suited toolkits for Social
Science modeling, due to their stable user communities, good documentation and
rich feature sets. The WIPER simulation has been developed using RePast due

to its comprehensive feature set and ease of use.

2.6 OPTIMIZATION VIA SIMULATION

Our ensemble-based approach to updating simulations with streaming sensor
data can be compared to existing techniques called “optimization via simulation”
from the Discrete Event Simulation field. These approaches are related to canon-
ical optimization techniques where the objective function is a simulation and the
input space is over the parameters to the simulation.

In [3], the author presents techniques for optimizing the performance of simula-
tions. Performance is defined as the effectiveness of the simulated system at its in-
tended task, such as the production of widgets in a factory simulation. Approaches
are put into two categories based on whether the simulation input parameters are
discrete or continuous. For simulations with continuous input parameters, the
author suggests the use of gradient-based methods. For simulations with discrete
input parameters, the author presents approaches using random search on the
input space.

Pichitlamken and Nelson describe a combined procedure for Optimization via

Simulation in [79]. The authors approach has three components: “a global guid-
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ance system, a selection-of-the-best procedure and local improvement”. This
approach uses the Nested Partition method of Shi and Olafsson [93] for global

guidance and a hill climbing approach for local improvement.

2.7 ONLINE MODELING AND SIMULATION

In [29], Davis examines the state of discrete event simulators and the research
directions (circa 1998) and concludes that research was moving towards the study
of online simulations, but that many challenges existed. One challenge is the
initialization of simulations based on a measured system state. At that time,
Discrete Event Simulations were designed to simulate the steady-state behavior of
systems, and as such were not properly designed to be initialized from real-world
data. Davis also defines a need for online validation but presents the challenges
to the approach. The author claims that online validation may be unobtainable
due to the difficulty in implementing changes to a model, as opposed to varying

input parameters, in an online scenario.

2.8 VERIFICATION AND VALIDATION

Verification is the process of assessing whether the conceptual model is cor-
rectly translated into the computer program and validation is the process of com-
paring the program’s behavior with observations from the real world [9]. The
verification and validation process is an important part of the development of a
simulation and is essential for the acceptance of a model and important in deter-

mining how much trust to assign to a model’s predictions.
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2.8.1 METHODS FOR VERIFICATION AND VALIDATION

There exist numerous approaches for verification and validation. For example,
Balci lists 75 commonly used techniques for verification and validation [7]. Balci
presents a taxonomy of the approaches, dividing them into 4 categories: Informal,
Static, Dynamic and Formal. For our purposes, we consider a classification posed
by Kennedy [54] [122] for verification and validation techniques for Agent-Based
Models. Kennedy divides the approaches into two types: Subjective methods and
Quantitative methods. Subjective methods often rely on the judgement of experts
or require human interpretation in order to be useful. These methods are com-
monly used during the initial development of simulations. Quantitative methods
use statistical measures to compare simulation outputs to observed data or to
output from other simulations. These methods are often used when calibrating a

simulation or in the final stages of simulation development.

2.8.1.1 SUBJECTIVE METHODS

Subjective methods are often used during the initial phases of model develop-
ment. These techniques require a human to judge the results. Some examples of

subjective methods are listed below. (Adapted from [54].)

e Black-box Testing - This technique involves feeding a set of inputs to a model

and judging whether the output is reasonable.

e Face Validation - A subject matter expert inspects the conceptual model
and determines whether the model is based on valid assumptions and is

grounded on accepted theory.

e Internal Validity - In Agent-Based Models there is often a stochastic ele-
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ment. The internal validity test involves running the model repeatedly with

different random seeds.

e Turing Test - The Turing test in this context refers to showing the model
output to a subject matter expert. The test refers to whether the subject
matter expert can determine whether the output comes from empirical ob-

servation or the simulation.

All of these approaches are useful during the development of Agent-Based
Models. In Chapter [4 we apply several subjective methods of simulation validation
and verification to the WIPER simulation.

Although these techniques are useful in the model development stage, all re-
quire human interpretation. For that reason none of these techniques can be used

for online validation of the WIPER simulations.

2.8.1.2 QUANTITATIVE METHODS

The quantitative methods for validation and verification of Agent-Based Mod-
els consist of statistical tests such as the Chi-square test and Kolmogorov-Smirnov
test, as well as other approaches that quantify the applicability of the model, such
as sensitivity analysis and docking. Examples of quantitative methods are listed

below. (Adapted from [54].)

e Statistical tests, such as Chi-square or K-S test, are used to determine

whether model output is sufficiently similar to empirical data.

e Predictive validation - Observed data is used to parameterize the model and
the model’s predictions about future outcomes are compared to empirical

data.
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e Sensitivity analysis - Model parameters are adjusted incrementally over a
range and the results are observed. Inconsistent model behavior may indi-

cate an incorrect model.

e Docking - If two models of the same system exist, with different conceptual
models, they can be used to validate each other. Both models are fed the

same set of inputs and the outputs are compared.

For dynamic validation in DDDAS systems such as WIPER we focus on meth-
ods that are automated and yield unambiguous results. We present a comprehen-

sive evaluation of several quantitative approaches in Chapter [6]

2.8.2 APPLICATION OF EXISTING VERIFICATION AND VALIDATION
APPROACHES TO AGENT-BASED MODELING AND SIMULATION

Xiang [122] and Kennedy [54] both address the need for developing verification
and validation techniques tailored to Agent-Based Models. The results are pre-
liminary and the authors suggest that the best approaches involve the subjective
and quantitate methods described above. Often when researchers develop ABMs
they apply face validation to the model, but do not apply any other, more rigorous
methods. Thus the application of even a small amount of additional validation

techniques are beneficial to the ABM community.

2.9 SUMMARY AND CONCLUSION

This Chapter has presented a survey of related work and background neces-
sary for the understanding of the Dissertation research. Dynamic, Data-Driven

Application Systems is an emerging research area and an important application
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domain for the modeling community. Creating Agent-Based Modeling simulations
to be used in the context of DDDAS will require a more agile approach than the
standard modeling practice. In this Dissertation we build upon this background
work and place our research in the context of DDDAS, specifically the WIPER

system, a DDDAS for Emergency Response and Crisis Management.
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CHAPTER 3

WIPER: LEVERAGING THE CELL PHONE NETWORK FOR
EMERGENCY RESPONSE

3.1 ABSTRACT

This chapter describes the Wireless Phone-based Emergency Response (WIPER)
system. WIPER is designed to provide emergency planners and responders with
an integrated system that will help to detect crisis events, as well as to suggest
and evaluate possible courses of action to deal with the emergency. The system
is designed as a distributed system using web services and the service oriented
architecture. WIPER is designed to evaluate potential plans of action using a se-
ries of GIS-enabled Agent-Based simulations that are grounded on realtime data
from cell phone network providers. The system relies on the DDDAS concept
[20], the interactive use of partial aggregate and detailed realtime data to contin-
uously update the system, which ensures that simulations always generate timely
and pertinent data. WIPER presents information to users through a web-based
interface of several overlaid layers of information, allowing users rich detail and

flexibility. !

!Preliminary versions of this research were published in the Proceedings of ISCRAM 2006
[91] and in the International Journal of Intelligent Control and Systems [90] 2
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3.2 INTRODUCTION

Emergency responders often first learn of crisis events through eyewitness ac-
counts from civilians calling 911. Although this information is timely, bystanders
lack the perspective to convey the wider scope of a crisis and may not be able
to provide reliable, actionable data. The WIPER can compliment first-person ac-
counts by offering emergency responders a holistic view of the crisis area in terms
of overall human activity, as sensed through the cell phone network and presented
on top of relevant satellite and GIS representations of the area. In addition to
presenting the current state of the crisis area, WIPER can employ agent-based
simulations for short-term prediction and the evaluation of response strategies.

Numerous software tools have been developed to aid emergency responders.
Several recent examples are EVResponse and the COMBINED project [99, [10T].
These tools provide methods of gathering information on the current status of
crisis situations. They provide emergency response planners with detailed, high-
quality information, but require a high cost in terms of personnel and deployment.
(PDAs and wireless infrastructure must be purchased, personnel trained and both
need to be sent to crisis sites.) WIPER would act as a low-cost, highly available
monitoring system. Its deployment would be automatic, as anyone with a cell
phone in the area is a participant. No special training would be required for
phone users, but balancing this, the quality of information from each person is
low. Limited to location and activity information, it may not be clear what type
of crisis is occurring. We use machine learning techniques to infer information
about the state of the area (i.e., to distinguish a fire from a traffic jam) from
the location and call activity information that we collect. WIPER would convey

three distinct and useful pieces of information to emergency responders via the
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web-based console:

e [t provides near-real time information on the location of cell phone users in

an area, plotted on a GIS-based map of the area.

e [t detects potential anomalies, such as traffic jams, roving crowds and call

patterns indicative of a crisis.

e [t can evaluate mitigation strategies, such as potential evacuation routes or

barricade placement, through the use of computer simulations.

The WIPER system is designed to address specific needs in the Emergency
Response community, specifically the ability to view the development of a crisis
in realtime, the ability to propose and evaluate response in near-real time and
the ability to collect and analyze streaming information from a cell phone-based
sensor network. This capability positions WIPER as an important component is
an overall emergency response workflow. The WIPER system uses dynamic data
from cellphones and analyzes the data in realtime, providing the ability to detect
a crisis as it emerges. An online classification system is designed to identify crises
by recognizing familiar patterns in group behavior. Responding to events from
the anomaly detection system, GIS-based simulations of the region are launched
and results collated and made available to the console. Finally, the web-based
console allows Emergency Planners to quickly examine the current state of the
environment, see possible predicted outcomes from the simulations and evaluate
courses of action.

WIPER is designed to work with the current level of data available from the
cell phone network (activity and rudimentary location data). The system utilizes

dynamic streaming information from cell phone providers to monitor and detect
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anomalies and crisis events. A more thorough discussion of the cell phone data
is presented in Section [3.5.1l The most common type of potential crisis events
would be traffic disturbances, but by utilizing historical knowledge of crisis events
and call patterns and realtime social network algorithms, WIPER should be able
to predict, detect and evaluate responses to a wide range of emergency situations.
WIPER could detect crowds and demonstrators at public events, monitoring such

events to determine if they are degenerating into riots.

3.3 BACKGROUND

In this section we describe relevant background to the WIPER project and

related work in the Emergency Management field.

3.3.1 AGENT-BASED MODELING AND SIMULATION

Agent-Based Modeling and Simulation is a modeling paradigm that is well
established for studying complex systems with emergent behavior. Examples of
this type of system are biological, physical and social systems where the principal
actors (agents), their surrounding environment and the modes of interaction form
the basis for the emergent behavior. Agent-Based Simulations are closely related
to Cellular Automata, which are often used in modeling spatial phenomena, such
as traffic flow[I07]. An example of the application of Agent-Based Modelling and
Simulation to the area of crisis response are the TranSims and EpiSims projects
[12, [72]. The TranSims project was created to accurately model the transporta-
tion system of an entire city, including personal automobiles, pedestrians, public
transportation and commercial vehicles. The system is used to provide city plan-

ners with a way of accurately gauging the impact of infrastructure changes on
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a city’s transportation system. The EpiSims system was an outgrowth of Tran-
Sims and is able to model the transmission of infectious diseases through a city.
EpiSims makes it possible to empirically evaluate methods of inhibiting the spread

of biological warfare agents in an urban setting.

3.3.2 EMERGENCY MANAGEMENT

The use of Information Systems in the Emergency Management field is well
established [57, Q9] [T0T]. If designed and implemented properly, Information Sys-
tems can enable Emergency Management professionals to deal with increasingly
complex crisis scenarios and coordinate effective inter-organizational response
[103]. However, in order to be useful certain design considerations must be met[22].

In [51], the authors introduce the concept of a generic information processor
(GIP), which is an information system that publishes content related to a crisis
event for a variety of uses (incident report, emergency planning, training, etc).
The content published by the GIP can be self-generated and/or a product of pro-
cessed information from other GIPs. Of paramount importance in the sharing
of information between GIPs is the use of well-defined document types and data
formats. In order to make the WIPER system compatible with the GIP con-
cept, information from the WIPER system is published in an XML format and is
accessible via web services.

Much work has been done exploring the use of cellular phones for emergency
communication, especially related to large scale targeted warnings [52) 120]. The
cellular network provides a unique capability to infer the position of people in an
affected area and to provide them with specific and relevant instructions. The

WIPER system is designed to be complementary to these approaches, providing
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information on the location and activity of cell phone handsets. Although not
designed to directly interact with a system like CellAlert, WIPER can provide
information to an emergency planner that would inform the use of the CellAlert

or a similar system.

3.3.3 GIS ENABLED SIMULATIONS

Geographic Information Systems can be used to provide added realism in
Agent-Based Simulations [41]. Agents can interact with terrain and roads rep-
resentative of the real world, enhancing the credibility of such simulations. GIS
systems have been successfully integrated with simulations in scenarios where an

explicit spatial representation is important to the validity of the simulation[14] [53]

3.3.4 REAL-TIME SENSING IN URBAN ENVIRONMENTS

Several systems already use cell phone activity and location information to
sense population density in urban settings. The most important project is MIT’s
SENSEable City[83]. The aim of the SENSEable City project is to allow city
officials, urban planners and people at large the ability to follow the trends in
population movement and activity around the city. Initially the project mapped
the real time activity in the city of Graz, Austria, but now it has been expanded

to cover Rome, Italy as well [84].

3.3.5 DDDAS

Recently the National Science Foundation has created a program to spur the
development of Dynamic-Data Driven Application Systems[95]. A DDDAS is a

software system that tightly couples simulations with sensors and data collection
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devices, a process that enables simulations to more quickly adapt to changing
data and even control the collection of data[20], 28]. One aspect of DDDAS is the

dynamic injection of data into the system, as shown in Figure [3.1}

Dynamic Data Injection

Data
Source

Computational Grid

Simulations

Simulation
Controller

Figure 3.1. A fundamental concept of DDDAS systems: Integrating
simulations with the sensors. Here we see that simulations receive a
stream of real-time sensor information.

Evaluate Simulation Output

The DDDAS approach has been implemented in narrowly-focused crisis man-
agement platforms, such as weather monitoring [I9] and fire monitoring [68] ap-
plications. These examples demonstrate how the DDDAS approach is beneficial
in crisis scenarios, as simulations are constantly being updated and refined based

on streams of incoming data.

33



3.4 WIPER SYSTEM OVERVIEW

As proposed in several previous projects, the existing cell phone network can
be used both as a tool for detecting the state of the environment [4, 83] as well as
communicating directly with those affected by crisis events [25] 120}, 125]. WIPER
is intended to push the boundary of crisis detection and monitoring with the cur-
rent cell phone network. A visual description of the WIPER scenario is presented
in Figure|3.2l The WIPER system will receive a feed of realtime information from
cell phone providers. This is expected to be a sample of the incoming data, as the
full data stream would be prohibitively difficult to transmit. The incoming data
would be monitored for anomalies, which include the obvious spatial and temporal
aggregation, as well as call patterns and movement discrepancies that can signal
the impending onset of a crisis event.

Figure 3.3 shows the overall system architecture of WIPER. The WIPER sys-
tem is a distributed system combining traditional methods of network communi-
cation (UDP sockets over IP) with with implementation independent and robust
composition protocols (Web Services and Service Oriented Architecture). WIPER

is composed of three layers:
e Data Source and Measurement
e Detection, Simulation and Prediction
e Decision Support

The Data Source and Measurement layer handles the acquisition of realtime
cell phone data, as well as deterministic transformations on the data, such as aggre-
gation of the data or the calculation of triangulation information. The Detection,

Simulation and Prediction layer analyzes incoming data for anomalies, attempts
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Figure 3.2. A visual representation of the WIPER scenario. As real
world data streams into the system, we examine call activity by
location and social network of the users to detect potential anomalies.
In the image, orange circles represent cell phone users.



to simulate the anomaly to predict possible outcomes and suggests actions to
mitigate the event. Finally, the Decision Support layer presents the information
from the other layers to end-users, in terms of summaries of traffic information
for commuters, real time maps and simulations on the anomaly to first responders
and potential plans for crisis planners.

These layers are further divided into components that handle highly specific

functions, as described in the following sections.

3.4.1 DATA SOURCE AND MEASUREMENT LAYER

This layer contains three modules, all of which have functionality related to
the management of the real time cell phone data. The Real Time Data Source
(RTDS) collects information from one cell phone provider, performs filtering and
aggregation as necessary and redirects the data stream into components in the
Detection, Simulation and Prediction (DSP) layer. The RTDS is composed of
several mobile software agents that are dispatched to the cell phone provider.
The software agent removes personalized information such as phone number and
customer id and replaces it with a coded value that is internally consistent within
the WIPER system but cannot be used to identify the user. For training purposes,
snapshots of the data are occasionally stored on a server and become part of the
Historical Data (HIS) module. The HIS streams historical data in the same format
as the RTDS for training and testing the Detection and Simulation modules in the
DSP layer. A Triangulation Information module (not pictured) handles converting
the rough location information associated with a cell phone into a more precise
location which is needed by the Simulation and Prediction System. On newer

handsets, GPS sensors can provide the cell phone provider with precise location
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Figure 3.3. An overview of the layered structure of the WIPER system.
The Data Source and Measurement layer physically resides on the
cellular service providers network and handles collection, storage and
preprocessing of the data. The Detection, Simulation and Prediction
layer services reside on the WIPER network (e.g., at the emergency
management data center) and process the streaming data to detect
anomalies and run simulations for prediction and mitigation. The
Decision Support layer services run on the WIPER network but access is
provided to end-users across the internet through a web-based console.
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information, but only if the feature is enabled and the cell phone provider is

equipped to monitor it.

