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Abstract
In this paper, we present our approach to developing a proof-
of-concept Dynamic Adaptive Disaster Simulation (DADS),
a system capable of predicting population movements in
large-scale disasters by analyzing real-time cell phone data.
It has been difficult for existing computer models to accom-
plish such tasks-they are often too inflexible to make realistic
forecasts in complex scenarios. This has led to reactive, un-
informed emergency response tactics with disastrous conse-
quences. DADS resolves these issues by continuously updat-
ing simulations with real-time data. It accomplishes this by
tracing movements of cell phone users on a GIS space, then
using geospatial simulation algorithms to infer regional pref-
erences. Inferences are incorporated into agent-based simu-
lations which model future population movements through
fluid dynamics principles. Due to privacy concerns, this re-
search utilized synthetic data that were generated to mimic
the cell phone location data associated with a recent disaster.
Validation techniques such as Manhattan distance show that
the simulation is both internally and predictively valid. DADS
can adaptively generate accurate movement predictions in
disaster situations, demonstrating a modeling paradigm that
is highly applicable to population modeling and to other dis-
ciplines of computer simulation.

1. INTRODUCTION
This paper presents a novel approach to developing a Dy-

namic Adaptive Disaster Simulation (DADS)1, a proof-of-
concept system capable of predicting population movements
in large-scale disasters by analyzing real-time cell phone data.
Such disasters, including hurricanes, earthquakes, and ter-
rorist attacks, can occur in densely populated areas without
warning, causing significant human costs. Urban planners and

1An abstracted version of this research was exhibited as a Best Student
Paper presentation at the 2010 Computational Social Science Society (CSSS)
Conference at Arizona State University. A version of this manuscript is under
review for publication in the 2011 Agent-Directed Simulation (ADS ’11)
Symposium, part of the Spring Simulation Multiconference in Boston, MA.

authorities face the challenge of minimizing the toll of disas-
ters on society by coordinating responses such as evacuations
and provision of supplies. However, in order for such efforts
to be effective, responders must be able to determine evac-
uees’ locations in real-time and predict their future move-
ments, allowing for timely and efficient distribution of nec-
essary resources.

The vulnerabilities of existing emergency response sys-
tems were exposed by the 2005 Hurricane Katrina emergency.
During this event, government officials lacked comprehensive
knowledge of population movements and failed to provide aid
to thousands [24].

Computer simulations are important tools for studying
emergency response, enabling preparation for and under-
standing of disasters before they occur [1]. A common way
to simulate population movements in disasters is with agent-
based systems (ABS), which consist of large numbers of
agents that represent individual people, vehicles, or other ob-
jects in an emergency scenario (e.g., [19]). Agents’ individual
interactions create emergent behavior. Other principal (non-
ABS) modeling strategies utilize cellular automata [16] or
simulate flowing continuums [12]. The WIreless Phone-based
Emergency Response (WIPER) project [17, 20, 21, 23] is
a state-of-the-art ABS used for the modeling and study of
population movements in emergencies. WIPER examines cell
phone calling activity to detect behavioral anomalies and sim-
ulates basic fleeing behaviors of pedestrians and vehicles.

Most current emergency behavior models are restricted to
simulating a few predetermined or theoretical situations [7,
8, 11]. They also have difficulties with incorporating real-
time data and are based on numerous speculations regarding
how people act [14, 16]. As such, many existing models are
“completely inadequate for providing realistic, real-time fore-
casts, essential for complex phenomena analysis” [5]. For ex-
ample, though WIPER can incorporate real-time cell phone
data, it only models a few fixed types of evacuations [23],
and could not have generated the detailed movement predic-
tions needed for a successful response to Hurricane Katrina.
Additionally, WIPER agents utilize overly simplified fleeing
movement patterns that cannot account for the complexities
of a real-world disaster scenario.



Figure 1. DADS system overview. The top two rows of blue boxes represent steps for obtaining or generating data. The gray boxes at the
bottom are components of the simulation system.

