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Abstract

Cell phone call activity records the behavior of individualghich reflects underlying human activity
over time. Therefore this data displays multi-level peicagy, such as weekly, daily, hourly, etc. Simple
stochastic models that rely on aggregate statistics areaidé to differentiate between normal daily
variations and legitimate anomalous (and potentially &jigvents. In this paper we describe a framework
for unsupervised learning using a Markov modulated Poigzogess (MMPP) [15, 6, 13] to model the
data and use the posterior distribution to calculate thelyability of the existence of anomalies over time.
This paper focuses on anomaly detection in the WIPER sy3MiRER is a system that helps to detect
possible emergencies from cell phone data, provides thegponding information to emergency planners
and responders, and suggests possible actions to mitipatemergency. One of the most important
components of the system is the Detection and Alert Systa®)(hich detects anomalies (which could

be crisis events) from a cell phone data stream.

1 Introduction

A time series is a sequence of observations that can be neeheuer consecutive time periods at
(often uniform) time intervals [16]. Time series data afisa variety of domains, especially in economic

systems, such as stock and financial data. Time series datasalsed in environmental, medical, and



telecommunication data. Patterns of human behavior oner tan be observed as a time series if the
observed data reflects human behavior and can be measune@ filata collection system. The crucial
characteristic of a time series is that the data are not entdgnt, their distribution varies over time, and
usually displays an underlying trend. Analyzing and un@derding the trend of human behavior over time
has become an interesting research area [6, 15, 14, 12].0Ehefghis paper is to analyze time series data
from cell phone call activity, discover underlying humarmaeor, and use the results to detect potentially
anomalous events.

First we want to distinguish outlier detection from anomdstection in a time series scenario. The

classic definition of an outlier is:

. an observation that deviates so much from other obsengéas to arouse suspicion

that it was generated from a different mechanism. [5]

However, a single bursty point is not what we are looking feinat interests us most is anomalies,

which can be called “special” patterns. Keoghul. define a surprising pattern as:

. if the frequency of its occurrence differs substantiilbm that expected by chance,

given some previously seen data. [7]

From previously observed data, a normal behavior patteyensrated. If bursty activity happens within
a certain time from the previously observed data, it is digssinto the normal behavior pattern. Only
patterns which greatly differ from expected data are carsid as anomalous. By using this definition,
no explicit description of an anomaly is required and norpetterns are inferred from a collection of
previously observed data.

In this paper, we use the definition of anomaly from Keogh .€tfdl We analyze the cell phone network
data from two cities within a one-month time period. We aiiléhe call activities for each transaction,
which includes the account number, calling time, and lecatiFrom this detailed information, the call
activities of individuals can be measured over a given tinterval. Since this type of measurement
contains the aggregated behavior of large amount of indalg] it typically demonstrates a periodicity of

human behaviors on many time scales, such as hourly, dadywaekly.

2 Related Work

Anomaly detection or event detection in time series datad@asved wide attention in the data-mining

community. The process of finding interesting or surprigiagierns from a time series dataset has been



studied by several researchers [4, 7, 8, 6, 15, 14, 2, 1].

Guralnik and Srivastava [4] present an iterative algoritbndetecting a change-point from time series
data, and uses a maximum likelihood estimation to furthgmst the time slice if no change-point is
observed. The approach does not reqaipgiori knowledge of the data, and is independent of regression
and model selection method.

Keogh et al. [7] used a suffix tree to encode the frequency séded patterns, and applied a Markov
model to detect surprising patterns. No explicit definitadfrsurprising patterns are required, they are
generated from previous observed data.

Kleinberg [8] used an infinite-state automaton to model datsam, and use it to detect the underlying
content in a document stream. The bursts are identified testetasition. The author applied the method
to analyze e-mail and research archives, and shows theeafficbf the proposed algorithm.

Scott et al. [15, 14] and lhler et al. [6] used Markov-modethPoisson processes to analyze human
behaviors in web surfing[15], telephone network [14] an@viray traffic [6], and deployed the model to
detect anomalies in their systems. Our model is derived ftwer work, and is used to analyze human
behavior on a regular cell phone call-based scenario.

Basu and Meckesheimer [2] analyze the sensor data from maérptadetect the anomalies. Median
value from a neighborhood of a data point is used to comparéelifference to the observed data value.
The proposed methods are fast and have quick response tsticten.

