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Overview: Dynamic Data Driven Application Systems1

Utilize simulations and models that can

I Incorporate newly available data online, and

I Steer the data collection mechanism to obtain the most useful
data

Areas of application:

I Population movement forecasting (Schoenharl and Madey
2008)

I Forecasting the spread of fire: wildfire (Mendel et al, 2007), in
buildings (Chaturvedi, et al., 2005)

I Weather (Ramakrishnan et al., 2007), hurricane (Allen, 2007)
forecasting

I and many others.

1Portions of this work were funded by the National Science Foundation:
DDDAS Program, Grant CNS-0540348.
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Overview: Wireless Phone Based Emergency Response
System
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Overview: Road Map

In this presentation, we will cover two aspects of the WIPER
system:

I The Historical Data Source
I Data partitioning aspect of the warehouse design.
I Issues arising from the data merge.

I Detection and Alert System
I Feature clustering approach for event detection.
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A Data Warehouse for Social Network and Human
Mobility Research
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Overview: Data Warehousing

Data warehouses store long term historical data organized in such
a way that it can be effectively used for analysis (traditionally
decision support in a business environment).

I Data residing in a warehouse are often from different sources
(departments).

I The warehouse is non-volatile: once loaded, the data are not
updated.
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Overview: The Phone Data

Two major components:
I Usage data

I Call data: billing records of service usage initiated by
customers of the company.

I Interconnect data: billing records of service usage initiated by
users that are not customers of the company and received by
customers of the company.

I Call Record Data (CDR): usage records with tower
information. Four types of records:

I MOC: record for a voice call from the originating tower
I MTC: record for a voice call from the terminating tower
I SOM: record for an SMS from the originating tower
I STM: record for an SMS from the terminating tower

I Customer data
I Defines the set of “in-company” users.
I Users that are not in the customer data are “out-of-company”.
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Motivation

Data used for:

I Development of the Simulation and Prediction and Detection
and Alert Systems of WIPER.

I Social network and human mobility research.

Problems:

I Large (5 TB) set of flat files.

I Inefficient de-identification mechanism (phone numbers
replaced by strings)

I Data preparation is time consuming, error prone, and often
redundant.

Goal: Develop a repository that allows efficient extraction of
relevant subsets of the data.
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Related Work:

Gray et al., 2005. Advocate for the use of database management
systems instead of file formats traditionally used in scientific
research.

Examples of scientific databases:

I Bioinformatics: INTERACT (Eilbeck, et al, 1999)

I Astronomy: Sloan Digital Sky Survey (O’Mullane, et al.,
2005)

I High Energy Physics: BaBar (CERN) (Becla and Wang, 2005)
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Warehouse Design

Design considerations: (Inmon, 2005)

I Granularity: Level of detail.

I Partitioning: Divide the data into manageable chunks.
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Data Partitioning

Guided by the way in which the data has been historically used:
groups of greatest interest are voice calls and “in-company” users.

I Onnela et al. 2007. Structure and Tie Strengths in Mobile
Communication Networks. Proceedings of the National
Academy of Sciences.

I González et al. 2008. Understanding Human Mobility
Patterns. Nature.

I Wang et al. 2009. Understanding the Spreading Patterns of
Mobile Phone Viruses. Science.
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Data Partitioning
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Usage Data Integration: Partition and Merge
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Introduction of Duplicates by Merge
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Cleaning

I Consider only records that haven’t been matched (initially
records with a value in exactly one of the two antenna fields).

I Add perturbation to the start time of records having a value in
only the terminating antenna field and attempt to match with
records having a value in only the originating antenna field.

I Sequence of perturbation: +1,−1, +2,−2, · · · + 60,−60.

I Fields matched at each step are removed from consideration:
I Match records with smallest possible perturbation.
I Match each record only once.
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Results
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Results
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Consequences

I In many cases, these duplicates can be ignored, e.g.
I Building graphs with edges weighted by total duration or cost

(Onnela et al, 2007).
I Generating user trajectories (González et al, 2008).

I Can be problematic when generating time series of call
activity.
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Summary

I Data warehouse contains 14 months of data.
I Data loading process in highly automated:

I Two scripts: customer and usage data
I Each script:

I validates fields
I loads the initial tables
I replaces user strings with integers
I integrates the various record types
I usage script partitions the records

I Data extract from the warehouse is in use for a social network
study

I Comparable data extraction from text files takes weeks: code
is written to identify relevant users, replace user ID strings,
filter data.

I One year of data can be extracted in one day using a single
SQL query.

20 / 38



Detecting Real-World Events in Space and Time
Using Feature Clustering
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Overview
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Key Observation: Certain Events Cause Localized Changes
in Call Activity
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Clustering

Let D be an n ×m matrix:

I n is the number of observations

I m is the number of features per observation

I In this case, features are the call activity at each spatial area
(postal code, tower). Data item is recorded every 10 minutes.

Goal: partition the n rows D into a natural grouping.

I Minimize intra-cluster distance.

I Maximize inter-cluster distance.

We want to cluster the time series, so we transpose D before
clustering; this is called feature clustering.
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Related Work

I Rodrigues et al. (2004). Stream feature clustering algorithm.
I Correlation dissimilarity: sufficient statistics require quadratic

space with respect to the number of features.

I Aggarwal et al. (2003).
I If entire history is used, stale data dominates results.

25 / 38



Approach

Dataset:

I Aggregate records based on spatial area: postal code or tower.

I Time series: number of calls in 10 minute intervals for each
spatial area.

Clustering:

I Single link clustering over a 1 day sliding window.

Event Detection:

I Outliers are detected by examining maximum distance
between clusters.

I Baseline is computed using the maximum distance between
clusters over the 2 months of data.

Two events:

I An explosion.

I Celebration following a sports victory.
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Results: Bombing
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Figure: The maximum distance between clusters for a 12 hour window
around the bombing with the mean and ± 1 standard deviation over 2
months. The bombing occurs between time = 0 and time = 0.5
(conflicting news reports)
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Results: Bombing
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Results: Celebration

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6M
ax

im
um

 d
is

ta
nc

e 
be

tw
ee

n 
cl

us
te

rs

Time (hours)

µ
[µ - σ, µ + σ]

Event

Figure: The maximum distance between clusters for a 12 hour window
around the celebration with the mean and ± 1 standard deviation over 2
months. Important events are: at approximately time −1 the sporting
event ends, at time = 0, the crowd has gathered to meet the team, and
at approximately time = 1 the team leaves the celebration.
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Results: Celebration
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Summary

I In cases were events cause localized changes in call activity,
we can use feature clustering to detect the events and their
approximate location.

I This achieves our goals of automating event detection and
constraining the area that must be simulated by the
Simulation and Prediction System.
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Summary
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Summary of Research

Two components:
I Historical Data Source. Data repository for:

I development of WIPER system components
I social network and human mobility research

I Feature clustering algorithm for event detection
I In cases where event causes a localized change in call activity,

the event and it’s approximate location can be identified.
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Publication Plan

I Data warehouse implementation (Chapters 3, 4): Planned
submission to the International Journal of Data Warehousing
and Mining, pending revision.

I Feature clustering approach for event detection (Chapter 7):
Planned submission to IEEE Transactions on Patern Analysis
and Machine Intelligence, pending revision.
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