Other modeling approaches have been used in related stud-
ies of crowd animation and geosimulation. In the former, dy-
namic potential fields allow computer-generated crowds to
display realistic movements and continuously react to envi-
ronmental changes [15, 26]. In the latter, simulated humans
perceive their surroundings through “vision cones” [25], ex-
hibiting appropriate movement and behavior as a result. To
the extent of our knowledge, these methods have not been
applied to large-scale simulations of emergency behavior.

Inspired by the above techniques, we have developed
DADS to simulate emergency evacuations by modeling the
area around the target disaster with a potential field. The po-
tential field is conceptually portrayed as a terrain of varying
elevations. Evacuees are represented on the terrain using a
hybrid model which combines ABS and fluid modeling ap-
proaches. DADS can continuously modify the dynamic po-
tential field according to the movements of cell phone users,
based on an extended notion of vision cones. As a result, our
model can adapt to a variety of emergency scenarios and gen-
erate accurate movement predictions. It can also conduct in-
ferences about dynamic disaster situations through analysis of
real-time cell phone data, using these to continuously refine
its predictions. Therefore, DADS addresses the inadequacies
of existing systems such as WIPER, demonstrating a model-
ing paradigm that has many potential applications in popula-
tion modeling and in other areas of computer simulation. Due
to privacy concerns, this research utilized synthetic data that
were generated to mimic the cell phone location data associ-
ated with a recent disaster.

2. METHODS AND MATERIALS
The design and development of DADS synthesized a vari-

ety of different ideas and techniques from the field of com-
puter science. This section discusses our principal computa-
tional methodologies and describes the hardware, software,
and data sets used in our simulation.

2.1. Methods
The overall design of DADS is outlined in Figure 1. We must
address two main challenges:

• Developing the key components of the simulation sys-
tem (Section 2.1.1.)

• Generating data for the simulations (Section 2.1.2.)

2.1.1. DADS System Components
Agents. DADS includes two types of simulation agents —
synthetic and predictive — for modeling the movements of a
population during a disaster. Synthetic agents generate a set
of real-time data in the same form as real-world cell phone
data. They do so by mimicking population behaviors ob-
served in past disasters while reporting their positions as if
being tracked via cell phones. The reasons for using synthetic
agents are discussed in Section 2.1.2. Once DADS starts to
analyze real-time cell phone data, it deploys an ABS simula-
tion consisting of predictive agents. DADS generates popu-
lation movement forecasts by advancing the simulation faster
than real-time events; each predictive agent is associated with



a cell phone user and moves to represent predictions of the
cell phone user’s future movements. Both agent types move
at realistic, random pedestrian speeds [4].
Simulation Space. We model the area where the disaster
evacuation takes place (e.g., in a city) by using potential
fields. Large crowds with common goals, such as city res-
idents fleeing a large-scale disaster, can be modeled using
agents that exhibit fluid-like movement from high to low po-
tential on such fields [15, 26]. Intuitively, a potential field can
be viewed as a field of various elevations, as fluids flow from
high to low elevation. In the case of DADS, synthetic and
predictive agents move according to two separate elevation
fields.

The synthetic elevation field, used by synthetic agents,
is calculated before such agents move and is not altered
throughout a simulation run. We distinguish several types of
regions on the synthetic elevation field with different eleva-
tion values: disaster sites (highest elevation), dangerous loca-
tions (high elevation; could represent features like chemical
spills or low basins in Hurricane Katrina), safe locations (low
elevation; could represent shelters, transportation centers, and
areas of high ground during Katrina), and roads (low eleva-
tion).