3.4.2 DETECTION, SIMULATION AND PREDICTION LAYER

The Detection, Simulation and Prediction (DSP) layer contains modules that
monitor the streaming data, and generates computer simulations to determine
whether perceived anomalies represent potential crisis events and what actions
can be taken to mitigate these events. The Detection and Alert System (DAS)
uses a combination of established techniques for detecting anomalous patterns of
spatial activity, such as Statistical Process Control [78] and Markov-Modulated
Poisson Processes [123].Upon detection of a potential anomaly, the DAS sends a
message about the event to the Simulation and Prediction System (SPS). The
SPS uses the information to create a GIS-based computer simulation that will
attempt to model the outcome of the event. The SPS creates an ensemble of
Agent-Based simulations that are run on a computational grid. The simulations
are monitored by the SPS and ranked according to their ability to correctly predict
the progression of the actual event. The SPS and each of the simulations interact
with the RTDS to acquire more detailed information concerning the potential
anomaly area. For more information on the SPS see Chapter [l For a thorough

description of the Agent-Based Simulations, see Chapter [4]

3.4.3 DECISION SUPPORT SYSTEM LAYER

The Decision Support System (DSS) acts as a front end for the WIPER sys-
tem. It is the main portal for disseminating the information from WIPER to crisis

planners and responders, public safety personal and the general public. A picture
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Figure 3.4. The Service Oriented Architecture of the WIPER system.
The use of SOA allows WIPER components to expose their services to

clients outside the WIPER system, allowing flexible composition of
WIPER services into a heterogeneous emergency response workflow.
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of the web-based console is shown in Figure 3.5] The DSS aggregates informa-
tion from the SPS and presents the real time system status and any predicted
anomaly information in a web based interface. There are options for crisis plan-
ners to specify and evaluate mitigation plans through the web interface. These
plans will subsequently be evaluated with Agent-Based simulations and the results
accessible from the web based interface. Crisis planners can monitor crisis areas
using satellite maps and GIS images overlaid with activity data, as well as viewing
the raw data entering the system and comparisons against normal activity and
historical data trends.

Given the huge amount of raw data and processed information in various for-
mats, users of the DSS will want to reduce the overall complexity of the system
to address their specific needs. The DSS has been designed and implemented
with that flexibility in mind, using Web Services and AJAX to implement the
specific components. Users can customize the view using standards compliant
web browsers, selecting which services they wish to see, adding tabbed views for
different services and saving configurations for later use.

This web interface uses SSL encryption and authentication to prevent snooping
and restrict access to authorized users. The DSS may also be configured to allow
certain information to be publicly accessible, such as providing a near-real time

picture of the traffic situation or predictions of traffic congestion.

3.44 TECHNOLOGIES
3.4.4.1 WEB SERVICES

The use of Web Services and the Service Oriented Architecture allows WIPER

to be composed of standards-compliant modules running on heterogeneous hard-
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Figure 3.5. The WIPER DSS web-based console. The console provides
easy, standards-compliant access to all of the components of the
WIPER system, allowing emergency planners access to the real time
data, both overall activity and spatially aggregated, simulation output
and information on system status. The components of the system seen
here are (clockwise, beginning in the upper left corner): satellite map of
the affected area, raw data from cellular service provider, 3D activity
intensity map, 2D plot of city-scale network activity, historical trend of
activity and 2D visualization of the city simulation.
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ware and operating systems and simplifies the integration of the system. The
SOA for the WIPER system is demonstrated in Figure [3.4] The flexibility and
ease of composition that come with Web Services allows the WIPER system to
easily incorporate new data sources, such as weather and news feeds. This ease
of composition also makes it possible to use WIPER components as data sources

for other applications in an Emergency Response workflow.

3.4.4.2 MAPPING AND VISUALIZATION

Figure 3.6. A 2D view of activity in the cellular network. Each polygon

represents the spatial area serviced by one tower. The cells are colored

green (low activity) to red (high activity) based on the amount of active
cell phone users in that cell.
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Accurate, informative visualizations are crucial to the WIPER system. A
properly designed visualization system can present geographic information more
clearly and coherently than a textual description. In the WIPER system, we
present location data from the cell phone provider, representing a recent snapshot
of the activity and location of individuals in the affected area, as well as GIS-based
simulations which can be used to provide various scenarios about the development
and outcome of certain crisis events.

Our data source currently provides us with data on user locations and activity
at a cell-sized level of resolution. The size of a cell can vary widely and depends
on many factors, but these can be generalized in a simple way using a Voronoi
diagram [I14] (also called Thiessen polygons). A Voronoi lattice is a tiling of
polygons in the plane constructed in the following manner: Given a set of points
P (in our case, a set of towers) construct a polygon around each point in P such
that for all points in the polygon around py, the point is closer to py than to any
other point in P. Thus we can construct a tiling of a GIS space into cells around
our towers, as shown with activity in Figure |3.6]

We currently have two methods for visualizing the location data. The first
method is to color the Voronoi cells in the area of interest based on the level
of activity. This method is demonstrated in Figure [3.6] In this image the color
scale ranges from green (low activity) to red (high activity). Alternately, we can
build a 3D image based on the activity at the site of interest, as shown in Figure
3.7 This 3D view gives a better conceptual picture of the comparative activity
levels in the cells. However, viewing the activity in this manner may not enable
Emergency Response planners to evaluate the current activity levels or compare

them to historic activity information. We are currently considering other methods
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Figure 3.7. A 3D view of activity in the cell system. Each polygon
represents the spatial area serviced by one tower. Cell color and height
are proportional to the amount of active cell phone users in that cell.
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of attenuating cell heights to account for the varying size of the cells, as shown
in Figure [3.8] or normalizing the cell activities to historical values for this area at

similar times.

Figure 3.8. A transformed view of the activity over an urban area. The
activity values are normalized by the area of the cell.
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3.5 IMPLEMENTATION DETAILS

3.5.1 CELL PHONE DATA PROCESSING

Cellular service providers use a data format called “Call Data Record” (CDR)
to record subscribers’ activities for billing purposes. The CDRs for a cellular
network provide a reasonably accurate method of sensing the activity and location
of users. An example of the type of information contained in CDRs is shown in
Table B.1] In the WIPER system, we use a stream of information aggregated
from CDRs. Using raw CDRs, even when the identifying characteristics of a user
are encrypted or obscured can present problems relating to user privacy[5]. In
order to safeguard user privacy we have chosen to use only aggregate data, where
CDR information is aggregated by tower and by a time interval. Empirical results
have show that a time interval of 15 minutes provides a good tradeoff between
smoothing the noise of activity while preserving overall trends in the change of
activity levels.

Aggregating by tower location can lead to some issues related to the resolution
of users’ locations, most notably the large variability in the size of the area covered
by a tower. In urban areas, due to the dense population, each tower covers a com-
paratively small area. However, in rural regions, the size of a cell is significantly
larger. These limitations may no longer be an issue as cellular providers roll out
3G networks and users begin to adopt 3G handsets. In these advanced networks
there are several methods of refining users locations to a level well below that of
the cell, such as in-handset GPS or triangulation based on multiple towers, angle,
timing and signal strength information. For the WIPER system we can envision

using this capability to define grid cells of arbitrary size for aggregating users.
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TABLE 3.1

EXAMPLE CDR DATA. TOWERS ARE UNIQUELY

IDENTIFIABLE BY THE TOWER NUMBER. THE ID IS A CODE

THAT DESCRIBES WHETHER THE CDR IS FOR CALLER OR

RECEIVER AND THE SERVICE USED (VOICE, DATA, SMS,

DATA, ETC). IN THIS EXAMPLE, 1 = CALLER, VOICE, 2 =

RECEIVER, VOICE, 3 = CALLER, SMS, 4 = RECEIVER, SMS.

Date Time Caller Receiver Tower | ID
2007-01-01 | 00:00:02 | 888-555-1212 | 888-555-4763 | 4303472 | 1
2007-01-01 | 00:00:02 | 888-555-1100 | 888-555-8421 | 4303857 | 2
2007-01-01 | 00:00:03 | 888-555-1100 | 888-555-1212 | 4303857 | 1
2007-01-01 | 00:00:03 | 888-555-1634 | 888-555-2158 | 4303205 | 4
2007-01-01 | 00:00:04 | 888-555-8593 | 888-555-8745 | 4303765 | 2
2007-01-01 | 00:00:04 | 888-555-4564 | 888-555-2689 | 4303456 | 2
2007-01-01 | 00:00:05 | 888-555-0245 | 888-555-0245 | 4303468 | 1
2007-01-01 | 00:00:06 | 888-555-8903 | 888-555-4575 | 4303115 | 4
2007-01-01 | 00:00:08 | 888-555-6830 | 888-555-2355 | 4303485 | 3
2007-01-01 | 00:00:09 | 888-555-5354 | 888-555-6830 | 4303454 | 2
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3.5.2 GIS AND MAPPING

Figure 3.9. An example of overlaying activity information on a satellite
photo. Satellite image taken from Google Earth.

In the WIPER system, it is a design goal to utilize Free and Open-Source
software whenever possible. To that end we have used GRASS GIS [31], PostGIS
[85], GDAL [35] and Shapelib [108] to generate images, both interactively and as
part of our automated workflow. We also use OpenMap [100] and Geotools [40]
to enable GIS functionality in our simulations.

In generating our images, we primarily used GRASS. First we created a spatial-
relational database using PostgreSQL [80] and PostGIS. This database contains

both reference information on our area of interest, including geographic features,
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political boundaries (cities, counties, zip codes, etc) and some information on
major roads. Using GRASS we can combine the cellular phone users’ activity data,
aggregated at a particular time scale (images in this paper are aggregated at 10
minute intervals) with the historic information in the PostGIS database, allowing
us to view several layers of information in one image. We also use GRASS to
generate images that show the change in phone activity in an area over the course

of a day.

3.5.2.1 ANOMALY DETECTION ON STREAMING DATA

We are currently developing our anomaly detection system to deal with mul-
tiple types of potential anomalies. A full treatment of this topic is beyond the
scope of this paper. Those interested should read Pawling et al [78] and Yan et al

[123).

3.6 PRIVACY AND ETHICAL CONCERNS

Concern about government monitoring of cell phone location and call activity
may present a challenge for the deployment of the WIPER system [87,,94]. In order
to address any concerns about privacy, the WIPER system is designed so that all
personally identifiable data is removed from the data stream before it leaves the
cell provider’s network, ensuring that there is no potential for sensitive data to be
abused. The software agents that handle the preprocessing reside on the servers
of the cellular service provider and ensure that all data that is streamed across
the internet is anonymized and encrypted. The WIPER system itself uses only
aggregate data from the data streams and is not designed to allow the monitoring

or tracking of individual handsets. We will continue to examine the potential
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impacts of such systems on personal privacy, especially in the context of location-

aware systems such as WIPER that utilize GIS systems and technologies[5, [6]

3.7 CONTRIBUTIONS

We have presented the architecture of the WIPER system. It is designed as
a distributed system built on open standards to address crisis events in the real
world. WIPER brings cutting edge social network analysis algorithms, anomaly
detection on streaming data, sophisticated GIS-enabled Agent-Based Simulations
and web-based interaction and visualization tools together in one package to en-
hance the decision making process of Emergency Management professionals. The
system can interface with the existing cellular telephone network to allow cell
phone activity to be monitored in aggregate, allowing the network to be used like
a large scale, ad-hoc sensor network. The stream of incoming data is monitored
by an anomaly detection algorithm, flagging potential crisis events for further au-
tomated investigation. Agent-Based simulations attempt to predict the course of
events and suggest potential mitigation plans. Finally the system displays output
at every level to human planners that can then monitor the current situation,
react to changing events and evaluate mitigation strategies. The WIPER sys-
tem is designed to integrate into a crisis response workflow, adding an important

component to the toolbox of Emergency Response professionals.

3.8 FUTURE WORK

For further information on the WIPER system and up to date descriptions of

the system and its components, visit http://www.nd.edu/~dddas/.
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CHAPTER 4

DESIGN AND IMPLEMENTATION OF AN AGENT-BASED SIMULATION
FOR EMERGENCY RESPONSE MANAGEMENT

4.1 ABSTRACT

This Chapter introduces the simulation component of the WIPER system [90].
The simulation is an Agent-Based Model of human activity, parameterized with
agent location data taken from a cell phone network and run on GIS maps of
the area. The simulations model both normal behavior and crisis events. Output
of the simulations is in the form of call activity and agent locations, similar to
that generated by the observation of cell phone users in an urban setting. A
taxonomy of crisis events is presented, which has simplified the development of
the simulation. The approach to the overall simulation design draws upon ideas
from Pattern Oriented Modeling and agile techniques from Software Engineering.
The simulation structure is presented, along with validation and verification of

the system and an evaluation of runtime characteristics.

4.2 INTRODUCTION

Fires, riots, traffic jams and natural disasters are crisis events that can impact
our lives. When possible, prevention is best. However, these events cannot be

entirely eliminated, and so it is advantageous to spend time and effort developing
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techniques to mitigate their impact. Simulations of these events can help us to
understand the development of these events, as well as evaluating strategies for
dealing with these crises.

Agent-Based Simulation is an accepted paradigm for simulating human be-
havior in realistic environments. The canonical examples of this are in traffic
simulation, a relatively mature field, and in simulating the spread of infectious
disease through urban areas. Important to both of these approaches is capturing
the movements of individuals in the area. Simulating events like traffic jams or
outbreaks of Avian Flu is advantageous for several reasons. First, a well developed
simulation can provide insight into the spread of the disease or the conditions and
behaviors that can lead to traffic jams. Second, computer simulations give plan-
ners the ability to evaluate scenarios to deal with the crisis event. Planners using
the EpiSims simulation [I2] can evaluate strategies for preventing the spread of

Smallpox in a large urban area.

4.3 BACKGROUND

Agent-Based Models are well suited to simulating the behavior of complex sys-
tems, such as ecological systems, biological simulations and simulations of human
behavior and movement [11) 24] [82] 88|, [92]. These simulations cover a vast range
of application domains, but there are similarities in the systems that make them
amenable to the ABM approach. First, the system is composed of heterogeneous
actors, which are called agents when simulated. Next, the desired output of the
system is an aggregate over all the agents in the system. This can be some mea-
sure of the state of the agents, such as location, emotional state, etc. Finally, the

simulation output is generated as a result of the interactions of the agents with
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themselves and the environment.

4.3.1 AGENT-BASED MODELING

Agent-Based Modeling techniques grew out of a merging of the Discrete Event
Simulation and Cellular Automata paradigms [9, [73]. Cellular Automata are
simulations that exist in an environmental space, such as a grid, and the cells
have certain behaviors or properties that develop over time and in relation to
neighboring cells [104].

According to [9], a Discrete Event Simulation is a simulation where the “state
variable changes only at a discrete set of points in time”. Examples include
time-stepped or event-based simulations that model processes, including many
important to industry, such as scheduling the processing of parts in an assembly
plant [20]. These simulations may be time-stepped, in which actions take place at
integer intervals, or events can occur on a timeline, a schedule of events ordered
by time. Simulations that use a timeline are still considered “discrete” due to the
discrete nature of time, usually addressable at the level of a double.

An Agent-Based Model is comprised of a set of actors, the agents, which
can be heterogenous and have individual movements, behaviors and goals and an
environment (often spatially explicit, as on a cellular automata grid) where the
agents exists. The behavior of the simulation is a result of the interactions among

agents and of the agents with their environment.

4.3.2 TRAFFIC SIMULATIONS

Several Agent-Based Models of traffic flow currently exist [II] [47]. These

models are useful in that they can produce useful information over a variety of
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traffic conditions, from traffic jams to steady state traffic flow, which is a limitation

of earlier approaches [42, [43].

4.3.3 INTEGRATING GIS WITH AGENT-BASED MODELS

Several research groups have explored the integration of GIS data sources with
Agent-Based Models [14] 15 [50]. The advantages of this approach are that agents
can interact with realistic environments, improving the validity of the simulation’s
predictions, as well as allowing planners and architects to evaluate the effectiveness
of designs before they are built.

Using GIS data sources to represent the environment in Agent-Based Models
requires rethinking the approach to simulation. Often the environment in an ABM
is a grid structure, with agent movement delineated in discrete units. However,
movement on a GIS is continuous and simulations must take this into account.
Often land-use simulations will use discrete parcels of land in order to avoid issues
with modeling arbitrary areas [105]. In the WIPER simulation we address the
issue by simulating agent movements in terms of meters per time step and avoiding

discrete representations of space.

4.3.4 APPROACHES TO THE DESIGN OF AGENT-BASED MODELS

Grimm et al have suggested the use of a Pattern-Oriented approach to com-
posing Agent-Based Models [45]. This approach is similar to the Design Patterns
approach to Software Engineering, as described in Gamma et al [37]. The Pattern-
Oriented approach to model development starts by identifying patterns or motifs
of agent behavior. In Individual-Based Ecology, examples of these patterns could

be foraging behavior, nesting, mating, etc. A simulation is then developed as
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a combination of these patterns. A heuristic for the composition for these pat-
terns is to add only as many patterns as are necessary to demonstrate the desired

behavior.

4.3.5 VALIDATION OF AGENT-BASED MODELS

Validation is the process of determining whether a model is a valid representa-
tion of the real system [9]. Some researchers have argued for the value of correct-
ness proofs as a validation approach. This approach complements the canonical
model development cycle, but is only practical when the modeler is using a toolkit
that supports it, such as DEVS [124]. Bankes has suggested that Agent-Based
Modeling is more correctly viewed as “an example of experimental mathematics”
which places the interpretation of simulation results in the purview of statistics
and not formal proof [§]. Indeed, many validation techniques as presented in the

literature rely on statistical testing of results and not deductive proof |7, [122].

44 TAXONOMY OF CRISIS SCENARIOS

In order to simulate and predict the course of crisis events, it is necessary that
we have, a priori, a set of crisis scenarios that we can draw from. To make the
process of developing these simulations more straightforward, we have tried to
analyze various crisis events and organize the events into a taxonomy. We placed
the scenarios into functional groups, focusing on the behaviors and actions of the

agents that will elicit these behaviors.
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4.4.1 CRISIS CATEGORIES

We divide the crisis scenarios into 3 categories based on the principal movement
characteristics of the agents. These categories are not meant to be exhaustive but
merely descriptive of the events that we seek to simulate. The categories are as

follows:

e Flock - Agents move in roughly organized fashion, like a mob.
e Flee - Agents move away from a disturbance.

e Jam - Agents move towards their customary goals, but are constrained, as

in a traffic jam.

