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Overview

We present a technique that uses hybrid clustering in con-

junction with statistical process control to handle concept drift

in a data stream.
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Outline

• Motivation
• Background

◦ Data streams
◦ Concept drift
◦ Statistical process control

• Related work
• Hybrid clustering for streams
• Setup
• Results
• Conclusion
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Motivation

Application
• Detection and Alert System component of WIPER

Emergency Response System [Schoenharl et
al., 2006], [Madey, et al., 2006]
◦ Detect and report anomalies in network usage
◦ Notify Simulation and Prediction System

Difficulties
• Massive volume of data
• Dynamic system
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Data Streams

• Data can only be read once (due to volume)
• Order of data cannot be manipulated
• Often, if the underlying process is stationary, anomaly

detection is straightforward
• If the underlying process is dynamic, the problem is

difficult
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Concept Drift

• Change in process that generates the data stream
over time

• May or may not be periodic
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Concept Drift
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Figure 1: GPRS usage over 12 days
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Statistical Process Control

Distinguish between random and assignable variation:
threshold is µ ± lω.
• Random variation

◦ High probability, little effect on process output
• Assignable variation

◦ Low probability, significant effect on process output
◦ Change in underlying process
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Statistical Process Control
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Figure 2: Range of random variance
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Related Work

Intrusion detection (Portnoy, 2001)
• Identify intrusions in an unlabeled data set using

leader clustering.
• The leader algorithm (Hartigan 1975)

◦ Let d be a distance threshold.
◦ Let the first instance assigned to cluster Ci be the

defining instance, ci

◦ For each instance x

• Find the closest cluster, Cj

• If dist(x, ci) < d, add c to Ci
• Otherwise, create a new cluster with the defining

instance x.
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Related Work

Problem:
• Uses z-score normalization to allow for arbitrary data

distribution:

v′i =
vi − v̄i

σi

• This is not possible in one pass
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Related Work

Hybrid clustering algorithms, (Cheu et al., 2004)

1. Cluster to reduce the data set

2. Produce final clusters
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Hybrid Algorithm for Streams

1. Establish clusters with some minimum number of
instances using a partitional or hierarchical algorithm

2. Incrementally update cluster center and standard
deviations using a variation on the leader algorithm.
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Setup

Data set
• Feature vector consists of timestamp and number of

instances of 5 services
• One example for each minute of a 12 day period

(18721 examples)

Clustering Algorithms
• Expectation Maximization — Weka, cross-validation to

determine number of clusters
• Leader
• Hybrid for streams: (1) k-means, (2) modified leader
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Results

Hybrid algorithm
• Small clusters compared to EM
• Little consistency in detected outliers among different

thresholds or values of k

Leader algorithm
• More consistency in anomaly detection
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Conclusion

• Algorithms using random values may be a bad idea
• Algorithms requiring only threshold parameter seem

promising

Future work
• Hierarchical clustering to establish clusters
• Examine further how the number of clusters grows

over time
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