Predictive agents use a predictive elevation field, which be-
gins as a “flat” field of uniform elevations and has no a priori
knowledge of the disaster. DADS dynamically changes the
predictive elevation field according to inferences drawn from
streaming real-time cell phone data. The elevation fields are
represented as uniform grids, where each grid cell contains a
numerical elevation value corresponding to a patch of ground
within the area of interest.
Agent Movements. Synthetic and predictive agents act ac-
cording to their respective elevation fields, moving as fluid
particles flowing across terrain. We determine agent move-
ment by adopting the following procedure from [29]:

1. Represent an elevation field as a matrix and convolve it
with the following kernels:

 1 1 1
0 0 0
−1 −1 −1

 (1)

 −1 0 1
−1 0 1
−1 0 1

 (2)

The central element of each kernel is its key ele-
ment [29]. Convolving by (1) yields a matrix containing
the south-north gradient (change in elevation) of each
patch of ground; convolving by (2) yields a similar ma-
trix containing east-west gradients [29].

Figure 2. A vision cone. A sector of space centered at a per-
son’s location and facing the direction of the person’s movement.
The cone is symmetric about the direction of movement and is de-
fined by the parameters of angle and range. People see and react to
objects in their vision cones while fleeing [25].

2. Calculate the aspect (slope direction) a for each patch,
using its east-west gradient x and its south-north gradient
y, with the equation a(x,y) = arctan(y/x) [29]. We use
a modified arctan function that gives values from 0o to
360o depending on the specific signs of x and y [28].
This yields a field of aspects.

This procedure is conducted on the synthetic elevation field
before synthetic data is generated, and it is continuously per-
formed on the predictive elevation field to reflect the pro-
gression of data availability. Both synthetic and predictive
agents exhibit fluid-like movement by setting their headings
to match the aspect of the patch of ground they are traveling
over on their respective aspect fields.
Inferences and Dynamic Field Updates. DADS continu-
ously modifies the predictive elevation field according to the
movements of synthetic agents or real cell phone users. It per-
forms these modifications by inferring which areas are pre-
ferred or avoided. Our technique for inference extends the
idea of a “vision cone”, used as a geosimulation tool in [25]
(Figure 2). An agent only reacts to objects inside its vision
cone [25], either preferring or avoiding them. We use the con-
verse of this tactic to infer which areas are attractive or repul-
sive. Specifically, our inference technique is based on the fol-
lowing key observation: Suppose people only react to objects
in their vision cones and are moving into their vision cones;
then it is reasonable to assume that there are areas that people
wish to move to within their vision cones. Thus, every time
a cell phone user or synthetic agent moves forward, all areas
in its vision cone decrease their predictive elevations by 1 to
indicate that they become slightly more attractive. Results of
this technique are shown in Figure 3.

When DADS is used for real-world predictions, synthetic
agents and the synthetic elevation field are both unnecessary.
In such a case, DADS tracks the movements of cell phone



(a) Synthetic elevation field. Represents a 10 km×10 km
area in a city. Synthetic agents move on this map to produce
synthetic data.

(b) Predictive elevation field. This map was generated by
our inference technique acting on the cell data produced us-
ing Figure 3(a).

Figure 3. Elevations on both maps are colored in grayscale, with lighter colors representing higher elevations. Comparison of Figures 3(b)
and 3(a) shows that DADS is able to nearly reconstruct the original synthetic elevation map through inference on cell phone data. Thus, it
captures almost all of the factors influencing cell phone users’ movement. This enables accurate predictions of future population movements.

users, using vision cones to modify a predictive elevation
field. An ABS of predictive agents is then deployed, where
predictive agents move across the predictive elevation field
by exhibiting fluid-like movement. The ABS advances faster
than real-time, so that the positions of predictive agents rep-
resent predicted locations of cell phone users at a given fu-
ture time. Cell phone users are a sample of the population;
their movements reflect population movements. If more data
become available after the initial predictions, DADS incorpo-
rates the new data into its simulations, continuing the above
procedure for as long as necessary.