For the Flock category, agents move as a group, but without explicit leadership
in a manner similar to the BOIDS movement model [86]. The Flock category is
currently composed of one movement model, the mob model. This can be used to
simulate scenarios where crowds of people are causing a disturbance, such as the
WTO protests that occurred in Seattle in 1999 [118].

The Flee category is a much broader category and is applicable in a wide range
of crisis scenarios. The category consists of models where agents are attempting to
move away from some disturbance. The models in this category can be described
concisely as flee from point, flee from line (not necessarily a straight line, this can
include rivers/coastlines), flee from an area and bounded flee, where the agents
get a certain distance away and stop. Some examples of crisis events that fit these
scenarios would be people fleeing from a burning building (either a flee/bounded
flee from point or flee from area, depending on map resolution), inhabitants fleeing

a chemical spill (flee an area) and residents fleeing a tsunami (flee a line).
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The final category is Jam, a collection of movements that are constrained.
Agents in this category are trying to reach a destination (which may be unique
for each agent), but the actions of all the agents together serves to create an event
where movement is restricted for the entire system. The canonical example of
this type of behavior is a traffic jam. This type of crisis scenario is often not
necessarily an emergency event, though it can be, as in the case of the traffic jams
on North-South highways in Florida in 2005 during the Hurricane Rita evacuation
[116].

4.5 DESIGN

The WIPER Agent-Based Simulation has been designed using Design Patterns
[37]. The use of Design Patterns is a common approach to the development of

object-oriented software and in this regard they can be applied quite well to Agent-
Based Models.

4.5.1 APPLICATION OF DESIGN PATTERNS TO SIMULATION

In order to reduce the amount of time and effort spent in writing the code
for these simulations, we break out the agents’ movement and activity models
as Strategy and Singleton Patterns [37]. This is possible because many aspects
of agent state remain constant, regardless of the underlying phenomenon that
we intend to simulate. We extract and encapsulate agent behaviors related to
movement and activity into objects, outside of the agent itself. Agents then retain
a pointer to this movement or activity model object. Although this does seem to
introduce a semantic disconnect with how we expect an agent to be designed, this

approach offers huge benefits in model development and allows researchers to run
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simulations where it is easy to initialize a population of agents with a few models
and tractable to initialize the population with a large number (100 or more) of
movement or activity models. More importantly this flexibility is apparent during
the running of a simulation, when agents can change their movement or activity
model at runtime, easily and without adverse affects on simulation performance,

as switching models can be done as easily as changing a pointer.

4.5.2 SIMULATION BASE

All simulation scenarios share important components. The GIS files repre-
senting geography, political boundaries, tower information, etc are the same for
all scenarios. A centralized simulation model class handles the initialization and
setup of the simulation, placing agents onto the map, setting agent movement and

activity models and handling the schedule.

4.5.3 CRISIS SCENARIO COMPONENTS

The crisis scenario taxonomy is used to guide our design of the crisis movement
and activity models. A standard movement model has been developed in order to
provide a baseline for comparison against the crisis models. The standard model,
nominally referred to as “Move and Return” is intended to represent the activity
of citizens in a non-crisis scenario. Agents have a “home” location, set at the
beginning of the simulation and an alternate location, which we refer to as the
“work” location. Agents move from the “home” to the “work” in the morning and
return “home” in the evening. In the simulation, the locations of home and work
can be set for each individual agent, as well as defining the movement schedule,

which should allow the model to be validated against empirical movement studies.
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Such studies using cell phone calling data are currently underway.

The taxonomy of crisis scenarios provides a framework for the implementation
of the movement models. All of the models in a given category share similarities
and can be arranged into an inheritance hierarchy accordingly, allowing reuse of

related movement code.

4.6 VALIDATION AND VERIFICATION

Model validation is a necessary step in the development of a simulation. In
order to demonstrate the validity of the simulation as a whole, several steps are
taken to validate the underlying theoretical model and to verify the implementa-
tion. In this section we describe the verification and validation approaches used
on the WIPER simulation.

As stated in [122] and [54], the Agent-Based Modeling research community has
yet to embrace formal validation and verification techniques. The authors suggest
techniques from the Discrete Event Simulation community that are applicable to
Agent-Based Models. Using these suggestions, we present the verification and

validation of the WIPER simulation using the following techniques:

e Face validation
e Synchronization of Random Number Generator

e Input-output correlation using empirical data

4.6.1 FACE VALIDATION

The most common validation approach is face validation. In this step, a do-

main expert examines the theoretical model and it’s underlying assumptions and
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determines whether this model is a reasonable representation of the intended phe-
nomenon. For this simulation we have conducted face validation on the conceptual
model ourselves, which is a common practice in the field. We have examined the
assumptions for the simulation and the design decisions that have been made in
order to make the simulation process tractable. Here we briefly present the design
decisions.

For the simulation, we choose to model human behavior in 1 minute incre-
ments. The choice of time step was dictated by our need to generate calling
activity at no more than 1 minute intervals. Agent movement simulations may
benefit from smaller time steps, but there is a tradeoff between time resolution
and simulation runtime. For the purposes of agent movement simulation, 1 minute
intervals provides adequate accuracy to model agent behavior. Agents must move
on a simulated represention of the world. We chose to implement this using a GIS,
which provides an accurate model of the world. We chose to model cell tower cov-
erage areas using Voronoi cells. This is an accepted technique for representing

coverage areas, as stated in [66].

4.6.2 SYNCHRONIZATION OF RANDOM NUMBER GENERATOR

This verification technique tests the simulation to determine whether the ran-
dom number generator is initialized and used properly and ensures that simula-
tions results can be replicated. In this procedure, we ran multiple instances of the
WIPER simulation with the same input parameters and with identical random
seeds. This is vitally important in Agent-Based Models, as there are multiple
stochastic processes and synchronization of the random number generator ensures

that results can be replicated. The WIPER simulation uses a random number
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generator to generate Normal and Uniform distributions, both from the Colt API
[49].

A test of 4 replications each of 6 different random seeds was conducted. For
each level of random seed, all simulations generated identical output. This is an
excellent result for the verification of the simulation and confirms that the model

implementation meets our criteria for replicability.

4.6.3 INPUT-OUTPUT CORRELATION WITH EMPIRICAL DATA

The WIPER simulation is designed to be a component in the WIPER, emer-
gency response system. The intended purpose of the simulation is to be used in
a DDDAS system where the simulations are updated with and validated against
streaming data from a cell phone network. With this in mind, the WIPER simu-
lation was designed to generate simulation output similar to empirical data cap-
tured from a cellular service provider and furnished to the WIPER group. Here
we present a detailed examination of the simulation output in terms of cell phone
activity, comparing it to the empirical data taken from the CDR data. Call Data
Record (CDR) data is the data used by cellular service providers for billing pur-
poses. CDR records contain transaction records for the initiation and termination
of calls, SMS messages and other services. For a further introduction to CDR
data, see Section [3.5.1]

In order to perform these tests, we started by running 10 simulations, all with
identical input parameters but varying the random seed for each simulation. We
later increased this to 100 simulations. We parameterized the simulations with
the number of active users for the simulated area, as taken from the empirical

CDR data. We set the movement model to null, which causes the cell phone
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user agents to remain at fixed locations throughout the simulation. We set the
activity model to be a Distribution-based model, as described in Section [4.7.1]
The Distribution-based model is designed to generate call activity in a way that
is similar to that found in the empirical CDR data.

We present the call activity output of the first round of simulations in Figures
and In Figure [4.1] the output of all of the simulations are plotted on
top of the empirical data, which is in blue. In these figures the empirical data
is the CDR data for the region for one day. In Figure [4.2] the results from each
simulation is individually plotted against the empirical data. These plots provide
an interesting graphical view of the output. A more useful plot of the output is
the empirical data plotted over the range of the simulated data, shown in Figure
4.3l This plot demonstrates that the simulated data falls in a range around the
empirical data.

A common test to determine if two data sets come from the same generating
distribution is the Kolmogorov-Smirnov test[117]. This test is performed pairwise
on the output of each simulation against the empirical data. In Table [.1] we
present the results of the K-S test on the initial round of 10 simulations, including
the D value (the K-S test statistic) and whether the result indicates acceptance
at the a = 0.10, 0.05 and 0.01 levels. As shown in the Table, output from the 10
simulations all pass at the a = 0.01 level of significance, 6 of 10 pass at the a =
0.05 level of significance and 3 of 10 pass at the a = 0.10 level of significance. It
should be noted that the D-values are more significant as the value approaches 0.

According to Banks, goodness of fit tests, such as the K-S test, are sensitive to
sample size and have a tendency to reject candidate distributions for large sample

sizes[9]. Our simulations generate a sample of size 144, as the data is aggregated in
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Figure 4.1. Plot of cell phone call activity from various simulation runs
and empirical data for one day of actual and simulated time.
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TABLE 4.1
EXAMINATION OF KS TEST STATISTICS FOR COMPARING
SIMULATED CALL ACTIVITY TO EMPIRICAL DATA FROM TEN
REPLICATIONS OF THE SIMULATION. GIVEN ARE THE D
TEST STATISTIC AND A NOTATION AS TO WHETHER THE
TEST FOR THAT SIMULATION IS ACCEPTED FOR o = 0.10, a =
0.05 AND a = 0.01.

Simulation | D Statistic | Accept at a = 0.10 | @« = 0.05 | o = 0.01
1 0.903 YES YES YES
2 0.1042 NO YES YES
3 0.1319 NO NO YES
4 0.1319 NO NO YES
5 0.0903 YES YES YES
6 0.1181 NO NO YES
7 0.1111 NO YES YES
8 0.1042 NO YES YES
9 0.1250 NO NO YES
10 0.0764 YES YES YES

66



Histogram of D Values

e D Values
L e 90%Cl
95 % CI
99 % ClI
o _|
(qV]
)]
c
i)
s
>
E &
7]
©
g
E 2
>
prd
m p—
o p—
I T T T 1
0.00 0.05 0.10 0.15 0.20

D Test Statistic Value

Figure 4.4. Histogram of the Kolmogorov-Smirnov test statistics for 100
runs of the simulation. The acceptance values for a = 0.10, a = 0.05
and a = 0.01 are plotted as vertical bars. Lower test statistic values

indicate higher confidence.
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10-minute intervals over 24 hours. In Figure 4.4/ we present a look at a histogram of
the K-S test statistic on the output of 100 simulations. This was done to visualize
how well the simulations fit the empirical data over a larger range of simulation
runs. The histogram demonstrates that an appreciable number of the simulations
rank above the o = 0.10 level of significance and the vast majority rank above
the a = 0.01 level of significance. This result, on a much larger set of simulation
output, demonstrates significant evidence that the WIPER simulation generates

call activity data similar to that seen in the empirical data.

4.7 IMPLEMENTATION

The WIPER simulations are written in Java using the RePast Agent Modeling
Framework [74]. The WIPER simulation also uses a number of Java APIs that
come bundled with the RePast distribution, including the Colt High Performance
Scientific Library [49] and GeoTools [40] and OpenMap [100] for GIS. A UML
diagram of the WIPER simulation is shown in Figure 4.5|

4.7.1 ACTIVITY MODELS

The activity models define the calling behavior of the agents. There are 3
activity models used in the simulation: the NullActivity model, the AlwaysCall
model and the DistributionBased model. All of the ActivityModel types are
subclasses of ActivityModel. ActivityModel is designed as a Singleton class (as
described in [37]), recognizing that all of the relevant state used to determine an
agent’s calling activity (Time, Date, Agent location) is maintained in the WIPER
agent and in WiperSimModel. ActivityModel is an abstract base class with three

methods:
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getInstance() Singleton Accessor method.

checkCall (WiperAgent) Method for determining whether agent should make a

call and if so, placing the call.

modelType() Returns the integer value of this model, using the model type defi-

nitions from WiperSimModel.

WIPER Agents use the ActivityModel objects in a Strategy Pattern [37].
This makes it possible to set the agent’s behavior type as a parameter and provides
fine-grained control over the behavior of individual agents in the simulation. The
control over agent behavior allows large scale heterogeneity in agent movement
models, an important consideration when attempting to model a large population
of human agents.

The NullActivity model is a place-holder class. It overrides the abstract
methods from ActivityModel but does not produce any behavior. This class is
intended to be used for testing the Movement models, as it will not alter agent
behavior.

The AlwaysCall model is another class used for testing. In this class, the
checkCall method always causes the agent to make a call. This class can be used
to test how agents call each other and to test other attributes of calling behavior.

The DistributionBased model is the primary call activity model in the sim-
ulation. This model requires initialization, it must be given an empirical call
distribution as input. When the checkCall method is called, the method gets the
(simulation) time and date from the WiperSimModel and then uses the empirical
call distribution to determine the expected call activity at the current interval. A

further discussion of the method of generating agent calling activity is given in

Section 4. 7.7
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4.7.2 MOVEMENT MODELS

The movement models define the manner in which WIPER agents move on the
map. There are 5 different movement models: NullMovement, RandomMovement,
MoveAndReturnMovement, FleeMovement and BoundedFleeMovement. As with
ActivityModel, MovementModel is an abstract base class and is designed to be a

Singleton. The abstract methods are:

getInstance() Singleton Accessor method.
move (WiperAgent) Moves agent on the map.

modelType () Returns the integer value of this model, using the model type defi-

nitions from WiperSimModel.

As with ActivityModel, WIPER agents use MovementModels in the Strategy
pattern. In this case, the agent encapsulates the location and any pertinent charac-
teristics (movement speed, location of work or home, etc) and the MovementModel
accesses these through the agent when calculating the destination.

The NullMovement class is a placeholder, implementing the move method but
without causing the calling agent to actually move. This class is useful when
testing ActivityModels.

The RandomMovement class is used to move agents in a random fashion on the
map. When the move () method is called, a random direction is chosen and the
agent is advanced along that direction. The distance traveled depends on the
agent’s movement speed and the length of a simulation time step. The agents do
not continue traveling along this path, at each time step a new direction is chosen.

The MoveAndReturnMovement class defines a “daily routine”, where agents

travel from a home location to a work location and back. This model works in con-

71



junction with events scheduled in the WiperSimModel and with state maintained in
the WIPER agents, the home and work locations, information on whether they are
traveling to home or work, etc. The sendAgentsToWork() and sendAgentsHome ()
methods are placed on the schedule at initialization by the WiperSimModel and
scheduled to execute at a particular time in the simulation. For example, the
sendAgentsToWork () method may be scheduled for 8am in simulation time and
the sendAgentsHome () method scheduled for 5pm, corresponding to a typical
American workday. These methods work by setting the MovementModel of the
WIPER agents to the MoveAndReturnMovement, which will cause the agents to
begin moving towards work or home, respectively, at the next time step. The
WIPER agent maintains the location of its own work and home locations, and the
MoveAndReturnMovement uses these to calculate the next position of the agent.

The FleeMovement class is an implementation of a crisis movement class. The
move () method moves each WIPER agent in a straight line away from a disaster
location. The location of the crisis is initialized in the WiperSimModel at the start
of the simulation. In this class, WIPER agents always move away from the crisis
and continue moving until the simulation ends. This type of behavior is similar to
what is expected in a major disaster scenario, such as the fleeing from Manhattan
on September 11. Due to the relatively short duration of the WIPER simulations,
minutes and hours, rather than days, this type of behavior is a good first-order
approximation.

The BoundedFleeMovement class is a refined version of FleeMovement. In this
move method, each WIPER agent moves directly away from the crisis location
until it reaches a threshold, then stops. The crisis location and the flee radius

are initialize in WiperSimModel at the start of the simulation. This type of crisis
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behavior is more consistent with what would be seen in a building fire or small-

scale crisis, where people flee the crisis until they reach a safe distance.

4.7.3 THE WIPER SIMULATION MODEL CLASS

In the WIPER simulation, the WiperSimModel class extends SimModelImpl
and is responsible for the creation, initialization and management of the simu-
lation. The SimModelImpl class is a RePast class that partially implements the
SimModel interface, which is designed to control the schedule, run the simulation
and respond to input from the RePast GUI console. In the WIPER simulation,
WiperSimModel is the largest and most complex class.

When a WIPER simulation is started, WiperSimModel receives the initial pa-
rameters either from the RePast GUI (for interactive simulations) or from the
command line (when used as part of the WIPER Simulation Prediction System
or when dispatching simulations to a computational grid). The initial simulation
parameters are used to specify which components will be visualized on the graph-
ical display, configure the GIS map with voronoi cells and geographical features,
initialize the WiperAgents (either from a file or via a string of tower IDs and
number of agents at each tower), schedule actions (these can include generating
and saving GIS snapshots, logging of calls and agent locations, scheduling each
WiperAgent’s step() method, etc) and handle proper clean up at the end of the

simulation (closing output files, etc).

474 THE WIPER AGENT CLASS

The primary purpose of the WIPER simulation is to model the behavior of cell

phone carrying inhabitants of an urban area. The WiperAgent class is the imple-
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mentation of the cell phone agent, encapsulating state information such as current
location, home and work locations, current cell tower / voronoi cell. As described
above, WiperAgents use the Strategy pattern [37] for holding their movement and
activity models, which allows unprecedented flexibility across the population of
agents. This means that movement or activity models can be assigned individually
to agents and that the behavior of an agent can be changed easily by replacing its
movement or activity models.

A WiperAgent is initialized with a current location, links to the WiperSimModel
and the centralized logger, given a starting location, home and work locations
and movement and activity models. At each time step, the agent’s step()
method is called. In this method the agent calls the checkCall() method in
it’s ActivityModel and the move () method in it’'s MovementModel. If the agent
makes a call, it records this information in the log. Similarly, an agent can be
configured to record its movement in the log, however agent movements are usu-
ally recorded by WiperSimModel at some interval (usually a multiple of the time

step), in order to reduce the size of the logs.