Agarwal [1] applied an empirical Bayes method on daily logsanfe scale spoken dialog systems.
The method fit a two-component Gaussian mixture to deviat@present time, which can avoid false

positive by suppressing the consequence merely causedljy dfianges in the marginal distribution.

3 WIPER System And Data Characteristics

The Wireless Phone-based Emergency Response (WIPER) systissigaed to provide emergency
planners and responders with an integrated system thahelplto detect possible emergencies, as well
as to suggest and evaluate possible courses of action twvidlkedahe emergency [11, 10]. Components of
the system for detecting and mitigating emergency sitnat@an be added and removed from the system
as the need arises. WIPER is designed to evaluate poteratred pf action using a series of GIS-enabled
Agent-Based Simulations that are grounded on real time data €ell phone network providers. The
system relies on the DDDAS concept [2], the interactive Usgactial aggregate and detailed real time

data to continuously update the system, which ensuresithalaions always present timely and pertinent



data. WIPER presents information to users through a webdbaserface of several overlaid layers of
information, allowing users rich detail and flexibility.

One of the most important components of the WIPER system isutloenaly detection. In order to
analyze and understand the human behavior representee loglttphone call records, we selected two
cities, referred to here as A and B, as our test models. City Asimaller city with population around
20,000, and the city has 4 cell towers. City B is a bigger citthyiopulation around 200,000, and has 31
cell towers. In our collection of call activities, data isgaggated at tower level.

Figure 1 shows the similar behavior of call activities orfetént towers in the two cites on the same
day. Some towers carry more calls than the others, and thettirdy because of location variations. Some
towers are located in areas with higher population deresitg, some are located in a more sparse regions.
Our following analysis always uses data from all towers mitgion to represent the human behavior of
the city.

Figure 2 shows call activity for city A over two weeks, withatdl of 273,022 calls. Figure 3 shows
call activity for city B over two weeks, with a total of 2,1&B3 calls. Figures 2 and 3 show two weeks
of calling activity with each day plotted separately andwiiie same days of the week, such as Monday,
Tuesday, ... etc, shown in the same color. The figures denab@ghat there are similar behaviors on
Day 1, Day 8 and Day 15 which are all Sundays in the dataset Bé&y 2 and Day 9 (Saturdays) share
similar behavior, and all the remaining weekdays have amnfiehavior. In addition, for a particular day,
call activities are always low between midnight and 8 am, keep growing from 8am to 1-2 pm, but
reduce around 3-4 pm in the afternoon, peak around 8-9 pmhamddrop till midnight. The trend seems
universal over all of the days, despite different days of kveEhese observed effects (day of week and
hour of day effects) motivated our further investigation.

The data set consists of one month of cell phone activityhEacord contains calling account, calling
time and location. There is no known emergency event in titme period in these two cities. The dataset
only gives the basic call activities for each call, such aslibgin/end time of the call, call id and call

location.

4 MMPP Modeling

The model applied in this paper is derived from the MarkovelMlated Poisson Processes used by Ihler
al. etc. for freeway traffic analysis[6], Scott and Smythvieb surfing behavior analysis [15] and Scott

for telephone network intrusion detection [14].
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Figure 1. Call Activities On Different Towers In The Two Citi es On The Same Day

The MMPP is a special case of the doubly stochastic Poissmoeps [3, 9]. Its rate parameter obeys a
Markov process. The Poisson distribution is widely used@®hbabilistic model for count data, while the
rate of the Poisson process represents the average numbleseyf/ations in a fixed time period. In the
MMPP model, a Markov process is employed to model the ratbePoisson process, which indicates
that the average number of occurrences follows a contintimesMarkov chain.

In our application, letV(t) refer to the count number of observed call activities at tiroger a fixed
time interval, wher¢ € 1, ..., T. In order to modelN(¢), we need to model both normal behavior
and abnormal behavior. The normal behavior representstidar life of individuals, while abnormal
behavior corresponds to rarely occurring events indicate@ change in call activity. At this stage,

we did not classify the types of different anomalies: all tr@malous events are considered as one
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type. Therefore, we us#(¢) to represent the normal call activities, ant (¢) to represent all kinds
of abnormal call activities caused by known/unknown evefitse observed activityV (¢) is the process

formed by the superposition of unobserved compon@pts) and N (t):
N(t) = No(t) + Na(t)
Each of these two components can be modulated as a Poissmsprave will give the detailed de-
scription in next section.
4.1 Modeling Normal Data

The mass function of the Poisson distribution is given by:

e \N

P(N;X) = N

N=0,1,..

where) is the rate parameter representing the average number wfrences in a fixed time interval.
In MMPP, \ is a Markov chain\(¢) as a function of time. This is also called a nonhomogeneoiss&o
distribution, and\(¢) measures the degree of the heterogeneity. The model we laga@ys derived from
Scott [13] and Ihler [6].