When synthetic data is used, synthetic agents move across
a predefined synthetic elevation field. They constantly report
their positions to create a synthetic cell phone data set. DADS
treats the synthetic data exactly as it would treat real data.
However, we impose a time limit on the running of DADS
with synthetic data, representing the end of the disaster. At
this point, synthetic data is no longer generated, and simula-
tions make final predictions.

2.1.2. Generation of Data
We developed and tested DADS using synthetic cell phone

data because it allows a thorough evaluation of the system
in more scenarios than real-world cell phone data could pro-
vide, and because it avoids privacy issues. Simulations ran
on a two-dimensional Geographic Information System (GIS)
representation of a large European city with several million

residents; all specific place names were removed in order to
maintain anonymity. GIS data consisted of layers of vector
shapefiles describing the city’s roads and cell towers.

Synthetic cell phone data was based on real cell phone data
from a European cellular carrier. All carriers keep histori-
cal records of cell phone user actions in a Call Data Record
(CDR) [21]. Furthermore, networks must always be able to
locate all cell phones, so that incoming calls can be directed
to the proper locations. This is done by identifying the cell
tower which each phone is nearest to, and then locating the
phones more precisely with advanced positioning techniques
like triangulation [18]. This type of location technology can
locate cell phone users’ positions within a few meters [20].
Thus, by continuously paging all cell phones, networks can
record the precise movements of all cell phone users [18].

Three large-scale crises recently occurred simultaneously
in the city of interest. We used over 3200 synthetic agents to
represent the evacuation from these disasters. This number of
synthetic agents was chosen for computational efficiency and
sufficiency in generating data for analysis. Synthetic agents
were initially distributed uniformly throughout the city. Dur-
ing the disaster, they moved as people would, fleeing away
from the three disaster sites and preferring to use major roads.
We also chose several random safe and dangerous locations
(see Section 2.1.1.), setting all synthetic elevations to ap-
propriate values. We referred to each unique set of safe and
dangerous locations as a scenario. Synthetic agents thus fled
from the three main disaster sites in each scenario, preferring



Figure 4. A disaster scenario modeled with a synthetic eleva-
tion field. Synthetic elevations are colored in grayscale, with lighter
colors representing higher elevations. Red X’s represent disaster
sites, orange squares represent dangerous locations, green circles
represent safe locations, and yellow lines represent major roads. This
is the same synthetic elevation field as Figure 3(a).

roads while moving towards some regions and avoiding oth-
ers. They constantly reported their positions while fleeing to
produce a set of cell phone location data that takes the place of
real cell phone data. Synthetic agents proceeded at randomly
selected speeds; the distribution of their speeds is equivalent
to the distribution of real pedestrian walking speeds [4]. Thus,
synthetic data was based on real-world disasters and move-
ment studies and was a reasonable substitute for real data.
Figure 4 is a sample synthetic elevation field generated with
this procedure.

2.2. Materials
All simulations and computations were performed on a PC

with a 2.0 GHz Intel Pentium M processor and 1.99 GB of
RAM. We implemented DADS in the Netlogo programming
language and modeling environment [28], version 4.1.1, and
also made use of the Netlogo GIS extension. Our final pro-
gram occupied 1343 lines of original code.

3. RESULTS
We conducted a large number of experimental simulations

to calibrate and validate DADS. Our first experiment deter-
mined suitable values for the parameters in the system. Our
second evaluated the effectiveness of the system. We describe
both experimental procedures and results in this section. The
computational efficiency of the system is also addressed.

3.1. Parameter Calibration
Before validating DADS, we determined optimal values for

the vision cone parameters of angle and range (see Figure 2).
We accomplished this using 2-dimensional exhaustive sweeps
on the parameters. Below, we discuss our prediction quality
metric and sweeping approach.