4.7.5 CENTRALIZED LOGGING ARCHITECTURE

Agent movements and calling activity are recorded to the WIPER simulation
log using a centralized logging architecture. The DataLogger class acts as a central
entry point to the log, collecting information from agents and sending the results
to a file. The DataLogger produces two files for each simulation run, an activity
file with all call activity and a location file with agent locations. The activity
file records agent calling activity in a format identical to the CDR data from

our cellular service provider. For a more thorough introduction to the CDR file
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format, see Section [3.5.1l This compatibility makes it possible to use simulation-
generated activity files in place of empirical CDR data in the RTDS component
of the WIPER system (see Section (3.4.1)).

476 GIS

Various GIS data sources are used in the WIPER simulation: roads, political
boundaries, cellular tower locations, voronoi cells. A voronoi diagram is a tiling
on a surface around a set of points p € P where each point p; occupies a unique
cell and all points within that cell are closer to p; than to any other p € P[I14].
The voronoi cells in the WIPER simulation are a tiling of the map made from the
cellular tower locations. These cells provide a good first order approximation of the
coverage area around each tower, allowing the simulation to read in agent activity
at a tower and translate this to approximate agent locations on a map. Political
boundaries, such as postal codes, city limits, etc are useful when attempting to

paramterize agents based on census data or other demographics linked to location.

4.7.7 IMPLEMENTING SIMULATED CALL ACTIVITY FROM EMPIRICAL
DATA

In order to create a valid activity model, we base our activity model on em-
pirical data taken from the historical data collected for the WIPER project. This
empirical data is a trace of Call Data Records (CDR) taken over a 15-day period
in early 2006. Each entry in the CDR file is a transaction corresponding to the be-
ginning or end of a call or SMS message, containing the date, time, caller, receiver,
tower number and transaction ID (either call begin/call end or SMS begin/end).
The CDR files contain 1,113,222,456 records, with a breakdown of the transaction
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types shown in Table [£.2]

TABLE 4.2
BREAKDOWN OF CALL TRANSACTION TYPES IN THE CDR
FILES.

Transaction Count

Call Begin | 375,363,655

Call End 347,705,509

SMS Begin | 127,172,484

SMS End 262,980,808

Total 1,113,222,456

4.8 CONTRIBUTIONS AND RESULTS

In this section we present a thorough examination of the characteristics of
the WIPER simulation, including runtime performance, scalability and offline
characteristics. Output of the simulation, including screen shots of the visual

components, is also provided.

4.8.1 GUI DISPLAY AND VISUAL COMPONENTS

A sample screen shot of the WIPER simulation is shown in Figure 4.6l In

this image, the WIPER simulation is being run in GUI mode, using the standard
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Figure 4.6. Screen shot of the WIPER simulation. This simulation is a
Flee movement model with distribution-based activity model. Agents
are represented as red dots with the Voronoi cells colored by the
number of contained agents.
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RePast toolbar to control the simulation and adjust input parameters. The map is
an OpenMap display showing agent locations and the voronoi cell boundaries, with
the voronoi cells colored by the number of agents within each cell’s boundaries.
The call activity window shows a running display of the call activity of all agents
in the simulation, plotted against the empirical call activity for this time and day.

When the WIPER simulation is run interactively, a researcher can observe via
the GUI display the state of the system and the recent agent behaviors. In order
to improve runtime performance, the plotting of agent locations can be disabled.
The overall agent locations can still be determined through the coloring of the

voronoi cells but with a lower degree of accuracy.

4.8.2 RUNTIME PERFORMANCE

The runtime performance of the WIPER simulation in response to chang-
ing levels of graphical output is presented in Table £.8.2] All simulations for
this analysis are started with 500 agents, using the MoveAndReturnMovement and
DistributionBased models. The simulation runs for one simulated day, 1440
time steps, with each time step representing one minute. The simulation can be
run without any graphical display (the default when running simulations on a
computational grid), with a GIS display that shows information such as cell tower
locations, the surrounding Voronoi cell for a tower and agent locations and finally
the simulation can generate snapshots of the GIS display, which can be displayed
on the graphical console of the WIPER system or compiled together to form a
movie.

The results shown in Table are the total cumulative running time for

20 runs of the simulation. The results clearly demonstrate that there is a cost
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TABLE 4.3
CUMULATIVE RUNTIME FOR 20 RUNS OF THE SIMULATION
WITH VARYING LEVELS OF GRAPHICAL OUTPUT. GIS - GIS
DISPLAY, SHOWING TOWER LOCATIONS AND VORONOI
CELLS COLORED BY NUMBER OF CONTAINED AGENTS.
AGENT LOCATIONS - THE LOCATION OF ALL AGENTS ARE
ADDED TO THE GIS DISPLAY. SNAPSHOTS - EVERY 10 TIME
STEPS THE SIMULATION MAKES A SNAPSHOT OF THE GIS

DISPLAY.
GIS | AGENT LOCATIONS | SNAPSHOTS | TIME
NO NO NO 240.34s
YES NO NO 354.70s
YES YES NO 363.44s
YES YES YES 35200.29s

associated with running the graphical display and generating snapshots of the
GIS. It is interesting to note that the penalty for visualizing the agents on the
GIS display is negligible, compared with the cost of the GIS. Generating the
snapshots only once every 10 time steps requires an approximately 2 orders of
magnitude cost.

The scaling of the simulation with regards to number of agents, area fixed,
is shown in Figure [£.7] In the simulations, all WiperAgents are started with
MoveAndReturnMovement and DistributionBased models and are initialized into
the same geographical area. For each level of agent population size, 25 replications

with unique random seeds were run. The agent population varied from 10 to 10,000
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Figure 4.7. Simulation scalability results showing variations in running
time. Visual analysis indicates that simulations scale linearly with
respect to agent population size.
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in the following manner: 10-100 by increments of 10, 100-1000 by increments of
100 and 1000-10,000 by increments of 1000.

Table gives the summary statistics for a subset of the running times. The
simulations demonstrate a low standard deviation about the mean indicating that
the runtime results should be a good predictor of simulation runtimes when de-
ployed in the WIPER system.

The plot of the mean user time for each level of agent population are shown
in Figure In this figure, the scaling of simulation time with respect to agent
population is nearly perfectly linear. Linear regression on the data generates a
line of m = 0.07352, b = 5.91087, with an adjusted R-Square value of 1 and a
p-value of < 2.2 % 10716,

Figure shows the scalability of the simulations with respect to agent pop-
ulation out to a population size of 1,000,000 agents. These simulations run for 60
simulated minutes and population size is sampled from 1,000 to 10,000 in steps
of 1,000, from 10,000 - 100,000 in steps of 10,000 and from 100,000 to 1,000,000
in steps of 100,000. In these simulations the initial starting position of the agents
is constrained to a given geographical area, but as the simulation progresses the
agent population diffuses, so that larger agent populations will occupy a larger
geographical area.

The figures clearly show linear scaling with respect to varying numbers of
agents in the WIPER simulation for agent population up to 10,000 agents and
respectable but above linear scaling when simulations have more than 200,000
agents. This result is confirmation that the simulation demonstrates excellent
runtime characteristics. It is unlikely that an improvement can be made on the

scaling, as the nature of the simulation requires that each agent be visited at each
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TABLE 4.4
AVERAGE RUNNING TIME AND STANDARD DEVIATION FOR
SIMULATIONS WITH 10-10,000 AGENTS. TIMES ARE IN
SECONDS. SIMULATIONS DISPLAY LOW STANDARD
DEVIATION THAT SCALES APPROPRIATELY WITH RUNTIME.

Number of Agents | Mean Running Time | Std. Dev.
10 5.6172 0.14025334
20 6.4272 0.09688997
90 11.7548 0.14338526
100 12.4444 0.15564597
200 20.0124 0.19751118
900 73.4960 1.88104138
1000 80.6840 0.86200348
2000 154.2744 1.94242563
9000 667.6448 8.62510054

10000 738.6588 10.71719814
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Figure 4.8. Simulation scalability with respect to agent population size.
Results shown with linear fit line.
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time step.

4.8.3 OFFLINE CHARACTERISTICS

The WIPER simulation, in a code snapshot from April, 2007, contains 3595
lines of code and an additional 1355 lines of unit testing code. When packaged as
an executable jar file, along with supporting libraries, the simulation is 7.7MB.
Additional data files require approximately 10MB of space.

There are three types of output files from the simulation: a .txt file containing
CDR data, a .loc file with agent locations at regular intervals and (optionally)
.png screenshots. The generated CDR data file is in ASCII text and is about
500KB uncompressed for 1650 agents with a duration of 1 day. The location file
for the same scenario, also ASCII text, is 6.5 MB uncompressed. The screenshots
consist of images of the GIS map covering the initial area of the simulation and

are 40KB each.

4.8.4 DESIGN CONTRIBUTIONS

The development of an Agent-Based Modeling simulation, as with software in
general, is an iterative and ongoing process. A simulation is never truly “finished”,
as there is always some area that can be improved upon: speed of execution, ease
of use, memory footprint, variety of crisis scenarios, accuracy / validity of model
results, etc. With this in mind, the WIPER simulation has been designed to
be easy to maintain and extend. The simulation is designed using conventional
software engineering techniques such as Design Patterns [37]. Components of the
simulation are tested and verified using an extensive and comprehensive Unit Test-

ing suite. The simulation has been developed using an Agile approach, with the
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Figure 4.9. Simulation scalability with respect to number of agents, 20
replications at each level. In this instance we run simulations for 60
minutes of simulated time. In this graph we examine agent simulations
out to a population size of 1,000,000 agents.
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design of the simulation revised several times using the concept of Refactoring as
described by Fowler [36]. Although these characteristics of the WIPER simulation
are difficult to measure quantitatively it is clear that they certainly contribute to
the extensibility and maintainability of the simulation.

Developer and user documentation is provided in the form of annotated JavaDoc
pages, with extensive comments from the developer and references to relevant
classes in the various APIs used by the simulation, e.g. RePast, OpenMap, etc.
Additional documentation for end users is provided on a research wiki and will be

made available upon request.

49 SUMMARY

In this chapter we have presented the WIPER simulation, an Agent-Based
Model for simulating the movement and calling behavior of cell phone users. The
simulation has a calling activity model based on the activity observed in empir-
ical data taken from cellular service provider records. The activity generated by
the simulation is indistinguishable from the empirical data according to statistical
tests. The movement models demonstrate various behaviors that are important
when attempting to simulate crisis behavior. Also, as the simulation is designed
to be a part of the WIPER system for emergency response, where simulations are
updated with streaming data, runtime performance is an important development
goal. We have demonstrated through a scalability exploration the runtime char-
acteristics of the simulation, showing that it displays adequate performance for

use in the time-critical WIPER system.
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410 FUTURE WORK

The current cell phone activity models represent usage under normal scenarios.
We would like to study the existing CDR data and examine behavior of people
during crisis events. We will use this information to guide the creation of crisis
activity models and will use our existing validation framework to evaluate this
approach.

As shown, the simulation does not implement all of the crisis scenarios de-
scribed in the crisis taxonomy. We are in the process of implementing a more
comprehensive set of crisis scenarios. As the simulation is designed for use in sim-
ulating crisis events, we would like to make the scheduling of crisis events easier.
Currently this requires changes to the source code.

In order to better model human behavior and the spread of information as
it relates to crisis events, it may be useful to examine creating a social network
structure on the agents. The could allow us to study information diffusion across
a population, as well as examining the interplay between physical location and

distance in a social network.
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CHAPTER 5

CREATING AND UPDATING AGENT-BASED MODELING SIMULATIONS
FROM STREAMING REAL-TIME SENSOR DATA

5.1 ABSTRACT

According to the DDDAS approach, the accuracy of simulations can be im-
proved when they are created with recently acquired data [26]. Extending this
idea, the predictive ability of simulations can be further improved when they are
updated in an online fashion with streaming data. However, the process of creating
and updating simulations with streaming sensor data presents several challenges:
How should parameters detected in the real world be applied to the simulation?
Is it worthwhile to pursue a one-to-one mapping between agents in the simulation
and their referent in the real world? Are the costs of maintaining complex, one-
to-one relationships between agents and referents justified with improved model
payoft? In this Chapter we explore the challenges to creating and updating simu-
lations with streaming sensor data, develop an approach to solving the challenges
and evaluate the approach in the context of the WIPER project, an Emergency

Response system that is designed according to the principles of DDDAS [90].
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5.2 INTRODUCTION

Emergencies strike without warning. In order to model floods, crowd evacua-
tions, traffic jams and other time-critical events, it is important to be able to create
simulations that reflect our knowledge of the current state of the world. Sensor net-
works, real-time traffic data and cell phone networks provide simulation modelers
and governmental agencies with an unprecedented level of information regarding
the state of the world. This information can be used to parameterize simulations
that attempt to model the world, but only if simulations are designed appropri-
ately and a framework exists for updating running simulations with streaming
data. This chapter proposes an approach to improving the effectiveness of sim-
ulations with streaming data by stating model design assumptions that make it
possible to create and update simulations with streaming data and by providing
a framework for updating simulations with streaming data.

Simulation is a well-accepted approach to planning for emergencies and testing
approaches to mitigating crises. Government agencies currently use agent-based
simulations to test out different scenarios for combatting the spread of biological
organisms, such as smallpox or avian flu[I2] [33]. In the Emergency Response and
Management field, the term “simulation” can represent live-action re-enactments
of crisis events, pen and paper simulations or computer simulations. In this Chap-
ter we take the term simulation to only refer to computer simulations.

Simulations can vary in their predictive ability, but are greatly improved when
they can be grounded with real-world information [26]. We consider the real-world
data in two different classes. The first class of data is relatively unchanging data,
such as GIS data that faithfully represent topography, transit networks and land

use. This data varies on a long time scale, that of years or decades, and can be
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safely created and updated offline. The second kind of real-world data varies on
a short time scale, that of minutes or hours, such as the locations of cell phone
users or the location, speed and direction of traffic. In the simulations that we
use to evaluate our approach, environmental data is considered in the first class
of data, is created offline and is constant over all simulation instances. Data on
agent locations and behaviors is used online and varies over time (though the data

stream itself is re-used for all simulation instances).

5.3 PROBLEM STATEMENT

Researchers agree that streaming data has the potential to improve the pre-
dictive ability of simulations [26] [29]. However, there is no consensus about how
to approach the challenges of creating and updating simulations with streaming
data. In response to this confusion and recognizing the potential contribution to
the field of simulation, the NSF has created the DDDAS initiative to address these

challenges.

5.4 BACKGROUND

Validation is described as “getting the right model” according to [7]. By this,
Balci means that validation is the process of determining whether the conceptual
model is a reasonable representation of the system it is designed to simulate.
Various validation techniques exist that are appropriate for use with Agent-Based
Models. Kennedy describes several approaches in [54].

The Optimization via Simulation approach seeks to determine input parame-
ters for a model that yield optimal output. This approach merely seeks to make

optimal choices on selecting input parameters while keeping the underlying model
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the same. Pichitlamken and Nelson describe a combined procedure for Optimiza-
tion via Simulation in [79]. The authors approach has three components: “a global
guidance system, a selection-of-the-best procedure and local improvement”. This
approach uses the Nested Partition method of Shi and Olafsson [93] for global
guidance and a hill climbing approach for local improvement. Although the au-
thors offer an interesting framework, certain drawbacks make utilization of the
entire approach impossible under our constraints. First, the selection of samples
from input space to initialize the global search can be NP-Hard. Second, the hill
climbing approach is susceptible to becoming trapped in local optima and relies
on randomization and the global search procedure to provide guidance. In the
WIPER system it is acceptable to use a local search algorithm and forgo attempts
at optimal prediction, as the simulation component is continually updated with
streaming data and long-term defects are corrected by the introduction of sensor

data.

5.5 APPROACH

The benefits of updating simulations with streaming sensor data are manifestly
obvious. Consider Figure (adapted from [29]). Here we see the results (in
output space) of updating simulations with streaming sensor data. Sensors collect
information about the progression of an event in the real world, starting with the
event at t_;

Our approach to addressing the challenges of creating and updating Agent-
Based simulations in a DDDAS is to aggregate sensor data to a larger level, in
the case of WIPER to the cell-tower level, and to introduce random variation in

the data. A naive approach would suggest that it is important to maintain as
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Figure 5.1. A visual representation of online updating of simulations.
The figure shows various simulation trajectories in output space and
compares them to an event as detected by sensors. Figure adapted from
[29].
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much data as possible about each individual in the system. Our streaming cell
phone data could potentially yield location information on every individual down
to a resolution of a few meters. However, canonical model development practice
suggests that such an approach would be counter-productive, leading to naive
realism, unduly adding complexity to the model without a corresponding increase

in model accuracy or usefulness [9], 45].

5.5.1 UPDATING AND RE-PARAMETERIZING

Figure shows a graphical comparison of two approaches to revising simu-
lations with streaming data. Simulations can be updated or reparameterized. We
define updating to refer to the process of restarting simulations with approximate
information on agent locations (and other parameters). In the Figure, this cor-
responds to receiving information on the number of agents in a voronoi cell, but
without specific location information on each agent. We define re-parameterizing
as the process of maintaining a 1 to 1 correspondence between human beings in
the real world and agents in the simulation. As information streams in about
the corresponding referent in the real world, we modify the state (parameters) of
each agent to reflect the rich information about the corresponding human, such
as precise location, movement trends, etc.

There are tradeoffs involved in creating more detailed models with larger pa-
rameter sets. The practice of trying to capture all possible information about a
system in a model is a common problem in the modeling community and is called
Naive Realism [45]. Banks describes the phenomenon as the tradeoff between
model complexity and “payoft”, where payoff is defined to be usefulness of the

model and combines various measures such as fitness for its intended purpose,
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Updating A Simulation

Time 1

Reparameterizing A Simulation

Time 1 Real World Data - Time 2 Time 2

Figure 5.2. A graphical comparison between updating simulations and
reparameterizing simulations from streaming data. When
reparameterizing a simulation, agent locations and parameters are
changed to conform to the streaming data. Updating a simulation
causes larger-scale properties, such as numbers of agents in a cell, to be
reset. Note that agent locations on an update become approximate.
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ease of use, runtime characteristics, etc [9].