A(t) = Ao Sa(e) Nty ne)

whered(t) € [1,2,...,7] and associates with Monday(1), ..., Sunday(7), Afd indicates the time

intervalt in, such as 10 minutes, half hour, one hour, etc. Additignalindn must meet these constrains:

and

Zniﬂ‘ = D, Vi

j=1
WhereD is the number of intervals in one day for a given fixed timerveg )\, is the average rate of
the Poisson process over one wegkis the day effect and, ; is the time of day effect. The day effect
0; indicates the change in rate over the day of the week, andnteeinterval effect indicates the change
over the time periog on a given day of. Figure 4(a) and 4(b) demonstrate these two effects.
Figure 4 shows that the simple overall average cannot atyna@present normal call activity. The

day of week effectd;)) can be described more precisely as a representation ofthyebdhavior. For
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(b) Time of Day Effect {,(:),n(+)): Figure 4(a) also shows that different times in each daphefieek
correspond with different levels of call activity. Call adties are lower during the early morning and

early afternoon, and higher in the late morning and night.
Figure 4. Two effects demonstrate the periodic behavior of ¢ all activities

example, the weekday displays higher activity than the wedk However, the day effect does not ade-
quately describe the changes in calling activity over these of a day. Observation of the data shows that
calling activity over the course of a day is periodic in natwtemonstrating less activity from midnight
to early morning and higher activity around 1pm and 9pm. kieoito compensate for this we add the
time of day effect) ) as presented in [13]. The combination of these yields a nmuate accurate

time-dependent value fox(¢).



Also suggested by Scott [13], we use conjugate prior distiops for the parameters.

Ao ~ T (N ab, b"), where T'(X; a,b) oc A*te™®

1
?[(51, (52, ceey 57] ~ Dir(a‘f, Odg, ey Oé?, )

1 .
5[?7¢,1, iz, - Mip) ~ Dir(al ol ... a%h)

I['(.) is the Gamma distribution with meanb and variance,/b?. Dir(.) is a Dirichlet distribution.

4.2 Modeling Anomalous Data

In our applications, we suppose an anomaly is an event tleatr®carely, briefly and randomly. An
anomaly causes a change in the call activity over the timegeand is observed in th¥ ().

N, (t) is also a Poisson process whose ratg &) when there is an anomalous event at tilmand O
otherwise. In order to modulate the anomalous behaviortawer, we can use an unobserved continuous-
time Markov process A(t) to determine the existence of amaalous event at timg and the probability

distribution over A(t) follows the transition probabits matrixi/ 4:

1 an event is occuring at time t
A(t) =
0 otherwise

1-4, 4
Ao 1—4

wherel/A, is the expected time interval between events, B} is the expected length of the event.

Our priors forA, and A, are:
AD ~ 5("47 a(j;la bf)q) Al ~ ﬁ(Aa afa b114)

whereg(.) is a Beta distribution.

Therefore, theV,(¢) distribution can be written as :

0 At) =0
PN M) A®=1

Na(t) ~

and
Aa(t) ~ T(Ag;at, b,



4.3 Expressng MMPP asaHidden Markov Model (HM M)

The MMPP can be explained as a nonstationary Hidden Markoddlidrhe observed data ané(t),
and the hidden Markov chain is the anomalous evinj occurring at time t. After expressing MMPP as

HMM, we can use the HMM'’s recursive procedures to calculaggparameters and posterior distribution
of A(t).