Prediction quality was measured with the Manhattan dis-
tance metric, also used in the WIPER project [22]. To ap-
ply this measurement technique, we first construct an n-
dimensional vector p, n being the number of cell towers on
the GIS space, such that the element in each dimension rep-
resents the number of cell phone users at one cell tower. Cell
phone users at a cell tower are within the serving domain of
the tower, i.e., the area 100 to 600 meters in radius that is
closer to that cell tower than to any other tower [18]. (See [20]
for further details.) We then construct another n-dimensional
vector q for predictive agents, in which the value for each di-
mension is the number of predictive agents at each tower. We
then compute the Manhattan distance between p and q with
the following formula [22]:

d(p,q) =
n

∑
i=1
|pi−qi| , (3)

where p = (p1, p2, ..., pn), q = (q1,q2, ...,qn).

Equation (3) yields a nonnegative integer value for the
Manhattan distance between the simulation’s prediction of
cell phone users’ locations at a point in time and the actual
locations of cell phone users at that time. The smaller the dis-
tance, the more accurate the simulation. Note that this form of
distance measurement can be generalized to any Ld distance
metric (e.g., Euclidean or L2 distance).

We adopted a multi-resolution approach for the param-
eter sweeping process. At the initial lowest resolution, we
coarsely evaluated all combinations of angles from 30o to
180o and range values from 200 to 1000 meters in increments
of 30o and 200 meters, respectively. We then identified the
best performing ranges for each parameter and continued to
conduct finer and finer parameter sweeps on these ranges.

Here, we discuss the procedures used to identify the best
parameter ranges at a given resolution. Each possible pair of
values for the parameters of angle and range was used to con-
duct inference on the same three synthetic data scenarios. The
disaster began at 8 a.m. in each scenario; simulations based
on inferences began at 8:05, 8:35, and 9:05 a.m. At these
times, predictive agents used the predictive elevation field to
“move ahead” to the predicted positions of cell phone users
15 minutes after the simulation started (i.e., at 8:20, 8:50, or
9:20 a.m.), and at intervals of 30 minutes from then on. These
positions represented predictions of future population move-
ments. Simulations ran until the imposed time limit of 10:20
a.m. We tested each parameter pair in the following manner:



Figure 5. Results of final parameter sweep. Smaller Manhattan sums indicate more accurate predictive simulations. Adjacent data points
are connected to one another to form a 3D surface plot. The lowest point on the surface corresponds to the parameter pair producing the
overall closest simulation. This point, at an angle of 45o and a range of 200 meters for cell phone users’ vision cones, is indicated by the black
arrow.

1. Calculate the Manhattan distance between each simula-
tion and synthetic cell phone data for every set of pre-
dictions at each different point in time.

2. Sum individual Manhattan distances at each time point
to give a “total Manhattan distance” corresponding to a
pair of parameter values during the entire scenario.

3. Find total Manhattan distances for the pair in three dif-
ferent scenarios.

4. Sum the total Manhattan distances for the three scenar-
ios to produce a “Manhattan sum” representing the over-
all predictive value of the parameter pair.

The best ranges of values for the vision cone parameters
made the most telling inferences and produced the smallest
Manhattan sums; thus, we conducted finer-resolution param-
eter sweeps on these ranges. Our finest 2-dimensional param-
eter sweep was conducted with angles from 5o to 60o and
ranges from 100 to 500 meters. The results are shown in Fig-
ure 5. Optimal predictions are achieved with an angle of 45o

and a range of 200 meters.

3.2. Validation and Computational Efficiency
After calibrating DADS, we proceeded to validate the sys-

tem. As discussed in [30], validation verifies that a model “is
a reasonably accurate representation of the real world”. In

our case, we sought to determine whether predictive agents
model the data (synthetic agents) with reasonable accuracy.
We first tested DADS for internal and predictive validity, and
then evaluated its ability to refine predictions with streaming
real-time cell phone data.