5.6 EXPERIMENTAL SETUP AND RESULTS

In order to demonstrate the effectiveness of our approach, we present two ex-
periments. In the initial experiment we examine the differences between updating
simulations and re-parameterizing them, exploring the effects of these two tech-
niques in terms of how well the resulting simulations track a given event. In the
second experiment we present a case study on updating simulations. We examine
the effectiveness of using streaming data to update simulations and demonstrate
its effectiveness for tracking and predicting the progress of a simulated event.

For both experiments we adopt Euclidean distance as the metric for measuring
the simulation differences. We utilize one run of the WIPER simulation as our
simulated event and consider agent population at a fixed set of towers as the vector
of locations that we will measure against. We present agent locations at 1 minute
intervals and plot the updated simulations based on their Euclidean distance at
each interval.

For the updated simulations, agent locations are aggregated to the tower level
and simulations are updated every 10 minutes (simulation time) with streaming
data. For the re-parameterized simulations, we maintain a 1 for 1 correspondence
between agents in the target simulation and agents in the tracking simulations.
Every 10 minutes (simulation time) we adjust the parameters of agents in the

tracking simulation to correspond to agent parameters in the target simulation.
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Reparameterizing Simulations With Streaming Data
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Figure 5.3. Effects of re-parameterizing simulations. Tracking a Flee
movement.
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Distance from Rand model using Euclidean Measure

Reparameterizing Simulations With Streaming Data, Random Target
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Figure 5.4. Effects of re-parameterizing simulations. Tracking a
Random movement.
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Distance from Flee model using Euclidean Measure

Updating Simulations Online With Streaming Data
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Figure 5.5. Effects of online updating simulations. Tracking a Flee
movement.
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Updating Simulations With Streaming Data
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Figure 5.6. Effects of online updating simulations. Tracking a Random
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5.6.1 UPDATING AND RE-PARAMETERIZING SIMULATIONS

Results of re-parameterizing simulations are shown in Figures and [5.4]
Results of updating simulations are shown in Figures [5.5] and 5.6, In each of
these Figures, 20 simulations of each movement model type are run. At every
1 minute interval, the simulation outputs a vector with agent locations which
is compared against the target simulation, either a Flee movement model or a
random movement model.

In Figures and we compare the effects of updating against reparam-
eterizing. As clearly shown in the Figure, in the initial steps of the simulation,
updating generates output that yields a lower distance to the target simulation.
As the desire is to minimize the distance between the simulation and target, this
is a significant result. Beyond the initial 10 time steps the reparameterized sim-
ulations begin to outperform the updated simulations, however, in the context of
the WIPER system, the initial 10 time steps are the most important.

The results of this experiment show that the updating approach is a com-
petitive alternative to 1-1 reparameterization. Although we can parameterize and
re-parameterize the simulations with precise agent locations, this information does
not necessarily improve the performance of the model. Also, the reparameteriza-
tion process has significant drawbacks, as it is more difficult to manage detailed
information about a population of people (in this case precise individual locations)

than to maintain aggregate information (number of agents at each tower).
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Figure 5.7. Comparison of Updating to Reparameterization, 20
simulations each, using Flee model.
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Distance from Rand model using Euclidean Measure
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Figure 5.8. Comparison of Updating to Reparameterization, 20
simulations each, using Rand model.
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5.6.2 CASE STUDY: EFFECTIVENESS OF UPDATING SIMULATIONS FOR
TRACKING CRISIS EVENTS

We present a case study demonstrating the effectiveness of updating simula-
tions for tracking and predicting normal behavior and a crisis event. Simulations
generate agent locations at 1 minute intervals. The vector of agent locations is
then measured using the Euclidean distance metric from a baseline simulation.
In these experiments we visualize two separate baseline simulations, a simula-
tion with random movement and another simulation displaying the Flee behavior.
The Flee behavior was chosen to highlight a crisis behavior situation. The random
movement scenario was selected as it demonstrates behavior that will be difficult
to track and predict.

The results of the case study are presented in Figures and [5.10] The
simulations are updated at 10 minute intervals with agent location information
from the target simulation. The track of the target simulation is not plotted (it
would lie along the x-axis). As seen in the Figures, simulations track the Flee
movement with varying degrees of success, with successive time steps leading to
lower accuracy. Simulations have less success tracking the random movement

simulation.

5.7 CONCLUSION

We have presented an approach to updating Agent-Based Models with stream-
ing sensor data, using aggregate information with random variation of agent
initialization. Our approach addresses specific needs of a DDDAS application,
demonstrating a feasible, scalable approach to simulation updating. We have pre-

sented two experiments demonstrating the effectiveness of our technique, one in
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isolation and the other comparing it to a more intensive approach.

The results of our experiment comparing updating to reparameterization demon-
strate the effectiveness of our approach and provide experimental evidence to
support the simulation community’s view on the dangers of naive realism. In
the context of the WIPER system we have shown that updating simulations is
competitive with reparameterization and that the random variations in agent ini-
tialization, when spread across the entire population, have a surprisingly small

effect on simulation usefulness.

5.8 FUTURE WORK

In order to extend our work and make it more useful to the simulation com-
munity at large, we would like to conduct a more thorough evaluation of the
continuum of model complexity, examining successively more complex models of
agents and agent behaviors and the resulting effectiveness of those models in track-
ing and predicting the outcomes of real events, both normal activities and crisis
situations. Similarly it is interesting to consider the ideal level of aggregation
granularity, examining simulations using very large cell sizes to the ideal case

where the aggregate area corresponds individual agent locations.
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CHAPTER 6

EVALUATION OF MEASUREMENT TECHNIQUES FOR THE
VALIDATION OF AGENT-BASED SIMULATIONS AGAINST STREAMING
DATA

6.1 ABSTRACT

This Chapter presents a study evaluating the applicability of several different
measures to the validation of Agent-Based Modeling simulations against streaming
data. We evaluate the various measurements and validation techniques using
pedestrian movement simulations used in the WIPER system. These simulations
generate output on the calling activity of agents, as well as movement data. Here

we consider techniques for online validation of the simulation movement models.

6.2 INTRODUCTION

The WIPER system uses streaming cell phone activity data to detect, track
and predict crisis events [90]. The Agent-Based Modeling simulations in the
WIPER system are intended to model the movement and cell phone activity of
pedestrians. These simulations model crisis events and are intended to be vali-
dated in a online fashion against streaming data.

In the WIPER system, ensembles of simulations are created, with each sim-

ulation parameterized with a particular crisis scenario and initialized from the
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streaming data. When the all of the simulations in the ensemble have finished
running, the results are validated against streaming data from the cell phone net-
work. Thus the validation technique must provide a method of discriminating
between various simulations. In the context of the WIPER project, this means
determining which crisis model is the best fit for the phenomenon detected in the

streaming data.

6.3 BACKGROUND

Validation is described as the process of determining whether a given model is
an appropriate choice for the phenomenon being modeled. In the model develop-
ment cycle, validation is normally considered in the context of simulation creation
and development, and is done nearly exclusively in an offline fashion. However,
the process of selecting an appropriate model for a given phenomenon is precisely
what is needed in the dynamic context of the WIPER system.

There exists a large body of work on the topic of simulation validation. A sur-
vey of techniques and approaches to offline validation of discrete event simulations
can be found in Balci [7]. This work is an essential reference for validation, but
many of the techniques are suited to offline validation only, as the interpretation
requires human judgement.

This section is divided into three subsections related to the provenance of the
techniques we intend to evaluate. The first section deals with canonical offline val-
idation techniques from simulation, the second section presents distance measures

and the third section presents work that has been done with online simulations.
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6.3.1 OFFLINE SIMULATION VALIDATION

Balci presents a thorough evaluation of techniques for validation of models
in the context of model and simulation development [7]. The intent for these
techniques was to aid in the validation and verification of simulations prior to
deployment. Some techniques mentioned by Balci that are useful to our cur-
rent discussion are predictive validation (also called input-output correlation) and
blackbox testing.

Kennedy and Xiang describe the application of several techniques to the val-
idation of Agent-Based Models [54], 122]. The authors separate techniques into
two categories: subjective, which require human interpretation, and objective, for
which success criteria can be determined a priori. We focus on objective tech-
niques, as the requirements of a DDDAS system make it impossible to place human

decision makers “in the loop”.

6.3.2 ONLINE SIMULATIONS

Researchers in the area of discrete event simulations recognize the challenges
posed to updating simulations online from streaming data [29]. The need for
human interpretation is a serious limitation of traditional validation approaches
and limits their usefulness in the context of online validation. Simulation re-
searchers have defined a need for online validation but recognize the challenges to
the approach. Davis claims that online validation may be unobtainable due to the
difficulty in implementing changes to a model in an online scenario. We present
a limited solution to this problem by offering multiple models simultaneously and
using validation to select among the best, rather than using online validation to

drive a search through model space.
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It is important to distinguish between the model, the conceptual understanding
of factors driving the phenomenon, and the parameters used to initialize the model.
Optimization via simulation is a technique that is similar to canonical optimization
and seeks to make optimal choices on selecting input parameters while keeping the
underlying model the same and uses a simulation in place of the objective function.
These techniques are usually grouped by whether they are appropriate for discrete
or continuous input spaces [3]. For simulations with continuous input parameters,
the author suggests the use of gradient-based methods. For simulations with
discrete input parameters, the author presents approaches using random search
on the input space.

Pichitlamken and Nelson describe a combined procedure for Optimization via
Simulation in [79]. The authors approach has three components: “a global guid-
ance system, a selection-of-the-best procedure and local improvement”. For the

work presented here, we are most interested in their selection procedure.

6.4 MEASURES

We evaluate the following measures in the context of ranking simulations:

Euclidean distance

Manhattan distance

Chebyshev distance

Canberra distance

Binary distance
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The distance measures are used to evaluate the output of the WIPER simula-
tions in the context of agent movement. Agents move on a GIS space and agent
locations are generalized to the cell tower that they communicate with. The space
is tiled with Voronoi cells [114] that represent the coverage area of each cell tower.
Empirical data from the cellular service provider aggregates user locations to the
cell tower and the WIPER simulations do the same. Thus we can evaluate the
distance measures using a well-defined vector of cell towers where the value for
each position in the vector is the number of agents at that tower at each time

step.

6.4.1 DISTANCE MEASURES

Euclidean distance is the well-known distance metric from Euclidean geometry.
The distance measure can be generalized to n dimensions from the common 2

dimensional case. The formula for Euclidean distance in n dimensions is given in

Equation [6.1]

(6.1)

where
P = (p1.p2,-pn) (6.2)
7 = (1,9, @) (6.3)

Manhattan distance, also known as the taxicab metric, is another metric for
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measuring distance, similar to Euclidean distance. The difference is that Man-
hattan distance is computed by summing the absolute value of the difference of
the individual terms, unlike Euclidean distance which squares the difference, sums
over all the differences and takes the square root. From a computational perspec-
tive Manhattan distance is significantly less costly to calculate than Euclidean
distance, as it does not require taking a square root. The formula for Manhattan

distance in n dimensions is given in Equation [6.4]

D=l (6.1

Chebyshev distance, also called the L., metric, is a distance metric related
to Euclidean and Manhattan distances [I15]. The formula for the Chebyshev
distance is given in Equation [6.5 The Chebyshev distance returns the maximum
distance between elements in the position vectors. For this reason the metric seems
appropriate to try on the WIPER simulations, as certain models may produce an

output vector with one cell having a large variation from the norm.

1/k

d(p,q) = miaX(\pi —ql) = khjgo (Z lpi — ql|k> (6.5)
=1

The Canberra distance metric is used in situations where elements in the vector
are always non-negative. In the case of the WIPER simulations, the output vector
is composed of the number of agents in each Voronoi cell, which is always non-
negative. The formula for Canberra distance is given in Equation [6.6] As defined,

individual elements in the distance calculation could have zero for the numerator
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or denominator. Thus in cases where |p;| = |g;|, the element is omitted from the

result.

Z P — ai (6.6)

i + ¢l

The binary distance measure, also called the asymmetric binary measure, com-
presses a vector of real values into binary values and does a pairwise comparison
of elements. Binary distance is calculated by considering the vector as binary,
where nonzero elements are considered 1 and zero elements zero, then examining
every position in which at least one vector has a nonzero element. The measure
is then the ratio of the number of positions where strictly one element is nonzero
over the number of positions with nonzero elements. The binary distance seemed
well suited to the validation of the WIPER simulation output, as our baseline
model, the Flee crisis, tends to output a vector where a Voronoi cell has either a
large number of agents or no agents at all. The formula for the binary distance

measure is given in Equation [6.7]

D i1 Pi XOT g

dm.q) =
(7, 9) ST piotd,

where

I
—~

&

0¢)
~—

Di
1 otherwise
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6.5 EXPERIMENTAL SETUP

In order to evaluate the feasibility of our approach, we present three exper-
iments that demonstrate the effectiveness of the measures on validating agent
movement models. The first experiment uses output from a particular run of
the WIPER simulation as the synthetic data that will be tested against. This
output is considered a “target” simulation. For the second movement model ex-
periment we want to examine the effectiveness of measures in ranking models over
all model types. Finally, we present a CMC curve showing the results of using
distance measures for model verification.

The purpose of these tests are not to demonstrate the effectiveness of the
simulation to match the synthetic data but to demonstrate the ability of the
measure to differentiate between simulation movement and activity model types.
In a DDDAS system models of human behavior will be created and, according
to the traditional model development approach, be validated offline. From this
set of pre-validated models the system must be able to select, while the system is
running, the model that best matches the data.

For the initial movement model experiment, we examine the effectiveness of
the various statistical tests and measures in their ability to rank simulations in
their closeness to the baseline simulation. The baseline simulation models a crisis
scenario where people are fleeing a disaster. All simulations, including the baseline,
are started with 900 agents distributed among 20 Voronoi cells. The distribution
of agents to Voronoi cells is fixed over all of the simulations. For each of the 5
movement models, 100 replications of the simulation using different random seeds
are run. Our evaluation approach is to examine the effectiveness of each measure

in ranking output against the baseline. In this experiment, the desired results will
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show that instances of the Flee model are closer to the target simulation than
other model types.

The second movement model experiment considers all of the movement models
simultaneously. We use the data from the 500 simulation runs and create a matrix
of distance values between every pair of values. Each position m,; in the 500x500
matrix is the value of the distance metric between row ¢ and column j. For con-
sistency we present both the upper and lower halves of the matrix, as well as the
diagonal, which is always equal to 0. We create this distance matrix for each of
the distance metrics we consider. The outcome of the experiment is determined by
examining the matrix and determining if the distance metric used shows low dis-
tance for simulation runs of the same model and high distance between simulation
runs with differing models.

Finally, we use an approach from the data mining community for measuring
the effectiveness of algorithms at recognition tasks. The Cumulative Match Char-
acteristic (CMC) curve is a graphical summary of the ability of an approach to
correctly identify examples. We generate the CMC curve by measuring a simula-
tion instance against the other 499 instances and ordering the values from low to
high. The first example that is of the same model type as the instance is the rank
match for that instance. The CMC curve shows, over the 500 probe simulations,

what accuracy the measure yields for a given rank.

6.6 RESULTS

Results of using the FEuclidean distance metric to measure the differences in
agent locations between movement models is shown in Figure [6.1 At the first

time interval the Euclidean metric does an excellent job of ranking the Flee model
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instances as being the best match to the baseline. All of the Flee model instances
have low distance to the baseline and are all lower than any instance of the other
models. Interestingly, as the simulations progress, the Euclidean distance of each
simulation’s output from the Flee model baseline seems to yield good results for
classifying the models, as they demonstrate low inter-class distance and high intra-
class distance. The exception is the Null and Bounded Flee models. This result
is discussed below in the analysis.

Results of using the Manhattan distance metric to measure the differences in
agent locations between movement models is shown in Figure [6.2] The Manhat-
tan metric produces similar results to the Euclidean metric, with good results
beginning at the first time interval.

Results of using the Chebyshev distance metric to measure the differences in
agent locations between movement models is shown in Figure [6.3] As with the
other measures in the L family, the Chebyshev distance metric does a good job of
differentiating between model types in the early stages of the simulation run and
in the late stages.

Results of using the Canberra distance metric to measure the differences in
agent locations between movement models is shown in Figure [6.4 The Canberra
metric appropriately ranks the Flee model simulations as closest, but as the sim-
ulations progress the results appear to be unstable and beyond the 11th sampling
interval the Canberra metric fails to return valid values for Flee model simula-
tions. Also, unlike the Euclidean and Manhattan metrics, the Canberra metric
displays some overlap in the distance results for different model types.

Results of using the binary distance metric to measure the differences in agent

locations between movement models is shown in Figure 6.5l The binary metric is
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Figure 6.1. Comparing agent movement in various movement models to
flee movement using euclidean distance as the measure.
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Comparison of Different Movement Models to an Instance of Flee Movement
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Comparison of Different Movement Models to an Instance of Flee Movement
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Figure 6.3. Comparing agent movement in various movement models to
flee movement using Chebyshev distance as the measure.
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Comparison of Different Movement Models to an Instance of Flee Movement
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flee movement using Canberra distance as the measure.
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unable to correctly rank the Flee model simulations in the initial time interval.
This is problematic considering the context of the WIPER system, as a good
measure for the ensembles must provide the ability to discriminate between model
types early in the simulation run.

Results of plotting the distance of the output from 500 simulations, 100 runs
of each of the 5 movement models, is shown in Figures|[6.6} [6.7}, [6.8 and These
results provide a more thorough analysis of the usefulness of the metrics than
simply comparing to one run of a simulation. In the ideal scenario the matrix will
display low distance between simulations of the same model type (in the figures
this would be a bright green square on the diagonal) and high distance when
measured against simulations of a different model type (orange or red squares in
the remainder of the matrix).

