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Abstract

Cell phone call activity records the behavior of individuals, which reflects underlying human activity

over time. Therefore this data displays multi-level periodicity, such as weekly, daily, hourly, etc. Simple

stochastic models that rely on aggregate statistics are notable to differentiate between normal daily

variations and legitimate anomalous (and potentially crisis) events. In this paper we describe a framework

for unsupervised learning using a Markov modulated Poissonprocess (MMPP) [15, 6, 13] to model the

data and use the posterior distribution to calculate the probability of the existence of anomalies over time.

This paper focuses on anomaly detection in the WIPER system.WIPER is a system that helps to detect

possible emergencies from cell phone data, provides the corresponding information to emergency planners

and responders, and suggests possible actions to mitigate the emergency. One of the most important

components of the system is the Detection and Alert System (DAS), which detects anomalies (which could

be crisis events) from a cell phone data stream.

1 Introduction

A time series is a sequence of observations that can be measured over consecutive time periods at

(often uniform) time intervals [16]. Time series data arisein a variety of domains, especially in economic

systems, such as stock and financial data. Time series data also is used in environmental, medical, and
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telecommunication data. Patterns of human behavior over time can be observed as a time series if the

observed data reflects human behavior and can be measured from a data collection system. The crucial

characteristic of a time series is that the data are not independent, their distribution varies over time, and

usually displays an underlying trend. Analyzing and understanding the trend of human behavior over time

has become an interesting research area [6, 15, 14, 12]. The goal of this paper is to analyze time series data

from cell phone call activity, discover underlying human behavior, and use the results to detect potentially

anomalous events.

First we want to distinguish outlier detection from anomalydetection in a time series scenario. The

classic definition of an outlier is:

... an observation that deviates so much from other observations as to arouse suspicion

that it was generated from a different mechanism. [5]

However, a single bursty point is not what we are looking for,what interests us most is anomalies,

which can be called “special” patterns. Keoghet al. define a surprising pattern as:

... if the frequency of its occurrence differs substantially from that expected by chance,

given some previously seen data. [7]

From previously observed data, a normal behavior pattern isgenerated. If bursty activity happens within

a certain time from the previously observed data, it is classified into the normal behavior pattern. Only

patterns which greatly differ from expected data are considered as anomalous. By using this definition,

no explicit description of an anomaly is required and normalpatterns are inferred from a collection of

previously observed data.

In this paper, we use the definition of anomaly from Keogh et al. [7]. We analyze the cell phone network

data from two cities within a one-month time period. We collect the call activities for each transaction,

which includes the account number, calling time, and location. From this detailed information, the call

activities of individuals can be measured over a given time interval. Since this type of measurement

contains the aggregated behavior of large amount of individuals, it typically demonstrates a periodicity of

human behaviors on many time scales, such as hourly, daily, and weekly.

2 Related Work

Anomaly detection or event detection in time series data hasreceived wide attention in the data-mining

community. The process of finding interesting or surprisingpatterns from a time series dataset has been



studied by several researchers [4, 7, 8, 6, 15, 14, 2, 1].

Guralnik and Srivastava [4] present an iterative algorithmfor detecting a change-point from time series

data, and uses a maximum likelihood estimation to further segment the time slice if no change-point is

observed. The approach does not requirea priori knowledge of the data, and is independent of regression

and model selection method.

Keogh et al. [7] used a suffix tree to encode the frequency of observed patterns, and applied a Markov

model to detect surprising patterns. No explicit definitionof surprising patterns are required, they are

generated from previous observed data.

Kleinberg [8] used an infinite-state automaton to model datastream, and use it to detect the underlying

content in a document stream. The bursts are identified as state transition. The author applied the method

to analyze e-mail and research archives, and shows the efficiency of the proposed algorithm.

Scott et al. [15, 14] and Ihler et al. [6] used Markov-modulated Poisson processes to analyze human

behaviors in web surfing[15], telephone network [14] and freeway traffic [6], and deployed the model to

detect anomalies in their systems. Our model is derived fromtheir work, and is used to analyze human

behavior on a regular cell phone call-based scenario.

Basu and Meckesheimer [2] analyze the sensor data from airplane to detect the anomalies. Median

value from a neighborhood of a data point is used to compare the difference to the observed data value.

The proposed methods are fast and have quick response to datastream.

Agarwal [1] applied an empirical Bayes method on daily logs oflarge scale spoken dialog systems.

The method fit a two-component Gaussian mixture to deviations of present time, which can avoid false

positive by suppressing the consequence merely caused by sharp changes in the marginal distribution.