Internal validation evaluates a model’s stability [30]. Con-
firming the internal validity of a model can be done by run-
ning a simulation based on that model with different random
inputs. If random inputs cause significant variations in per-
formance, then the model is either invalid or unstable [30].
Recall that DADS was tested using synthetic data scenarios
with fixed disaster sites and roads (based on a real disaster),
but also with randomly placed safe and dangerous locations.
To demonstrate internal validity, we ran DADS 500 times,
using a different randomly generated scenario each time. We
measured each run by the percentage of predictive agents that
made correct predictions of the final positions of evacuees 75
minutes in advance. See Figure 6 for the results. The mean
percentage of correct predictive agents was 77.30% with a
standard deviation of 3.87%, testifying that the DADS mod-
eling method is internally valid and would remain useful in
varying or complex situations.

Next, we discuss the predictive validation of DADS, which
is “used to compare the model’s prediction with actual sys-
tem behavior” [30]. An average of 77.30% of DADS predic-
tive agents accurately predicted the movements of synthetic



Figure 6. Percentages of predictive agents making correct predictions. Each point represents the percentage of predictive agents that
correctly predicted the cell tower that an evacuee would be nearest to by 10:20 a.m. in a unique randomly generated scenario. Correctly
predicting the cell tower provides reasonably accurate information on the actual position of evacuees [18], facilitating disaster response. The
majority of agents predict accurately, and the percentage does not exhibit extreme variation.

agents that would occur 75 minutes later (see Figure 6). This
demonstrates the high predictive effectiveness of DADS in
forecasting population movements in a disaster before they
occur.

The above quantitative measurements of predictive valid-
ity, however, have their limitations in this situation. Since

Figure 7. Inferred vs. programmed attractive and repulsive
regions. Green circles are safe regions, black X’s are disasters, gray
lines are roads, and cyan squares are dangerous regions. DADS in-
ferences are shown as a heat map — darker, “cooler” regions are in-
ferred to be more attractive. This demonstrates that DADS correctly
identifies all safe, dangerous, and disaster regions, labeling the first
as attractive and the other two as repulsive. It also identifies heavily
utilized roads and paths. This figure is from the scenario in Figure 4.

agents’ predictions are counted as correct only if they are
at the correct cell tower, predictions could be erroneously
counted as incorrect if they happen to be in the domain of a
different cell tower (e.g., a neighboring cell tower), regardless
of how accurate they actually are. Therefore, to complement
our quantitative measures of predictive validation, we present
two qualitative validation techniques, as follows:

• Comparing the inferences of DADS with the conditions
present within the synthetic disaster scenario (Figure 7)
to see if correct inferences were made.

• Comparing the paths taken by synthetic agents with the
paths of predictive agents that move based on the syn-
thetic data (Figures 8(a) and 8(b)).

Our quantitative and qualitative validation techniques to-
gether demonstrate the internal and predictive validity of
DADS with regard to synthetic data. The system accurately
predicts population movements and regional attractiveness in
a variety of scenarios.

Finally, we compared the predictions of simulations started
at 8:05, 8:35, and 9:05 a.m. with one another. Manhattan dis-
tance was again used as the metric for evaluating simulation
accuracy. More recent simulations are consistently more ac-
curate, as shown in Figure 9. This exemplifies the DDDAS
concept of correcting ongoing simulations with streaming
data [5].

Using over 3200 synthetic agents and as many predic-
tive agents on a 100× 100 uniform grid of Netlogo patches,
DADS took an average execution time of 5 minutes to pro-
cess 140 minutes of streaming synthetic location data while
running predictive simulations.



(a) Paths of synthetic agents. Each magenta line is the
traced path of a synthetic agent.

(b) Paths of predictive agents. Each blue line is the
traced path of a predictive agent.

Figure 8. Predictive agents in Figure 8(b) correctly prefer safe regions and avoid dangerous and disaster regions. Their movement is at
times very similar to that of synthetic agents (Figure 8(a)), especially in the northwest region (boxed in red). However, paths can differ locally
because predictive agents are overly sensitive to attractive and repulsive regions and “flow” less smoothly, congregating into streams around
heavily utilized paths. Thus, DADS is more predictively valuable for large groups than for individuals.

