
Anomaly Detection in a Mobile Communication Network

Alec Pawling, Nitesh V. Chawla, and Greg Madey
University of Notre Dame

{apawling,nchawla,gmadey}@cse.nd.edu

Abstract

Cell phone networks produce a massive volume of service usage data which, when com-
bined with location data, can be used to pinpoint emergency situations that cause changes
in network usage. Such a change may be the results of an increased number of people
trying to call friends or family to tell them what is happening or a decrease in network
usage caused by people being unable to use the network. Such events are anomalies and
managing emergencies effectively requires identifying anomalies quickly. This problem is
difficult due to the rate at which very large volumes of data are produced. In this paper, we
discuss the use of data stream clustering algorithms for anomaly detection.

Contact:
Alec Pawling
Department of Computer Science and Engineering
University of Notre Dame
Notre Dame, IN 46556

Tel: 1-574-631-7596
Fax: 1-574-631-9260
Email: apawling@cse.nd.edu

Key words: Anomaly detection, data clustering, data mining

Anomaly Detection in a Mobile Communication Network

Alec Pawling, Nitesh V. Chawla, and Greg Madey

1 Introduction

The city of Baltimore currently uses location information produced by cellular phones to monitor traffic
conditions, and the state of Missouri is considering a similar statewide program [7]. The goal of such systems
is to reduce traffic congestion and fuel usage by diverting drivers around slow moving areas. There is a
significant advantage in using cellular phones: there is no installation or maintenance required for the physical
sensors. A cellular phone network may also be used to quickly detect a potential crisis via anomalies in the
network as a whole, including call and movement patterns. [9]. This paper will examine the problem of
detecting these anomalies using call volumes.

Anomalies need to be detected very rapidly, so that crises can be identified and handled effectively as they
arise. Additionally, the volume of data being produced by the network is massive: the network is constantly
producing new data as calls are made, text messages are sent, and cell phones move. This data must be
analyzed in real time. To further complicate the matter, the way in which people use the available services is
likely to change over time, so the system must be dynamic. We aim to remain within the data stream model
[1]. Intuitively, a data stream is a sequence of data items that arrive at such a rapid rate that it is only feasible
to operate on a small portion of the data. As each data item is seen, it must be either incorporated into a
summary that requires a small amount of space or it must be discarded, in which case it cannot be retrieved.
The data stream model imposes two algorithmic limitations: each item in the dataset may only be read once,
in a predefined order, and memory usage must be sub-linear—typically polylogarithmic

Distinguishing between changes that are merely due to the dynamic nature of the system and anomalies is
a difficult problem. Statistical process control is one method of approaching this problem. Statistical process
control [2] aims to distinguish between “assignable” and “random” variation. Assignable variations are as-
sumed to have low probability and indicate some anomaly in the underlying process. Random variations, in
contrast, are assumed to be quite common and to have little effect on the measurable qualities of the process.
These two types of variation may be distinguished based on the difference in some measure on the process
output from the mean, µ, of that measure. The threshold is typically some multiple, l, of the standard de-
viation, σ. So, if the measured output deviates from the mean by less than |lσ| the variance is considered
random, otherwise it is assignable. Figure 1 shows the range of random variation (with a threshold of 3σ) of
telephone usage in a cellular network over the hours of the day. Note that not only is the call volume different
depending on the time of the day but so does the range of random variance.

Our solution must be robust to these variations as well as underlying changes in the way in which people
use the network over time. These are forms of concept drift—an underlying change in the process producing
the data stream [10]. Concept drift may or may not be periodic. Our data contains both (see figure 2). Much
of the work in handling concept drift for clustering has focused on using a sliding window, in which the
example in the last t time steps are considered in the current set of clusters. This has been shown to produce
“meaningless” clusters [6].

2 Related Work

One method for anomaly detection is data clustering. The goal of clustering is to group similar data items
together. The concept of similarity is often defined by a distance metric (often Euclidean distance), and
anomalies are, intuitively, the data items that are far from all other data items.

Jain, Murty, and Flynn [5] thoroughly review data clustering. There are three major types of clustering al-
gorithms: partitional, agglomerative, and incremental. Partitional algorithms, such as k-means or expectation

2

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 1 2 3 4 5 6 7 8 9 1
0

 1
1

 1
2

 1
3

 1
4

 1
5

 1
6

 1
7

 1
8

 1
9

 2
0

 2
1

 2
2

 2
3

 2
4

T
el

ep
ho

ne
 c

al
l v

ol
um

e

Hour of the day

Figure 1: The average and standard deviation of the network load of the telephone service for each minute of
the day.