4.3.1 Forward recursion

Given the complete dat&(¢), N4(t) and A(t), it is straightforward to draw posterior samples of the
parametera(t) andAy, A;. Also we can infer the posterior distribution over each pegter using Markov

chain Monte Carlo methods. The likelihood function is:

PN (t); A(2)); A =0

p(NOIA@®) = |
SO PG, AONBIN(N () — 1)) A)=1

Foreach € 1,2, ..., T, the conditional distribution is:

i=t—1

PA@IN()) =m0 Y Maxp(A(t — 1)IN(t — 1)) * p(N(1)|A(1))

1=0

wherery is the initial distribution of the Markov chain A(t).

4.3.2 Backward recursion

The p(A(t|N(t)) from the forward recursion conditions are on all of the obedrdata. The backward
recursion starts with'(A(T)|N(T)) = p(A(T)|N(T)), for eacht € T,T —1,...,1, p'(A(t)|N(t)) =
M’ x p(A(t)|N(t)). Then we draw samples:

AA(t) ~ p(A()|A(t +1) = AA(t + 1))

And for a given AA(t) value, we draw samples & (¢) and N 4(¢) by using:
No(t) oc P(i, A(t)NBIN(N (t) — 0));

Na(t) = N(t) = No(t);



4.3.3 Parameter Estimation and Posterior Sampling
SamplingAy, A; is straightforward using:
A = Z 1;wherei,7 € 0,1

Vi A(t)=i,A(t+1)=j

Therefore the posterior distributions:
AO ~ 6(14, CLOA + A017 bOA + Aoo)
Ay ~ B(A; af + A, bf + Ap)

5 Implementation

The MMPP system is written in Matlab 7.0.
5.1 Anomaly Detection

One application of our MMPP framework is detecting anomslexents in an observed data sequence.
The existence of an anomaly is represented by the prot@gsand therefore we can use the posterior
probability p(A(¢)| N (¢)) as an indicator of anomalies.

As described in the previous section, we draw samples in &M process and predicate the posterior
marginal distribution of the anomalies. Figure 5 shows #®ult of using MMPP for modeling calling
activity on a two-week time period. The bottom box shows thgterior probabilityy( A(¢)) of anomalous
events at each time Since we do not have the ground truth of the anomalous efremtsthe observed
data sequence, we only give the probability of the eventa fiMPP in our application.

Figure 6 shows a detailed result on a particular day (Surddanyary 29). The sequence bar of posterior

probabilities also demonstrates the duration of the event.
5.2 Different TimelInterval

So far, we have used 10 minute intervals to demonstrate aorework. The shorter the interval, the
more the data we need to process, and more detailed infamat obtain. For the same day (January
29, Sunday), figure 7 shows the MMPP results by using 10-rajr8@-minute and 60-minute intervals.
In spite of the difference of the time intervals, the trentithe anomaly and time range of the events are
similar. When the interval is shorter, we get more detailédrmation, and also more anomalous events
are detected, such as the peak around 5pm, which is detesited10-minute intervals, but not detected

using 30-minute and 60-minute intervals.
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6 Discussion and Conclusion

Data from the cell phone network reflects the behaviors amdites of human society, which oc-
cur on daily and weekly schedules, with variations. Out g fseriodic, varying data, Emergency and

Crisis Responders and Planners would like to be able to detsis events, however, simple stochastic
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models that rely on aggregate statistics are not able terdiftiate between normal daily variations and

legitimate anomalous (and potentially crisis) events. Wlaekov-Modulated Poisson Process provides a
method of modeling call activity that varies on several @éic scales and allows anomalous events to be
differentiated from random variations.

In the examples we show, the MMPP model yields a posteridyahiity of anomalous events. Careful
examination of the plot of the posterior probability in camgtion with expected and observed activity
show the MMPP model to be tolerant of small variations in thévdy level but able to distinguish
anomalous behavior both in short duration (events lasésg than a minute) and longer duration events

(lasting up to 30 minutes).

7 Future Work

This paper and previous work by other authors in the area dstrade the power and effectiveness
of the Markov-Modulated Poisson Process model for the tieteof anomalous events in time series
data that varies according to periodic effects on multipleetscales. Now that its effectiveness has been
shown, it remains to implement the MMPP model as part of atie@ system that operates on streaming
data. This implementation can be relatively straightfodydut we envision the need to develop a more
flexible model that can continually be updated to reflect ephdrift in the data stream.

The final anomaly detection model will be incorporated inteeavice that will be integrated with the
WIPER system. As a component in the WIPER system, it will morateeal time stream of call data and
anomalies will be flagged and conveyed to the end user via ebased console.
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