Figure 9. Evaluating use of streaming data. Green lines at the top of the figure represent simulations starting at 8:05 a.m, red lines in the
middle represent simulations starting at 8:35 a.m., and blue lines at the bottom represent simulations starting at 9:05 a.m. Simulations from 10
different scenarios are displayed for all three. Smaller Manhattan distances indicate more accurate predictive simulations. When a simulation
starts, it predicts all future movements of the population until 10:20 a.m. 30 minutes of streaming data and updates between the 8:05 and 8:35
simulations can dramatically improve predictions. 30 more minutes of streaming data further improve predictions from 8:35 to 9:05 a.m., but
less significantly. This trend holds for all 10 scenarios in the graph.



4. DISCUSSION
In this paper, we presented the proof-of-concept Dynamic

Adaptive Disaster Simulation (DADS), a simulation of popu-
lation movements that is able to adapt to streaming dynamic
cell phone data and predictively simulate a variety of crisis
scenarios. Given a set of real-time cell phone location data
during a crisis, DADS can identify attractive and repulsive
areas on a map and predict future population movements ac-
cordingly. In the Hurricane Katrina example, a system like
DADS could feasibly have identified areas such as the Clover-
leaf and the Superdome, which evacuees would prefer [24], so
that responders could allocate more aid to these areas. DADS
could also have determined the most popular paths of travel,
allowing for responders to better control traffic flow and pre-
dict where more assistance would be needed. This exempli-
fies its utility in a pre-disaster evacuation scenario, even if the
disaster itself disables cell service. Additionally, as shown in
Section 3., the simulation can be effectively applied to a va-
riety of scenarios. This satisfies the DDDAS specification of
leveraging streaming data during run-time to provide “real-
istic, real-time forecasts” that are specific to a given emer-
gency situation [5]. Finally, DADS takes less than 5 minutes
on average to process 2 hours of data, running fast enough to
provide useful real-time predictions.

Like WIPER [20], DADS advances the use of cell phones
as a data source and validation tool for simulations of pop-
ulation movements. Cell phones are becoming increasingly
ubiquitous, with over 4.6 billion subscribers worldwide in
2009 [27]. However, the study and use of cell phone data
is still “unexplored territory” [18]. DADS represents a step
forward in the utilization of cell phone data to study human
behavior. Since Call Data Records are kept by all cell car-
riers [21], DADS can also be used to analyze historical cell
phone location data, so as to study and model past disasters
and further engineer response to future disasters.

Our simulation integrates various approaches from crowd
animation [15, 26] and geosimulation [25] into a new ABS
system that is capable of addressing the problem of dynamic
disaster response. Specifically, DADS incorporates the fol-
lowing techniques:

• Large-scale emergent intelligence, derived from cell
phone users’ local knowledge [6].

• Assigning numerical attractiveness values to regions
based on cellular activity [2].

• Using vision cones for inference, as inspired by [25].

• Agent-based modeling for simulation of human emer-
gency behavior [19, 20].

• Applying fluid modeling and dynamic potential fields to
implement agent movement [15].

These methods are enhanced by incorporating streaming
real-time cell phone data, giving DADS its dynamic and adap-
tive capabilities. Finally, though the WIPER system [20] also
uses cell phone data to facilitate emergency response, DADS
is able to predictively simulate scenarios of far greater com-
plexity. Our work unifies approaches from different areas into
a simulation system that can be effectively applied to respond
to crisis situations.