The figures measure the distance in the respective metric of the first time
interval of the simulation. The simulations are grouped according to model type in
the order, left to right (and top to bottom), Flee Movement, Random Movement,
Null Movement, Bounded Flee Movement and Move and Return Movement. Each
figure is colored from green to red, with green representing low distance and red
high, with the colors scaled to the range of the distance values for the respective
metrics.

Figures[6.6] [6.7] and present the results for the Euclidean, Manhattan and
Chebyshev metrics, respectively. Each of these metrics presents fairly good results
in giving simulations of the same model type low distances and simulations with
different model types high distance.

The results of the Canberra and binary metrics are less clear. The Canberra

metric, Figure appears to produce high distance values for Flee model simu-
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Comparison of Different Movement Models to an Instance of Flee Movement
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Figure 6.5. Comparing agent movement in various movement models to
flee movement using binary distance as the measure.
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lations against other Flee model simulations and likewise for the Bounded Flee
model. The binary metric, Figure is unable to differentiate Random model
simulations from Move and Return model simulations and gives high distances
when matching Bounded Flee model simulations to other Bounded Flee simula-

tions, similarly for Flee simulations.

6.6.1 USING MEASURES FOR RANKING

In Figure [6.11] we present a CMC curve that demonstrates the effectiveness
of the various distance measures at selecting the correct model of a simulation.
For the curve we use a probe size of 500 (500 simulation instances) and a gallery
size of 5 (since there are 5 distinct model types that we would like to differentiate
between). All of the measures in the L family achieve a rank one recognition rate of
100%. Table[6.6.1]displays more in depth information on the match characteristics.
Simply registering the rank one rate does not give an indication of the order of
the rest of the examples. Instead we must look at the distances to the first true
positive and to the first false positive. The separation between these distances

gives a relative indication on the range of acceptable values for the recognition

threshold.

6.7 CONCLUSIONS

Using a distance metric for model selection has several advantages. An ex-
perimental study, like that presented in this Chapter, allows users to calibrate
the selection threshold, which makes it possible for the DDDAS to classify a phe-
nomenon based on the distance from the validated model to the event. Alternately,

should no model meet the threshold, the system can determine that none of the
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Comparison of Models on First lteration of
Simulation Output, Euclidean Metric
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Figure 6.6. Plot of the euclidean distance between simulation output.
Simulations are grouped along x- and y-axis according to movement
model in the order Flee movement, Random movement, Null movement,
Bounded Flee movement and Move and Return movement.
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Comparison of Models on First lteration of
Simulation Output, Manhattan Metric
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Figure 6.7. Plot of the manhattan distance between simulation output.
Simulations are grouped along x- and y-axis according to movement
model in the order Flee movement, Random movement, Null movement,
Bounded Flee movement and Move and Return movement.
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Comparison of Models on First lteration of
Simulation Output, Canberra Metric

Model Type
Null Random Flee

Bounded
Flee

Move and
Return

Bounded Move and
Flee Return

Flee Random Null

Distance Range

Figure 6.8. Plot of the canberra distance between simulation output.
Simulations are grouped along x- and y-axis according to movement
model in the order Flee movement, Random movement, Null movement,
Bounded Flee movement and Move and Return movement.
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Comparison of Models on First Iteration of
Simulation Output, Binary Metric
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Figure 6.9. Plot of the binary distance between simulation output.
Simulations are grouped along x- and y-axis according to movement
model in the order Flee Movement, Random movement, Null
movement, Bounded Flee movement and Move and Return movement.
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Comparison of Models on First lteration of
Simulation Output, Chebyshev Metric
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Figure 6.10. Plot of the Chebyshev distance between simulation output.
Simulations are grouped along x- and y-axis according to movement
model in the order Flee movement, Random movement, Null movement,
Bounded Flee movement and Move and Return movement.
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TABLE 6.1
SUMMARY OF AVERAGE DISTANCES TO FIRST TRUE AND
FALSE MATCHES, DEMONSTRATING THE FITNESS OF
DISTANCE MEASURES FOR CLASSIFICATION. ALL OF THE
MEASURES FROM THE L FAMILY DISPLAY GOOD

CHARACTERISTICS.
Measure | Avg Distance to | Avg Distance to | Avg Distance
First True Match | First False Match | From False to
True
Manhattan | 40.372 294.12 253.748
Euclidean | 12.78490 110.2979 97.51297
Chebyshev | 6.41 58.604 52.194
Canberra | 1.358531 7.132292 D.773761
Binary 0.002380637 0.04760387 0.04522324
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models are appropriate. In that case the measure may give a suggestion for the
“closest fit” model and provides a scenario for new model creation.

In this Chapter we have presented an evaluation of various tests and mea-
surements for online validation of Agent-Based Models. We have shown that the
Euclidean and Manhattan distance metrics work well for validating movement
models, however binary and Canberra distance are significantly less useful.

The Manhattan, Euclidean and Chebyshev metrics produce favorable results
when used for measuring the similarity of simulations. Under the conditions we
have tested, they produce low inter-model distances with high intra-model dis-
tance. Any of these metrics is adequate for an application such as the WIPER
project.

The Canberra metric is useful under certain circumstances, but the poor per-
formance measuring Flee model simulations against other Flee model simulations
make it less than desirable for use in the WIPER project.

The binary metric displays very poor performance in the experiments described
here. This is likely a result of the formula for calculating the binary metric, as
it discards elements with zero values, in this case Voronoi cells with no agents.
The output vector of many of the simulations have towers with no agents, some
models in excess of 30% of towers with no agents. This result could be attributed
at least partially to the input parameters, but it demonstrates a weakness of the
binary metric.

Figures and show the distance metrics failing to differentiate be-
tween the Bounded Flee model and the Null Movement model. This result is an
artifact of the way movement is measured in the simulations. Since agent loca-

tions are aggregated to the level of the Voronoi cell, agent movements below this
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resolution do not appear in the output. In the Bounded Flee model, agents move
1000 meters from the crisis and then stop moving. Thus, if the crisis is centered
in a Voronoi cell that is approximately 2000 meters across, agents in the crisis cell
will not appear to have moved at all.

A caveat concerning the use of simple thresholds for model selection in online
validation: In the WIPER project, where mislabeling a crisis event as benign
could have dire consequences, it is important to factor in to the system the cost of
false negatives. Crisis event models should be weighted so that when confronted

with a crisis event, the chance of labeling it as normal behavior is minimized.

6.8 FUTURE WORK

The work in this chapter has focused on measurements for online validation of
agent movement models, where validation is selection from among a set of alter-
natives. Agent behavior in the WIPER simulation is composed of both movement
and activity models. It is important for the online validation procedure to treat
both movement and activity. In the future we would like to examine measurements
for online validation of agent activity models, perhaps in conjunction with work
being done to characterize crisis behavior as seen in cell phone activity data [123].
In keeping with our framework, we will need to create not only different input
parameters for the activity models, but new models that describe agent behavior
under different scenarios (normal activity, crisis, etc). Such work on generating

additional agent activity models is currently under way.
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CHAPTER 7

SUMMARY

7.1 INTRODUCTION

This Dissertation has presented the research completed towards the Ph.D.
degree. This research proposes a series of novel approaches to problems of using
streaming data in a DDDAS. The research addresses open research questions in
the DDDAS community, demonstrates the feasibility of our approach through
the application in a proof-of-concept system and presents a study of validation
techniques for Agent-Based Simulations against streaming data.

Utilizing streaming data in conjunction with simulations has many potential
benefits. Simulations parameterized with recent streaming data offer the best pos-
sibility of predicting outcomes of events. Similarly, for longer running simulations
or longer duration phenomena, streaming data can be used to update the simu-
lations. However, this use of streaming data poses challenges to the simulation
modeler and simulation system builder, as the integration of streaming data is not
a straightforward challenge. This dissertation has presented our approach to the
use of streaming data in a DDDAS system: aggregate updating and validation as

model selection.
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7.2 RESEARCH CONTEXT

The Dynamic, Data-Driven Application Systems approach offers considerable
benefits to researchers studying dynamic, complex systems [95]. However, there
are a large set of challenges that go along with this approach, including many
open areas of research. The feasibility of the DDDAS approach hinges on the
ability of simulations to be tightly integrated into the data collection process.
Two aspects of this that we address are the creation and updating of simulations

with streaming data, and online validation of models.

7.3 RESEARCH GOALS

The goals of this research project have been as follows:

e To develop the Simulation Prediction System component of the WIPER

system

e To create the Agent-Based SImulation for modeling human movement in

normal and crisis events for the WIPER system

e Developing and implementing a method to create and update Agent-Based

Simulations from streaming sensor data

e To analyze various techniques for validating simulations against a stream of

data

These goals address important research topics as described in the NSF DDDAS
program solicitation [95] and the NSF Blue Ribbon Panel on Simulation-Based
Engineering Science [75]. Those sources describe the challenges posed by the use

of streaming sensor data in simulations.
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7.4 COMPLETED RESEARCH

This section outlines the research that has been completed towards the Ph.D.

degree. The contributions have been organized to correspond with the listing

given in Section [7.3]

7.4.1 THE WIPER SYSTEM

The WIPER system is a proof-of-concept DDDAS simulation. It has been
developed to test several approaches to solving questions relevant to the DDDAS
community, specifically the initialization and online updating of Agent-Based Sim-
ulations with streaming sensor data.

The WIPER system is in development by a large interdisciplinary group, in-
cluding Computer Scientists, Physicists and Sociologists. The work presented
here, towards the completion of the Ph.D. degree, is comprised of an academic de-
scription of the WIPER system, the design and implementation of the Simulation

Prediction System and its attendant applicability to the DDDAS community.

7.4.2 THE AGENT-BASED SIMULATION FOR THE WIPER PROJECT

In order to test our approach to initializing and updating simulations, it was
necessary to first create an example simulation. The WIPER simulation models
pedestrians carrying cell phones under several normal and crisis scenarios. The
development of the simulation was aided by the creation of a taxonomy of crisis
scenarios which categorizes crises by the representative agent behaviors. The
simulation has been designed using the Pattern Oriented Modeling approach of
Grimm and Railsbeck, which places emphasis on generating recognizable patterns

through the composition of behavioral primitives [45]. The simulations are built
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using the Agent-Based Modeling approach and have been designed iteratively
using agile programming techniques such as unit testing, refactoring and design

patterns.

7.4.3 CREATING AND UPDATING AGENT-BASED SIMULATIONS FROM
STREAMING DATA

The creation and updating of simulations from streaming sensor data is a core
requirement of DDDAS systems [26]. In the WIPER project, we have addressed
this issue by demonstrating an aggregate approach, where detailed sensor infor-
mation is intentionally aggregated and simulations induce an amount of random
variation on inputs. We have presented experiments demonstrating the effective-
ness of the approach, compared to no updating and compared to a more sophis-
ticated method that maintains a 1-1 agent to human representation, and a case

study involving the implementation of the approach in the WIPER project.

744 MEASUREMENTS FOR ONLINE VALIDATION OF AGENT-BASED
SIMULATIONS FROM STREAMING DATA

As mentioned in [54], the validation of Agent-Based simulations is a relatively
new area, and there has been even less work done on online validation of these
simulations. The contributions of this chapter are a first step towards a compre-
hensive understanding of how to conduct online validation of Agent-Based simula-
tions, including framing the problem as a model selection process, the evaluation
of several measurement techniques and a case study of using online validation in

the WIPER project.
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7.5 SUMMARY

Dynamic, Data-Driven Application Systems represent an exciting new ap-
proach that will advance the field of simulation. However, many open questions
about the feasibility of DDDAS concepts remain. This research has addressed
some of the challenges in DDDAS systems, creating and updating simulations
from streaming sensor data, techniques for validating simulations against stream-
ing data and provided insight into the design of DDDAS systems through the
development of a proof of concept DDDAS, the WIPER project. The knowledge
gained from this research can be leveraged to develop more advanced DDDAS

systems.
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APPENDIX A

DATA PREPARATION AND IMPLEMENTATION OF HIGH
PERFORMANCE DATA WAREHOUSE

A1 OVERVIEW

In this section we describe the steps taken to create the data warehouse for the
WIPER project. The data warehouse was created in accordance with standard
principles of software engineering and database design, while balancing the need

for performance with flexibility of data representation.

A.2 INTRODUCTION

A data warehouse is a repository of historical data, often kept in a relational
database and used for knowledge extraction and data mining. The creation and
maintenance of a data warehouse is a challenging task and often requires breaking
relational database normal forms, as data warehouses are optimized for particular

types of access patterns and are usually expected to be static repositories of data.

A.3 INTERNATIONALIZATION ISSUES

Our initial data dumps included several international characters which unfor-

tunately were not recognized as Unicode by PostGreSQL. The easiest fix was to

139



use sed to replace all of the offending characters in the data files with ASCII char-
acters. It appears that the original encoding for the characters was a non-Unicode

compliant standard.

A4 SCHEMA

The schema for the data went through several iterations before a reasonable
format was found. We began by using text fields for all of the attributes, then
analyzing the fields to determine the smallest data type able to represent the at-
tribute. Later, we decided to recode the attributes offline, outside of the database
in order to both anonymize the data and reduce the size of the attribute repre-

sentation inside the database.

A5 DATA CLEANSING SCRIPTS

A.5.1 INTERNATIONAL CHARACTER REMOVAL

We used this sed command to remove the international characters from the

file and format all null fields in the same format:

cat $1 | sed s//i/g | sed s//o/g | sed s//n/g | sed s//N/g > ${1}.cleansed

A.5.2 NULL FIELDS AND VARYING COLUMN WIDTHS

There appear to be at least two methods of representing NULL data in the
database dumps. In some circumstances, missing data was represented as the
following character string: ########## in other fields, missing data was simply

an empty field. In order to use the \copy command to load the data, we had
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to unify these methods so that only one character sequence was recognized as
representing NULL.

In the Call Duration field, it was found that at least one call had a duration of
33780 (not sure of units, seconds?). This was surprising and broke our assumption
of using a 2-byte integer for storing duration, as it was only able to hold values

up to 32768.

A.6 LOADING

Loading the data into the database was a nontrivial task. The table schema for
the different tables needed to be adjusted several times to accommodate service
types and phone numbers that were larger than expected. Initially, it was believed
that call_to numbers would all be standard phone numbers, however this was
not a valid assumption. There were a significant number of calls to special service
numbers with 5 digit phone numbers, as well as several international calls that were
larger than the data type originally meant to hold the phone number. Also, the
service type varied widely, from the standard service which was only 9 characters
wide, to other services that had names ranging from 18 to 24 characters.

Our approach for loading the data was to find a schema that was permissive
enough to allow all the data to be loaded into the database. Once this schema
was found, we will use database operations to shrink the schema to the minimum
that will hold all of the data fields. On several occasions we started with fixed
width character fields, only to find that there were a few records that violated
the character length constraint, often requiring double or more storage space. For
these fields we chose to use variable length characters in order to save space in

the database. The initial schema is shown in Table [A.1l Once the data has been
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Column Type

call_from text
call_to text
service text

dest_code | var_char(16)

time_init | timestamp

duration int
cost double
unknown char(4)
TABLE A.1

INITIAL SCHEMA FOR DETAILED TABLE

imported into the database, we will run some performance tests to determine the

best data storage format.

A7 ANALYSIS OF COLUMN ATTRIBUTES

The first step in setting the draft schema was to analyze the size and space
requirements for all relevant columns. Table shows the results of a study of
the detailed table. The first 5 columns are all character fields in the database.
The duration field is an integer in the table, the study being done to see if we
could reduce the number of bits necessary to represent the values.

The same tests were run on the two week aggregate data tables. Those results
are presented in Table [A.7]

Armed with the knowledge of the maximum and average field size for rows
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Column Name | Max Width | Avg Width | Std. Dev.
call_from 18 9.00 0.34
call_to 30 8.26 1.90
service 24 9.38 1.60
dest_code 5 3.16 0.55
unknown 3 2.55 0.50
duration 45436 74.0 202.
TABLE A.2

ANALYSIS OF THE COLUMNS OF THE DETAILED TABLE

Column Name | Max Width | Avg Width | Std. Dev.
call_from_id 18 8.996 0.1856
call to_id 30 8.248 1.942
dest_code 5 2.668 1.218
call_type 4 1.015 0
TABLE A.3

ANALYSIS OF THE COLUMNS OF THE TWO-WEEK TABLE.
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in the table, we experimented with different implementations to determine the

performance tradeoffs inherent in our decisions on data representation.
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APPENDIX B

MAPPING OF TEMPORAL CELL PHONE ACTIVITY DATA

B.1 ABSTRACT

This section covers the steps taken to create the maps and animations showing
cell phone activity over time, plotted on a map of the region of interest. The

location information is taken from the originating tower of the cell phone call.

B.2 GOALS

The final goal of this effort is to create animations and maps of call activity
showing the spatial behaviors of calls over time. We seek to present this informa-
tion accurately using a GIS, with political boundaries (state, provincial, city) and

postal codes.

B.3 FIRST STEPS

We began by examining the data. The data was transfered as flat files in ASCII
format with the fields seperated by semicolons. The data, as usual, required sev-
eral levels of cleaning and formatting before it could be used in a mapping appli-
cations. First, it was necessary to extract just the useful information: latitude,
longitude and cell number from the dataset. This was relatively straightforward,

but there were several instances where towers had missing or incomplete values.
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Any tower with a mangled latitude or longitude was excluded from study. Next,
the latitude and longitude values needed to be corrected. The values from the
cellular service provider were given as a string such as "N0435959”. Also, there
is a convention for referencing all longitude values by positive or negative values,
but the service provider left all of the values as positive values and only provided
an 'E’ or "W’ to indicate east or west longitude. This was an issue because the

prime meridian runs through our area of interest.