3 WIPER System And Data Characteristics

The Wireless Phone-based Emergency Response (WIPER) system isdesigned to provide emergency

planners and responders with an integrated system that willhelp to detect possible emergencies, as well

as to suggest and evaluate possible courses of action to dealwith the emergency [11, 10]. Components of

the system for detecting and mitigating emergency situations can be added and removed from the system

as the need arises. WIPER is designed to evaluate potential plans of action using a series of GIS-enabled

Agent-Based Simulations that are grounded on real time data from cell phone network providers. The

system relies on the DDDAS concept [2], the interactive use of partial aggregate and detailed real time

data to continuously update the system, which ensures that simulations always present timely and pertinent



data. WIPER presents information to users through a web-based interface of several overlaid layers of

information, allowing users rich detail and flexibility.

One of the most important components of the WIPER system is theanomaly detection. In order to

analyze and understand the human behavior represented by the cell phone call records, we selected two

cities, referred to here as A and B, as our test models. City A is asmaller city with population around

20,000, and the city has 4 cell towers. City B is a bigger city with population around 200,000, and has 31

cell towers. In our collection of call activities, data is aggregated at tower level.

Figure 1 shows the similar behavior of call activities on different towers in the two cites on the same

day. Some towers carry more calls than the others, and that ismainly because of location variations. Some

towers are located in areas with higher population density,and some are located in a more sparse regions.

Our following analysis always uses data from all towers in the region to represent the human behavior of

the city.

Figure 2 shows call activity for city A over two weeks, with a total of 273,022 calls. Figure 3 shows

call activity for city B over two weeks, with a total of 2,167,693 calls. Figures 2 and 3 show two weeks

of calling activity with each day plotted separately and with the same days of the week, such as Monday,

Tuesday, ... etc, shown in the same color. The figures demonstrate that there are similar behaviors on

Day 1, Day 8 and Day 15 which are all Sundays in the dataset. Also Day 2 and Day 9 (Saturdays) share

similar behavior, and all the remaining weekdays have similar behavior. In addition, for a particular day,

call activities are always low between midnight and 8 am, andkeep growing from 8am to 1-2 pm, but

reduce around 3-4 pm in the afternoon, peak around 8-9 pm and then drop till midnight. The trend seems

universal over all of the days, despite different days of week. These observed effects (day of week and

hour of day effects) motivated our further investigation.

The data set consists of one month of cell phone activity. Each record contains calling account, calling

time and location. There is no known emergency event in this time period in these two cities. The dataset

only gives the basic call activities for each call, such as the begin/end time of the call, call id and call

location.

4 MMPP Modeling

The model applied in this paper is derived from the Markov-Modulated Poisson Processes used by Ihler

al. etc. for freeway traffic analysis[6], Scott and Smyth forweb surfing behavior analysis [15] and Scott

for telephone network intrusion detection [14].
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Figure 1. Call Activities On Different Towers In The Two Citi es On The Same Day

The MMPP is a special case of the doubly stochastic Poisson process [3, 9]. Its rate parameter obeys a

Markov process. The Poisson distribution is widely used as aprobabilistic model for count data, while the

rate of the Poisson process represents the average number ofobservations in a fixed time period. In the

MMPP model, a Markov process is employed to model the rate of the Poisson process, which indicates

that the average number of occurrences follows a continuoustime Markov chain.

In our application, letN(t) refer to the count number of observed call activities at timet over a fixed

time interval, wheret ∈ 1, ..., T . In order to modelN(t), we need to model both normal behavior

and abnormal behavior. The normal behavior represents the regular life of individuals, while abnormal

behavior corresponds to rarely occurring events indicatedby a change in call activity. At this stage,

we did not classify the types of different anomalies: all theanomalous events are considered as one
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Figure 2. The Small City A’s Activities Over a Two-week Time P eriod
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Figure 3. The Large City B’s Activities Over a Two-week Time P eriod



type. Therefore, we useN0(t) to represent the normal call activities, andNA(t) to represent all kinds

of abnormal call activities caused by known/unknown events. The observed activityN(t) is the process

formed by the superposition of unobserved componentsN0(t) andNA(t):

N(t) = N0(t) + NA(t)

Each of these two components can be modulated as a Poisson process, we will give the detailed de-

scription in next section.

4.1 Modeling Normal Data

The mass function of the Poisson distribution is given by:

P (N ; λ) =
e−λλN

N !
N = 0, 1, ...

whereλ is the rate parameter representing the average number of occurrences in a fixed time interval.

In MMPP,λ is a Markov chainλ(t) as a function of time. This is also called a nonhomogeneous Poisson

distribution, andλ(t) measures the degree of the heterogeneity. The model we applyhere is derived from

Scott [13] and Ihler [6].