DADS relies on several assumptions to achieve its simplic-
ity and fast run-time. It is necessary to evaluate these assump-
tions because “a model is only as good as the assumptions
on which it is based” [13]. For instance, DADS uses largely
homogeneous agents and assumes that environmental factors
alone determine population movements. Other agent-based
evacuation models assign heterogeneous features to agents in
order to reflect the heterogeneity of human populations [14]
or emphasize the influence of human interactions and “crowd
dynamics” on movement [3]. The study in [12] supports the
use of homogeneous agents for large-scale, outdoor situa-
tions, and the work in [10] asserts that emphasizing the effects
of environmental factors on population movements “would
be appropriate for evacuation disaster modeling, as crowd be-
haviors in such situations are largely reactive and driven by
danger avoidance”. These studies somewhat justify our two
assumptions, as DADS is intended to simulate citywide dis-
aster evacuations. Nonetheless, it would be beneficial to study
the effects of incorporating heterogeneity and crowd dynam-
ics into an evacuation model.

There are additional assumptions in DADS indicating the
need for further development. The most important one in-
volves the use of synthetic data — although synthetic data
was based on actual cell phone data during a recent disas-
ter and assumed to be a reasonable substitute, it may not ac-
count for aspects of real data such as volume and “noise”.
Also, predictive agents had no restrictions on their movement
and were assumed to have full knowledge of the surround-
ing environment. However, “visual occlusions” such as tall
buildings can create uncertainty and influence decision mak-
ing during a disaster [26]. Furthermore, features such as ter-
rain may change the dynamics of an evacuation scenario [23].
We must account for these factors to increase the degree of
realism in DADS predictive simulations.

5. CONCLUSIONS AND FUTURE WORK
Shortly after the 5th anniversary of Hurricane Katrina, we

created DADS, a tool for simulation and prediction of emer-
gency behavior. This system addresses some of the shortcom-
ings that caused the ineffective response to the storm. Our
work unifies diverse modeling concepts and techniques as
well as considering cell phone and GIS data, resulting in a
Dynamic Data-Driven Application System (DDDAS) [5] that
can incorporate and adapt to streaming data and generate re-



alistic forecasts of emergency behavior. Validation of DADS
shows that it can feasibly make accurate predictions of pop-
ulation movements during a disaster like Hurricane Katrina,
helping responders to make more informed decisions.

Though DADS has proven to be predictively accurate on
synthetic data, we must test it on real cell phone location data
in order to verify its efficacy in real-world settings. Lack of
realistic validation is still an issue requiring further work; this
observation concurs with [20]. However, due to the positive
results of using synthetic cell phone data to create and test
predictive simulations, it appears that our paradigm of “adap-
tive simulation” is quite promising.

We also intend to revisit some of the procedures used in de-
veloping DADS in order to improve upon several important
aspects. First, we must closely examine the process of gen-
erating synthetic data if real data remains unavailable. This
would ensure that results based on synthetic data are truly ap-
plicable to real cell phone data. Second, we plan to more thor-
oughly assess the great variety of techniques used in agent-
based modeling of population behaviors in order to enhance
the quality and efficiency of our simulation. Finally, we will
adopt a more sophisticated method of parameterizing DADS,
which could involve using advanced heuristics, genetic algo-
rithms, AI methods, and statistical approaches.

Regarding the issues raised in Section 4., future work
would also involve increasing the degree of realism in our
simulation. Of course, a model is not expected to reproduce
all factors present in a person’s decision making, as this could
dramatically increase the model’s execution time and lead to
a “naı̈vely realistic” model that emphasizes unimportant as-
pects of behavior [20]. Instead, a model should aim to cap-
ture enough key factors to generate a useful representation of
a phenomenon. Thus, we must strike a balance between real-
ism and run-time performance, creating a model that is both
valid and efficient.

DADS represents only one of a host of useful simulations
that can potentially arise from the DDDAS paradigm [5]. Ex-
amination of such simulations, such as that conducted in this
work, can provide new insights into complex phenomena.
For example, similar work could be conducted on a smaller
scale, to study evacuations of buildings, or on a larger scale,
to model global movement patterns. By combining exist-
ing methods with real-time data, simulations such as DADS
can potentially provide profound understanding of population
movements and increase the efficiency of human spatial inter-
actions in ways previously unimaginable.
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