B.3.1 LATITUDE AND LONGITUDE

Modern GIS systems use latitude and longitude values that are formatted as a
floating point number, with up to two digits before the decimal place representing
the degrees and an arbitrary number of digits after the decimal. However, in legacy
systems, latitude and longitude values are represented as 6 digits, two for each
of Degrees, Minutes, Seconds. In our data file, the latitude and longitude values
had no decimal place and there was no indication as to which format they were
in. At first glance, we mapped the values as if they were in degrees with floating
point precision. The resulting image is shown in Figure [B.I} After looking at the
image, we were convinced that something was wrong with the data. However, we
searched on towers by postal code and determined that indeed, the towers that
we needed were in fact represented. After some deliberation, the following idea
was proposed: since they data providers had used E and W longitude to represent
the data, was it not possible that they had given the data in DD'MM’SS instead
of decimal format? A quick change to the perl script determined this to be true.
Once the latitude and longitude values were correctly formatted, the resulting

image looked more like what we expected. This is shown in Figure
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Figure B.1. First attempt to map towers.

B.3.2 DATATYPE CONVERSION

In order to visualize the data layers in the GIS system, it was necessary to
convert the list of values from a flat ASCII file to the ESRI Shapefile format.
There exist several open source tools to aid in the conversion and manipulation
of GIS data. For this project so far we have used FWTools (v. 1.0.0b2), shapelib
(v 1.2.8) and gen2shp (v 0.3.1). FWTools includes the GDAL (raster) and OGR
(vector) tools, which are used for manipulating and converting GIS files. The
program gen2shp takes an ASCII flat file with location information (points, lines,
polygons) and converts it to the ESRI Shapefile format. This requires the shapelib

libraries for various utilities.
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Figure B.2. Second attempt to map towers using corrected latitude and
longitude values.
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B.4 CREATION OF VORONOI DIAGRAM FOR SPATIAL ACTIVITY REP-
RESENTATION

Our goal in all of this work is to build a visualization of the spatial activity in
the cellular network. With the foundation, the cell tower map, finished we needed
to find a way to divide up the space around each tower such that the activity at
each tower could be easily represented on the GIS map. The easiest solution is
to build a Voronoi diagram on top of the map of cell towers. A Voronoi diagram
is a decomposition of a metric space around a given set of points such that for a
given point p and associated cell S, all points within S, are closer to p than any
other initial point [114].

Given our set of starting towers, we used Grass GIS to build a Voronoi diagram
around all of the points. However, the first attempts were without success due to
the existence of three “towers” at each location. In the tower location file each
line is given a different tower id, however, these are not “towers”. In reality, each
physical tower hosts no less than three antennas, pointing in different directions.
In order to build the Voronoi diagram we had to correct the problem by allowing

only one “tower” at each location. The resulting image is shown in Figure [B.3|
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Figure B.3. Towers with an associated voronoi diagram.
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APPENDIX C

CLUSTERING ANALYSIS OF SOCIAL NETWORKS

C.1 ABSTRACT

This Chapter summarizes the clustering analysis of the social network of cellu-
lar phone users. Our goal is to have a baseline understanding of the characteristics
of the network so that we may create an anomaly detection system that runs in
real time as part of the WIPER system. This project is focused on looking at the
call activity network among prepaid customers for one cellular service provider
for a 15-day period. The network is extracted from customer and activity data
and is analyzed using standard tools from network analysis. Analysis of the link
distribution of the network demonstrates that it falls in the “scale-free” regime,
confirming previous results in this area. In light of insight gained from the first
rounds of network analysis, we examine the top 10 clusters in the network in high
detail. This analysis is currently in a very preliminary stage. When complete, it

will be used to identity anomalies related to emergency events. !

C.2 INTRODUCTION

The analysis of social networks is a compelling and challenging area. So much

of our modern life is measured and cataloged: cell phone communications, emails,

!This work was conducted under the supervision of Dr. Nitesh Chawla as part of the course
requirements for his Data Mining class.
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landline phone conversations (recently popularized by the NSA) and social net-
working websites where people compete to collect “friends”. With this data col-
lection comes an unprecedented opportunity to analyze social networks to see if
they conform with expected theory.

This work examines a small social network, that of the calls made and re-
ceived by prepaid customers for a mid-sized cellular service provider. Our work
demonstrates that the observed social network conforms to some previous results
in social networks and also shows the limitations of examining a social network

from a single modality.

C.3 BACKGROUND: NETWORK MEASURES

There exist a large number of network measures that are important to the social
network and network analysis communities. These measures are used to describe
structural properties of the network and can be used to characterize networks.
Some of the measures, such as the degree distribution, are relatively straightfor-
ward to calculate, whereas others have a high computational complexity, such
as the characteristic path length. Additionally, some network measures, such as
diameter, require that the graph be connected. When the graph is composed of

more than one component, such calculations yield meaningless results.

C.3.1 DEGREE DISTRIBUTION

One of the easiest measures to calculate is the degree distribution. This mea-
sure allows researchers to visualize whether the network falls into a normal, log-
normal, exponential or scale-free distribution. Often networks fall into either an

exponential distribution (similar to how incomes fall into a Pareto/Zipf distribu-
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tion) or a scale-free distribution (as seen in the world-wide web)[2], 10} 109].

The degree distribution is computed by counting the degree of each vertex
(usually the in-degree for directed graphs) and then plotting a histogram of the
results. For networks that display exponential or scale-free distributions, it is
necessary to plot the histogram on a log-log plot. This dampens the effects of the
overwhelming number of nodes with low degree and makes visualization of the tail
possible. Exponential distributions tend to have a region of linear negative slope
(when plotted on log scale) with an abrupt cutoff and scale-free distributions have

a similar region of linear negative slope but with a heavy tail.

C.3.2 DIAMETER, CHARACTERISTIC PATH LENGTH, GLOBAL HARMONIC
MEAN DISTANCE

Diameter, Characteristic Path Length and Global Harmonic Mean Distance
are three measures that are related, attempting to measure similar phenomena|2,
63, [109]. They measure, in different ways, how “closely” connected a network is,
specifically, how far (usually in terms of hops) nodes are apart. These measures
are often used to describe the amount of time a message takes to propagate across
a network.

The diameter measure is simply the longest of all of the short paths from every
vertex to every other vertex in the network. Computing the diameter of a graph
involves running an all-pairs shortest path calculation on the network, and then
finding the largest value.

The diameter can be sensitive to large values and may not be representative
of the average distance that messages need to travel in the network. In graphs

like the lollipop graph, one long path overwhelms the calculation, but represents

153



only the worst-case scenario and does not convey the average number of hops that
an average message must travel. Watts and Strogatz developed the characteristic
path length in response to this need. The characteristic path length, L, is com-
puted by taking the median of the means of all shortest paths in the network. For
each node in the network, take the mean of the length of all shortest paths to other
nodes in the network. Then find the median of all of these values. There exist
approximation algorithms of L, but most implementations use the naive approach,
which is very time consuming. Additionally, Watts and Strogatz “normalize” L
by dividing the median value by the value for a lattice of the same size. For a
more detailed discussion, please see [109].

The global harmonic mean distance, Dgpq is another measure that attempts
to represent the speed at which information may flow across the network. The
equation for calculating Dgpq is shown in Equation In order to calculate
D g10ba1, add the multiplicative inverse of the distances between each pair of vertices,
then divide N(N — 1) by that value. The global harmonic mean distance is also
normalized in the same manner as L, by dividing the result of Equation
by the Dgpq; of a lattice of similar size. There are several features that make
D giobar attractive over L. First, Dgyopq can be calculated on networks that are not
connected. Second, the computation is significantly less complex than that of L.

Dgiopal(G) = (C.1)

C.3.3 CLUSTERING, LOCAL HARMONIC MEAN DISTANCE

Complementing the global measures described above, there are several local

measures that are used to characterize networks. These measures, the clustering
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coefficient and local harmonic mean distance, describe the average level of inter-
connectivity of each neighborhood around each node in the network. This measure
can be used to characterize the “processing” power of the network, as problems
can be shared between people in a neighborhood.

The clustering coefficient is a measure of the amount of interconnections among
a node’s neighbors, averaged over the entire graph[I09]. The equation for the
calculation of the clustering coefficient C' is shown in Equation [C.2] For each
vertex ¢ in the network, we examine the subgraph, G;, of i’s neighbors, excluding
1. For every pair of vertices j, k in G;, if there is an edge between them, add
1, otherwise add 0. Once all possible combinations of j, k have been examined,
divide the result by the amount of possible edges for G;, which is w, where n
is the number of edges in G. Then repeat the process over the entire graph. The

clustering coefficient, like L, is normalized by dividing by the maximum possible

connections among the neighbors.

1 for e; ), € G;
— Z :L]Zicin where € = ’ (C.2)
) 0 for e ¢ G;

The equation for calculating local harmonic mean distance, Dy, is shown
in Equation [63]. In this case, G; is the subgraph of nodes connected to i,
including 7, and d; is the distance between nodes j and k. The calculation is
very similar to the procedure for calculating C', and the description is omitted for

brevity.

N
1 N(N —1
Dlocal(G> = N § Z.(kEG d—ll <C3)
i=1 s i A5k

In terms of computational complexity, C' and Dj,., are similar and are rela-
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tively fast on real-world networks, due to their sparse nature. In the code I wrote
to calculate local and global harmonic mean distance, major portions of the algo-
rithmic code is shared between the local and global implementations due to their
similarity. In practice we have found that for the D,,., calculation, the naive ap-
proach to all-pairs shortest path outperforms Djikstra’s algorithm. However, for
D gi0ba1, where the all-pairs shortest path calculation occurs on the entire network,

the Djikstra’s algorithm approach is vastly superior.

C.4 SOFTWARE FOR NETWORK ANALYSIS AND VISUALIZATION

For this version of the project we used Jung [70] for calculating the network
measures. Jung is a Java API for network visualization and calculation. The Jung
API is very easy to use, but is not designed for the size of network we need to
study. The analysis approach tries to marry object-oriented design with network
algorithms, which is not efficient in terms of time or space complexity, especially
when paired with the overhead from Java. For example, using the 64-bit Sun
HotSpot JVM for Opteron, we ran the network analysis and filtering tool with
our 777,304 node network. The program used a 7GB heap size (on a machine with
8GB of main memory), took 72 hours to run (32 hours reading in the network)
and eventually ran out of memory before completing any analysis. For the final
analysis we will be doing the subgraph extraction in custom built code.

We will use Pajek for network visualization, as it can scale to larger networks
than Jung[I3]. Pajek has been used by others in my research group to visualize
networks on the order of 35,000 nodes and is more than adequate for examining

and visualizing our top 10 clusters.
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C.4.1 CONTRIBUTED SOFTWARE

For this project, two useful software tools were developed. First, a Java pro-
gram using the Jung API was written to calculate the network metrics. This
software was useful but proved to be too memory intensive for the final network.
Instead we chose to develop our own network package, tentatively called “VEIN”.

VEIN [89] is a network manipulation and analysis package written in Ruby.
The package includes base classes for Graphs, Nodes and Edges, as well as utilities
to seperate the network into components and output a visualization of the graph
using the GraphViz[38] package. The VEIN package offers better performance in
both memory usage and speed compared to Jung, but lacks many of the network
metrics that Jung provides. We have begun to implement some of the network
measures in Ruby using the GNU Scientific Library and Ruby-GSL bridge, which
provides native Ruby access to GSL methods and data structures with excellent

runtime performance.

C.5 DATA SOURCE

The data set that we examine contains approximately 22 million phone call
records, with 4.9 million unique customers and several million users from outside
the system. Cell contracts fall into two categories: prepaid and postpaid. Postpaid
contracts stipulate that users pay a monthly fee for a certain amount of call time.
Prepaid users pay in advance for the amount of minutes they use but do not need
to pay a recurring fee. We have data on the aggregate call activity of all users
in the system for 15 two-week periods from April 2004 to June 2005. Table
shows the breakdown of prepaid and postpaid users in the dataset.

Out of this collection of two-week period, we have selected one period, June
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Contract Type | Number of Users
Prepaid, Active 135,767
Prepaid, Expired 977,844
Postpaid, Active 4,423,236
Postpaid, Expired 503,214
TABLE C.1

BREAKDOWN OF USERS BY CONTRACT TYPE AND ACTIVITY
STATUS.

1-15, 2005, for intense scrutiny. In order to limit the size of the dataset to a
reasonable level, the study will be restricted to prepaid users.

The data was transfered to us in flat ASCII text files. Each file contains
a line for all calls from a given number, to another number for the duration
of the 5-day or 15-day period. (Initially the cellular service provider gave us
15-day datasets, then in October 2005 they switched to 5-day datasets.) Each
line contains the following information: the originating number, the destination
number, the number of calls for the time period, the total duration of all calls,
the service type (voice, SMS, multimedia message, WAP) and the amount billed.

In addition to the call activity datasets, we have a dataset with customer billing
information. These tables contain information on active users and users who have
left the system. In order to select the prepaid users, we must cross-reference the

two-week datasets with a customer information table.
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C.6 NETWORK

Initially, we generated a network of 424,810 nodes (each corresponding to a
user) from 5 days of data. For the next iteration, we used a 15-day dataset from
June 1-15, 2005, to correspond with our user information which was also collected
in June 2005. The resulting network contains 777,304 nodes.

The network was constructed in two steps. First, a list of the prepaid users
was taken from the user data file and used to create a hash. Next, using the hash,
we step through the network activity file and extract any calls that were made to
or from a prepaid number.

Starting with the raw network, in order to reduce the size of the network, we
drop all nodes that have no incident edges, which filters out the nodes that we
are not interested in. Then we compute the degree distribution of the network,
in order to compare it to the initial network. Finally, we extract the 10 largest

components of the network in order to examine them more carefully.

C.7  RESULTS

For the 5-day dataset, we noticed some interesting phenomena. First, once the
graph had been created, a rudimentary analysis showed that the graph consisted
of multiple connected components. A connected component is a subgraph where
all vertices are reachable from any other vertex. In the graph we generated, there
were 135780 connected components. This number corresponds exactly to the
number of prepaid users, so we believe that there are no calls between prepaid
users in this 5 day period. As evidence we have computed the diameter of 90,000
of the diameter and the largest reported diameter is 2, which lends evidence to

the theory that there are no calls between prepaid users.
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In order to rule out effects from the short time period, we examined the 15-
day period. For this period, the graph consists of 777,304 nodes and 28,117

components.

C.71 GRAPH MEASURES

The size of both the 5-day and 15-day datasets make it prohibitively expensive
to calculate network measures, where they would yield useful values. Some mea-
sures, such as characteristic path length and diameter, are undefined on networks
that are not connected. The harmonic mean distance measures yield meaningful
results when networks are not connected, but the time and space complexity of
the algorithms made it impossible to calculate these values for the entire network.

As mentioned above, we were able to calculate certain network measures on the
10 largest components from the 15-day network. These results are shown in Table
[C.2l The components from the 5-day network were trivially small and were not
analyzed. Table[C.2shows only the network measures that have been implemented
and tested in VEIN. It is important to point out that these components display
very low global harmonic mean distance and diameter values. When we look at

the graph images later, the reason for these low values will be apparent.

C.7.2 DEGREE DISTRIBUTION

The degree distribution is simply the number of adjacent edges for each node.
By looking at a histogram of the degrees of all nodes in the network, we can
detect whether the graph falls into any of the known distributions|2, [10]. Natural
phenomena often fall into one of the following distributions: normal, log-normal,

exponential, scale-free. With network data, we often see exponential and scale-
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Component | Number of Vertices | Diameter | Global HMD
1 65 4.0 0.0502
2 61 2.0 0.0269
3 51 5.0 0.0772
4 46 2.0 0.0744
5 46 2.0 0.0599
6 45 4.0 0.0633
7 43 2.0 0.0714
8 41 3.0 0.0337
9 40 4.0 0.0915
10 39 2.0 0.0624

TABLE C.2

IMPLEMENTED NETWORK MEASURES FOR THE TOP 10
COMPONENTS.
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free distributions. The first visualization of the degree distribution is shown in
Figure [C.I} This histogram is plotted with equal-width bins on untransformed x-
and y-axes. The size of the first bin overwhelms the scale of the graph and makes
it difficult to see if there are any users with more than 12 calls in the 5 day period.

A standard practice in the study of exponential and scale-free phenomena is to
visualize the distribution on a log-log plot. In Figure[C.2] we show the data plotted
on a log-log scale, dropping the users that made no calls. This plot provides a
much more accurate description of the call activity in the system. Shown on the
plot is a linear fit line with slope = —3.8733. A linear regression on the log data is
a common method of detecting exponential and scale-free distributions. If a linear
fit can be made at high degree of significance, it indicates that the distribution is
exponential or scale-free. The difference between the two depends on whether the
tail of the distribution falls off (exponential) or is heavy (scale-free).

We also add the plots from the 15-day data. The histogram is shown in Figure
and the log-log plot with linear fit line is shown in Figure [C.4]

C.7.3 TOP 10 COMPONENTS

Out of 28,117 components in the 15-day network, we extracted the 10 largest
for further analysis. This are shown in Figures - [CI4 It is interesting
to note that these components all display a similar, star-like structure. I am
currently attempting to analyze more of the network components to confirm that
this structure is not anomalous. Analysis of the initial network yielded several
components with structure similar to Component 10 (Figure , leading me to
conclude that the central vertex was actually a service (911, 411, etc) and not a

user. However, the prevalence of the star-like structure has made me consider that
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Figure C.1. Histogram of the call activity for the 5 day period.

the network of prepaid users may look like that due to out-of-band communication.

Components 3 (Figure [C.7), 6 (Figure [C.10)) and 7 (Figure |C.11) display some

more interesting structure, but further analysis is required.

C.8 CONCLUSIONS

At this stage, we have extracted the network we want from the call data, but

we have not yet been able to fully analyze the network. Analysis at this level
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exceeds the capabilities of existing tools and requires us to step back and develop
our own tools for extracting and analyzing the network components.