 0

 100

 200

 300

 400

 500

 600

 700

 0 1440
 2880

 4320
 5760

 7200
 8640

 10080

 11520

 12960

 14400

 15840

 17280

 18720

N
um

be
r

of
 in

st
an

ce
s

Time (min)

Figure 2: GPRS usage for each minute of a 12 day period.

maximization produce a single partition of the dataset and often have a random initial state. Agglomerative
algorithms are a bottom-up approach. Initially, each example is in a unique cluster. A set of hierarchical
partitions of the data is formed by iteratively merging neighboring clusters. Agglomerative algorithms tend
to be expensive. Incremental clustering considers each example once, immediately deciding to place it in a
existing cluster or creating a new cluster. These algorithms tend to be fast, but are also often order dependent.

Portnoy et al. [8] use the leader algorithm [4], a simple incremental clustering algorithm for intrusion
detection (an application of anomaly detection). Each cluster is defined by a single data item—the first
item assigned to the cluster—and data items within a user specified distance, d, of the defining item. The
algorithm proceeds as follows: for each data item, find the closest cluster. If the distance between the item
and the defining item of the cluster is greater than d, the item defines a new cluster. The algorithm itself fits
into the data stream model when the number of clusters found is sub-linear with respect to the number of data
items; however, in order to handle arbitrary distributions, Portnoy et al. normalize the data set using z-score,
which is computed by

v′

i
=

vi − v̄i

σi

. (1)

Unfortunately, this requires multiple passes over the data. Another problem with this approach is that the
proper value of the distance threshold is not intuitive, is fixed over all clusters, and cannot change as the data
stream evolves.

3 A Hybrid Clustering Algorithm

Hybrid clustering algorithms consist of two levels: often the first level reduces the size of the data set to
improve performance for the final clustering [3]. We use a hybrid clustering algorithm in a different way. We

use an offline algorithm in the first level to establish clusters and leader clustering combined with statistical
process control as the second level.

We investigate an algorithm that combines the leader and the standard k-means algorithms. The leader
algorithm forms the foundation of this algorithm, using Euclidean distance, and the distance threshold is
based on statistical process control. The k-means algorithm is used to create each cluster such that there are
enough examples to produce a reasonable standard deviation. In addition to the cluster information, we also
keep a set of outliers.

The algorithm requires three parameters, the minimum number of examples required to form a cluster,
s, the number of clusters to produce each time when applying k-means, k, and the threshold, t (the distance
threshold becomes t|~σi|). The algorithm first adds examples to the outlier set until there are ks examples, at
which time, k-means is applied to the outlier set. Any clusters with more than s members are kept and the
s members establish the initial feature means and standard deviations for the clusters. The examples in the
remaining clusters are returned to the outlier set. Any subsequent examples are either placed in the nearest
cluster, if their distance from the cluster mean is within t times the standard deviation of all features, or added
to the outlier set. k-means clustering is applied to the outlier set whenever there are ks examples in the set.

4 Experimental Setup

4.1 Dataset

We use a dataset generated from a database of real world mobile communication information. The data set
covers 12 days of network usage of 16 services. For each service used during the 12 days, there is a record in
the database consisting of the initiation time (to the second), the duration (in minutes) and the service name.
Since the duration is in minutes, we generate an example for each minute in the 12 day period. We step
through the records in the database in increasing order of time. For each record, we increment a counter of
the number active instances of the service and place an object containing the service name and termination
time in a priority queue. When the minute of the current record is greater than the minute of the previous,
all expired objects are removed from the priority queue, and the appropriate service instance counts are
decremented. The record consisting of the month, day, date, hour, minute, and list of service instances counts
is then added to the dataset.

Since the data set is for such a short period of time, we pruned the month, day, and date from the dataset.
Additionally, most of the services are rarely used. These features were removed, leaving 6 service features,
in addition to the hour and minute.

4.2 Clustering

We clustered the data using three algorithms: expectation maximization, leader (with z-score normalization),
and incremental hybrid. We used Weka’s [11] implementation of expectation maximization with 10 fold
cross validation to determine the number of clusters. We ran the leader algorithm using distance thresholds
d = 1, 2, 3 and considered clusters with fewer than 10%, 5%, and 1% of the dataset to be anomalies. For the
incremental hybrid algorithm, we used l = 1, 3 and k = 5, 10, 20, 30.

We used sum squared error to evaluate quality of the clusters produced by expectation maximization and
incremental hybrid. Additionally, we compare the size of the clusters produced by these two algorithms.
Finally, we looked for consistency in the anomalies detected by the system.

5 Results

Table 1 shows the number of clusters produced by each method and figure 3 shows the sizes of clusters
produced by expectation maximization, the hybrid algorithm with k = 20 and l = 1, 3 in terms of the standard
deviation of each feature for each vector. Interestingly, the hybrid algorithm produces smaller clusters than
expectation maximization, regardless of which algorithm produces more clusters.

Table 1: Number of clusters produced for each method.
Algorithm Parameters Number of clusters

EM 5

Leader
d = 1.0 542

d = 2.0 73

d = 3.0 23

Hybrid

l = 1

k = 5 19

k = 10 11

k = 20 11

k = 30 7

l = 3

k = 5 2

k = 10 4

k = 20 5

k = 30 3

 1

 10

 100

 1000

 10000

 100000

 1e+06

hour
m

in
Text sent

GPRS

Text recieved

Telephone

Data transm
ission

(a) EM

 1

 10

 100

 1000

 10000

 100000

 1e+06

hour
m

in
Text sent

GPRS

Text recieved

Telephone

Data transm
ission

(b) Hybrid (l = 1, k = 20)

 1

 10

 100

 1000

 10000

 100000

 1e+06

hour
m

in
Text sent

GPRS

Text recieved

Telephone

Data transm
ission

(c) Hybrid (l = 3, k = 20)

Figure 3: Standard deviation of clusters

Figure 4 shows the sum squared error for expectation maximization and all trails of the hybrid algorithm.
For our trials, the worst cases for hybrid perform comparably to expectation maximization, and several trials
perform an order of magnitude better.

 1e+14

 1e+15

 1e+16

 1e+17

EM hybrid (1*stdev)

hybird (3*stdev)

10-fold-cv
k=5

k=10
k=20
k=30

Figure 4: Sum squared error for expectation maximization and hybrid clustering

Table 2 shows the number of anomalies detected by the hybrid algorithm. The leader algorithm performs
as expected, with the number of anomalies detected decreasing when either, or both, of the parameters de-
creases. The same trend seems to hold for the hybrid algorithm for the threshold parameter, but it is not clear
how k affects the sensitivity.

6 Conclusion

The leader algorithm is a promising method; however, since the appropriate threshold for our application is
not intuitive, it may not be the best method. The hybrid method using k-means does not seem promising;

Table 2: Number of anomalies detected by the hybrid algorithm
Parameters Number of clusters

l = 1

k = 5 101

k = 10 122

k = 20 552

k = 30 432

l = 3

k = 5 25

k = 10 41

k = 20 263

k = 30 137

however, there may be other clustering algorithms that would be more appropriate.

6.1 Future Work

Hierarchical algorithms can be used to partition a dataset at a certain level of dissimilarity. Hierarchical
algorithms such as single-link and complete link are completely deterministic and may be more suitable for
our application than k-means, which relies on a random initial state. We plan to pursue this, along with
examining how the the clusters change over time. This requires more data and is important because we need
to ensure that the number of clusters in not growing too quickly.

References

[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data stream sys-
tems. In Proceedings of the Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, pages 1–16, June 2002.

[2] C. Bicking and F. M. Gryna, Jr. Quality Control Handbook, chapter Process Control by Statistical
Methods, pages 23–1—23–35. McGraw Hill, 1979.

[3] E. Y. Cheu, C. Keongg, and Z. Zhou. On the two-level hybrid clustering algorithm. In International
Conference on Artificial Intelligence in Science and Technology, pages 138–142, 2004.

[4] J. A. Hartigan. Clustering Algorithms. Wiley Series in Probability and Mathematical Statistics. John
Wiley & Sons, 1975.

[5] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Computing Surveys,
31(3):264–323, September 1999.

[6] E. Keogh and J. Lin. Clustering of time series subsequences in meaningless: Implications for past and
future research. In Knowledge and Information Systems. Springer-Verlag, 2004.

[7] D. A. Lieb. Tracking cell phones for real-time traffic data. Wired, 2005.

[8] L. Portnoy, E. Eskin, and S. Stolfo. Intrusion detection with unlabeled data using clustering. In ACM
Workshop on Data Mining Applied to Security, 2001.

[9] T. Schoenharl, G. Madey, G. Szabó, and A.-L. Barabási. WIPER: A multi-agent system for emergency
response. In Proceedings of the 3rd International ISCRAM Conference, 2006.

[10] A. Tsymbal. The problem of concept drift: Definitions and related work. Technical Report TCD-CS-
2004-15, Trinity College Dublin, 2004.

[11] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques. Morgan
Kaufman, second edition, 2005.