Although the graph is composed of a high number of components, the first
analysis seems to indicate that the call frequency confirms existing results in
social network analysis. Further study is needed to determine whether the star-like
pattern is anomalous or is a phenomenon associated with prepaid phone customers.
In order to determine this we would like to examine the call network of postpaid/
service contract users and examine the differences. It may be that prepaid users
treat their cell phone as secondary communication device, for caller id, receiving
SMS messages, voice mail and make calls only rarely. This type of behavior would
mean that much of the users’ communication with members of their social network

is out-of-band, and thus not visible to us.

C.9 CONTRIBUTIONS

We will briefly summarize the contributions of this project regarding the VEIN
network analysis library for Ruby. VEIN was written to be a lean, clean-room
implementation of the network analysis tools and measures listed above, along
with the ability to read and write files in the Pajek network format and to output
visualizations in png format using GraphViz.

VEIN has a working implementation of the Floyd-Warshall All-Pairs Short-
est Path algorithm[IT1], will correctly split a network into its components, can
calculated diameter and global harmonic mean distance (normalized) and is well

documented. VEIN includes RDoc documentation.
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C.10 FUTURE WORK

We would like to complete the analysis of the prepaid users network to compare
it with prior work in the field. Of special interest is the lack of connectivity in
the network and the sparse, hub-like structures. Hopefully by interpreting our
results in the context of other single modality social networks (postpaid users,

email correspondence, etc) we can suggest reasons for these results.

C.11 ACKNOWLEDGMENTS
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Mining class.
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Figure C.2. Call activity for the 5 day period, excluding 0 values,
log-log plot.
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Figure C.3. Histogram of the call activity for the 15 day period.
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Figure C.5. Component 1
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Figure C.15. Component 7, as visualized with GraphViz.
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APPENDIX D

VEIN: A RUBY PACKAGE FOR SOCIAL NETWORK ANALYSIS

D.1 ABSTRACT

This paper introduces the VEIN social network analysis package. VEIN is
designed to be a lightweight, scriptable alternative to packages like Jung. VEIN
reads and writes files in the Pajek network file format and produces visualizations
using GraphViz. !

Key Words: Network Analysis, Ruby

D.2 INTRODUCTION

There exist many social network analysis tools, from standalone GUI programs
such as UCINET][16] and Pajek [13] to broad, comprehensive APIs like Jung [76].
However, many of these tools are difficult to use and do not scale well. There is
a need for simple, extensible tools that are easy to work with, can read and write
common network file formats and can handle very large networks.

In order to motivate the need for VEIN, consider the following: as part of
a course project, we needed to analyze a social network derived from cellular

telephone data over a period of 5 days. The resulting network, with 424,000 actors,

!This work was originally published in the proceedings of NAACSOS 2006 [89].
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challenged the limitations of Pajek and UCINet and we initially began the analysis
with a custom Java program using JUNG. However, writing the application was
labor intensive, and when finished, we were surprised by the actual structure of the
network. Instead of being one large component, the network consists of 135,780
small components. We examined a larger dataset, covering 15 days, however this
network, consisting of 777,000 actors, was too large to even load into memory with
JUNG, on a 64-bit machine with 8GB of memory. VEIN was initially created to
analyze this network, which it did.

VEIN is intended to be a simple, easy to use and lightweight but powerful
package for social network analysis. It is written in Ruby[64], an Object-Oriented

language that is ideally suited for scripting prototype development.

D.3 BACKGROUND

The goals behind the development of VEIN are very similar to the work al-
ready found in the BOOST [56] and JUNG [76] libraries. These APIs implement
graph algorithms in a modular way, making it possible to create custom utilities
to analyze and visualize networks. However, in some instances, it is important
to create a proof-of-concept prototype or to write a small utility to confirm a
hypothesis. In these cases a heavy API can require more time and effort than a
programmer is willing to commit.

The BOOST graphics library provides Python bindings, which makes it a
very close neighbor to VEIN. However, BOOST provides relatively few algorithms
specifically designed for social network analysis.

RGL [32] is a graph library written in Ruby and inspired by BOOST. The

goals of RGL are similar to those of VEIN, namely to provide a simple, efficient
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graph API. RGL, like BOOST, does not have a social network focus, leaving
programmers to implement many important social network algorithms.

UCINet [16] is a comprehensive package for network understanding, but it only
runs on Windows, does not support scripting and does not offer an API. This is
important when developing custom applications or writing scripts to batch process
a large number of networks.

Pajek [13] is another excellent tool for network visualization and analysis,
but its limitations are similar to those of UCINet: it is Windows only and only

supports interactive use.

D.4 VEIN OVERVIEW

VEIN does not intend to supplant packages like Pajek and UCINet, rather
to compliment them and add another tool to the arsenal of the social network
analyst. VEIN is intended to be easily extensible and incorporated into scripts,

so that ideas can be easily tested for feasibility or exploratory analysis.

D.4.1 DESIGN

The design of VEIN at this stage is very rudimentary and we expect it to
become more sophisticated as it develops. Currenly VEIN consists of Graph,
Node and Edge classes, with algorithms, such as All-Pairs Shortest Path [I11] as
part of the Graph class. We intend to adopt the design methodology of BOOST
and RGL, which is to develop a Graph interface that hides the implementation
and provide simple iterators for traversing the graph, optimized for the underlying
graph structure[32), 56]. This approach was first described by Dietmar Kiihl and

is part of an approach called graph design patterns [55].
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D.4.2 FEATURES

VEIN currently supports reading and writing of networks in the Pajek network
format. This format was chosen because it has nearly universal support among
social network analysis packages and due to its simplicity. When analyzing social
networks, visualization is an important concern. VEIN uses GraphViz [38] to
visualize graphs, using a Ruby/GraphViz bridge[58]. VEIN currently provides
breadth-first and depth-first search iterators on the graph, as well as the Floyd-
Warshall All-Pairs Shortest Path algorithm [IT1], algorithms for generating the

connected components, the network degree distribution and diameter.

D.4.3 VERIFICATION

VEIN is being developed with a large testing suite to validate all of its algo-
rithms and classes. This testing is a mix of black box and white box tests that
compare VEIN’s algorithms to those implemented in JUNG and elsewhere. Test

cases are written in Ruby using the built-in “test” unit-testing package.

D.5 CONTRIBUTION

The VEIN package for network analysis is a lightweight but powerful tool for
analyzing social networks. Its simple API makes it easy to incorporate into scripts

for exploratory analysis of large scale social networks.

D.6 FUTURE WORK

Development of VEIN is ongoing. We are currently in an early stage of devel-
opment but look forward to providing the social network analysis community with

a new lightweight tool for the rapid prototyping of social network applications.
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Among the changes that need to be implemented are the development of ad-
jacency list-based algorithms, such as the Dijkstra algorithm, which will consid-
erably improve the scalability. We would also like to add in a large validation set

of canonical social networks to the testing suite.

D.7 AVAILABILITY

VEIN is free and Open Source software and is available on the Sourceforge

website at http://sourceforge.net/projects/ruby-vein/|

D.8 ACKNOWLEDGMENTS
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APPENDIX E

DESIGN AND IMPLEMENTATION OF AN EXTENSIBLE, FLEXIBLE
DATA CURATION SYSTEM

E.1 ABSTRACT

This appendix describes the prototype data curation system that has been
designed and implemented for the managing of data for the WIPER project.
In any scientific research project, data must be carefully collected, annotated,
analyzed and preserved. The recent explosion of research data has made it clear
that ad-hoc and manual methods for data curation are insufficient to keep pace
with the data deluge. Certain inevitable consequences of using datasets and the
desire for replicability of results adds to the problem, forcing researchers to store
multiple copies of the same data in various forms. This chapter explores one
approach to the management of large and ever-expanding datasets, addressing
issues such as determining data quality, tradeoffs between the desire for privacy
and ease of use, management in the face of changing data schemas and observations

from the implementation and roll-out of a data curation and management system.

E.2 INTRODUCTION

In the WIPER project we receive 10-25GB of data per month. The data comes

in several (3-5) file formats and each file is partitioned into 1GB chunks. Certain
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data has a useful lifetime measured in weeks, with its value decreasing daily, thus
this data must be processed as quickly as possible. Processing, in this context

entails the following:

1. Assemble the chunks into a large, compressed file
2. Decompress the file (resulting in a 5-10x increase in file size)

3. Run tests to determine the data quality (aggregate statistics, other mea-

sures)
4. Hash any sensitive data
5. Encrypt and securely store the original files

6. Put hashed data in an accessible location for the researchers
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APPENDIX F

HIGH PERFORMANCE DISK CONFIGURATION FOR RAPID DATABASE
ACCESS

F.1 OVERVIEW

In this section we present a look at the effect of disk configuration on database
performance. Performance is always a concern, but it is elevated to primary
importance when working with very large databases. Improper choices relating
to storage and infrastructure can cause user queries to run longer, making certain
types of especially-long running queries impossible. We test a large database of
100 million records on 4 different disk configurations: single disk, RAID 0, RAID
1 and RAID 5. We make our selection based on the expected load characteristics

on our database server.

F.2 RAID

Recognizing the need for increased performance and reliability using commod-
ity hard drives, Patterson et al [77] suggested several methods of treating several
disks as one large drive. This concept, Redundant Array of Inexpensive Disks
(RAID), as outlined in [77] allows users to combine several inexpensive commod-

ity hard drives into a virtual disk that behaves like a large, high performance,
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high reliability drive. There are several levels of RAID, but the most common
seen today are levels 0, 1, 5 and 0-+1.

RAID level 0 spreads writes across 2 or more disks. This is referred to as strip-
ing. Two disks are essentially combined into one large virtual disk and blocks are
written to only one of the two disks. The idea is that writes will be approximately
as fast as with a single disk, but reads will see a speedup, since blocks will be read
from two disks at once. The problem with RAID 0 is that it does not offer any
redundancy, so the failure of one disk can mean the loss of all data on the drives.

RAID level 1, also called mirroring, duplicates writes to two disks simultane-
ously. Ideally, this results in an exact copy of all blocks on both disks. Thus if one
disk fails, there is an exact duplicate of all data, so nothing is lost. Unfortunately,
this configuration requires twice the amount of storage and performs poorly in
terms of writes, as it takes the maximum of the write time for both disks, in
addition to any operating system overhead to duplicate the writes. Reads should,
ideally, be similar to those on a single disk.

RAID level 5 spreads the writing of data blocks across several disks, similar
to striping, but adds a parity block. If there are 3 disks (the minimum), a write
operation sends data blocks to two of the disks and a parity block to the third
disk. The parity is calculated in such a way that having just the parity block and
one of the data blocks allows the second data block to be computed. This method
of redundancy significantly reduces the amount of storage needed to insure data
security in the face of a single disk failure. Writes suffer a performance penalty
due to the calculation of the parity block, but reads approach the level of a stripe.

RAID level 0+1 is a combination of mirroring and striping. It requires at

least 4 disks. The four disks are split into two mirrored groups which are treated

188



as two virtual disks. These two virtual disks are then used in a RAID 0 stripe
configuration. This configuration supposedly offers the benefits of both RAID 0
and 1, namely fast reads and quick recovery in the even of an error. Due to the

large number of disks required for level 0 + 1, we do not examine this configuration.

F.3 TESTING METHODOLOGY

The test system is a dual Opteron 250 system with 4GB of RAM and four
300GB SATA disks, running RedHat Advanced Server 4. In each instance, the
operating system is installed on one disk and the remaining 3 disks are used for the
RAID array. We configured our RAID arrays using mdadm [65], a standard Linux
tool for working with RAID arrays. Our database system is PostgreSQL, version
8.0.4 with the type 3 jdbc driver, version 8.0.313. The test code was written with
the Sun Java 1.5 SDK for AMD64.

The database is configured with a single table. Records in the table have a
serial value which also is the primary key, as well as a 32 character field (name)
and a 16 character field (etc). The Java test program creates records with a
random 10 character string for the name field and a 5 character string for the etc
field.

We use two simple Java programs to measure the performance on two database
tasks. The code runs on the same machine as the database and connects to the
database using jdbc. The test code uses the java.system.current TimeMillis method
to measure execution time. The Insert test code first inserts 50 million records
into a database that starts with 50 million records, then runs a Select on the
resulting 100 million record database. The runtime measures the combined time

to run both the Insert and Select operations. The Select test starts with the 100
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million record database and runs a Select query. For both sets of test code the
Select operation is chosen in such a way that the expected number of returned
records is significantly less than 1. The rationale for this approach is that in
previous attempts to measure performance, the query returned so many records
that it filled available memory and began to compete for system resources with
the database, thus affecting the results of the test. See Sections and for a

detailed listing of the test code.

F.4 DISK CONFIGURATIONS

For the test we measure the performance on four different disk configurations:
single disk, RAID 0 (stripe), RAID 1 (mirror) and RAID 5. We use a single disk in
order to get a baseline level of performance. All three of the RAID configurations
are setup to use three disks. For RAID 1 (mirror) and 0 (stripe), the third disk
acts as a spare and thus should not adversely affect performance. In all cases the

RAID partitions are created using the default settings in mdadm [65].

F.5 RESULTS

The results of the performance tests are shown graphically in Figures
and [F.3] A table of the results, with values in hours and minutes as well as
milliseconds, is shown in Figure [F.1 On the Insert test, the RAID 0 (stripe)
configuration yields the best results, taking 3.88 hours, with the single disk being
only 1.8 minutes (.66%) slower. The RAID 5 configuration is 26% slower, taking
4.87 hours, and the RAID 1 (mirror) configuration is 34% slower, taking 5.2 hours.
For the Select test, the RAID 0 (stripe) configuration ran fastest, at 1.45 minutes.

The RAID 5 configuration was second at 1.71 minutes (18% slower). The single
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RAID Time for insert [Time in hours |Time for select |Time in minutes

RAID 1 (Mirror) 18709186 5.20 218654 3.64
RAID 0 (Stripe) 13967807 3.88 87071 1.45
Single Disk 14059829 3.91 208011 3.47
RAID 5 (1 Parity) 17534300 4.87 102568 1.71

Figure F.1. Elapsed time for test programs, time in milliseconds, hours
and minutes.

disk, surprisingly, came in third at 3.47 minutes (39% slower) and the RAID 1

(mirror) was last, at 3.64 minutes (51% slower).

F.6 CONCLUSIONS

The performance results suggest that for raw performance, there is a statis-
tically significant advantage to arranging the disk drives in a RAID 0 (stripe)
configuration. However, there are several mitigating factors that prevent us from
implementing this. First, we know that the database will primarily be used in a
static context, that is, once the data has been imported, it will remain constant
and all database actions will be queries on the static data. Second, based on
the size of the database and its critical importance to the research project, reli-
ability must be factored in to any decision. Based on these assumptions, we can
place less importance on the Insert results and also weigh data redundancy with
performance. Examining solely the Select test, we see that RAID 5 has similar
performance to RAID 0, and significantly better performance than RAID 1 or a
single disk. Thus the best balance of performance on a Select workload and data

redundancy is RAID 5.
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Database Performance - Insert and
Select 100M
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Figure F.2. Performance on insert on 50 million records, select on 100
million records.
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Database Performance - Select 100M
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Figure F.3. Performance on select on 100 million records.
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F.7 JDBC INSERT CODE

import
import
import

public

public

public

java.util.x*;

java.sql.x*;

cern. jet.random. *;

class jdbc_test {

private Uniform randomGen;

jdbc_test O{

randomGen = new Uniform(65,90,48930444) ;

static void main(String[] args){

try{

Class.forName("org.postgresql.Driver");

} catch(Exception e){
System.out.println(e.toString());

}
jdbc_test jdbc = new jdbc_test();

long begin = System.currentTimeMillis();
jdbc.go () ;
long end = System.currentTimeMillis();

System.out.println("Runtime was " + (end - begin)

public void go(){

try{

+ " Milliseconds");

Connection db = DriverManager.getConnection("jdbc:postgresql:test",

"tschoenh", "");
Statement st = db.createStatement();

for(int i=0; i<50000000; i++){

st.executeUpdate ("INSERT INTO testtable(title, etc)
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VALUES(’" + randomName() +"’,’"+ randomEtc() +"’)");
b
ResultSet rs = st.executeQuery("SELECT * FROM testtable
WHERE title = ’*AAAAAAAAAA’"M);

while (rs.next()) {
rs.getString(1);

}

rs.close();

st.close();

} catch(Exception e){
System.out.println(e.toString());

3

public String randomName (){

char[] name = new char[10];
for(int i=0; i<10; i++){
name [i]=randomChar () ;

}

return new String(name);

public String randomEtc(){

char[] etc = new char[5];
for(int i=0; i<5; i++){
etc[i]l=randomChar();

¥

return new String(etc);

public char randomChar(){
return (char)randomGen.nextInt();

}
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F.8 JDBC SELECT CODE

import java.util.x*;
import java.sql.x;
import cern.jet.random. *;

public class select_test {
private Uniform randomGen;

public select_test(){
randomGen = new Uniform(65,90,48930444) ;

public static void main(String[] args){

try{
Class.forName("org.postgresql.Driver");
} catch(Exception e){
System.out.println(e.toString());

}

select_test jdbc = new select_test();

long begin = System.currentTimeMillis();
jdbc.go () ;
long end = System.currentTimeMillis();

System.out.println("Runtime was " + (end - begin) + " Milliseconds");

public void go(){

try{

Connection db = DriverManager.getConnection("jdbc:postgresql:test",
"tschoenh" , n n) ;

Statement st = db.createStatement();

b

ResultSet rs = st.executeQuery("SELECT * FROM testtable
WHERE title >AAAAAAAAAAC M)
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while (rs.next()) {
rs.getString(1);

}

rs.close();

st.close();

} catch(Exception e){
System.out.println(e.toString());

¥

public String randomName (){

char[] name = new char[10];
for(int i=0; i<10; i++){
name [i]=randomChar () ;

¥

return new String(name);

public String randomEtc(){

char[] etc = new char[5];
for(int i=0; i<5; i++){
etc[i]=randomChar();

}

return new String(etc);

public char randomChar(){
return (char)randomGen.nextInt();

by
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