λ(t) = λ0 δd(t) ηd(t),h(t)

whered(t) ∈ [1, 2, ..., 7] and associates with Monday(1), ..., Sunday(7), andh(t) indicates the time

intervalt in, such as 10 minutes, half hour, one hour, etc. Additionally δ andη must meet these constrains:

7
∑

i=1

δi = 7

and
D

∑

j=1

ηi,j = D, ∀i

WhereD is the number of intervals in one day for a given fixed time interval, λ0 is the average rate of

the Poisson process over one week,δi is the day effect andηi,j is the time of day effect. The day effect

δi indicates the change in rate over the day of the week, and the time interval effect indicates the change

over the time periodj on a given day ofi. Figure 4(a) and 4(b) demonstrate these two effects.

Figure 4 shows that the simple overall average cannot accurately represent normal call activity. The

day of week effect (δd(t)) can be described more precisely as a representation of the daily behavior. For
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(a) Day Effect (δd(t)): In a one week time period (Monday through Sunday), call activities during the
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(b) Time of Day Effect (ηd(t),h(t)): Figure 4(a) also shows that different times in each day of the week

correspond with different levels of call activity. Call activities are lower during the early morning and

early afternoon, and higher in the late morning and night.

Figure 4. Two effects demonstrate the periodic behavior of c all activities

example, the weekday displays higher activity than the weekend. However, the day effect does not ade-

quately describe the changes in calling activity over the course of a day. Observation of the data shows that

calling activity over the course of a day is periodic in nature, demonstrating less activity from midnight

to early morning and higher activity around 1pm and 9pm. In order to compensate for this we add the

time of day effect (ηd(t),h(t)) as presented in [13]. The combination of these yields a muchmore accurate

time-dependent value forλ(t).



Also suggested by Scott [13], we use conjugate prior distributions for the parameters.

λ0 ∼ Γ(λ; aL, bL), where Γ(λ; a, b) ∝ λa−1e−bλ

1

7
[δ1, δ2, ..., δ7] ∼ Dir(αd

1, α
d
2, ..., α

d
7, )

1

D
[ηi,1, ηi,2, ..., ηi,D] ∼ Dir(αh

1 , α
h
2 , ..., α

d
D)

Γ(.) is the Gamma distribution with meana/b and variancea/b2. Dir(.) is a Dirichlet distribution.

4.2 Modeling Anomalous Data

In our applications, we suppose an anomaly is an event that occurs rarely, briefly and randomly. An

anomaly causes a change in the call activity over the time period, and is observed in theN(t).

NA(t) is also a Poisson process whose rate isλA(t) when there is an anomalous event at timet, and 0

otherwise. In order to modulate the anomalous behavior overtime, we can use an unobserved continuous-

time Markov process A(t) to determine the existence of any anomalous event at timet, and the probability

distribution over A(t) follows the transition probabilities matrixMA:

A(t) =







1 an event is occuring at time t

0 otherwise

MA =





1 − A0 A1

A0 1 − A1





where1/A0 is the expected time interval between events, and1/A1 is the expected length of the event.

Our priors forA0 andA1 are:

A0 ∼ β(A, aA
0 , bA

0 ) A1 ∼ β(A, aA
1 , bA

1 )

whereβ(.) is a Beta distribution.

Therefore, theNA(t) distribution can be written as :

NA(t) ∼







0 A(t) = 0

P (N ; λA(t)) A(t) = 1

and

λA(t) ∼ Γ(λA; aA, bA),



4.3 Expressing MMPP as a Hidden Markov Model (HMM)

The MMPP can be explained as a nonstationary Hidden Markov Model. The observed data areN(t),

and the hidden Markov chain is the anomalous eventA(t) occurring at time t. After expressing MMPP as

HMM, we can use the HMM’s recursive procedures to calculate the parameters and posterior distribution

of A(t).

4.3.1 Forward recursion

Given the complete dataN0(t), NA(t) andA(t), it is straightforward to draw posterior samples of the

parametersλ(t) andA0, A1. Also we can infer the posterior distribution over each parameter using Markov

chain Monte Carlo methods. The likelihood function is:

p(N(t)|A(t)) =







P (N(t); λ(t)); A(t) = 0
∑N(t)

i=0 P (i, λ(t))NBIN(N(t) − i)); A(t) = 1

For eacht ∈ 1, 2, ..., T , the conditional distribution is:

p(A(t)|N(t)) = π0 ∗
i=t−1
∑

i=0

MA ∗ p(A(t − 1)|N(t − 1)) ∗ p(N(t)|A(t))

whereπ0 is the initial distribution of the Markov chain A(t).

4.3.2 Backward recursion

The p(A(t|N(t)) from the forward recursion conditions are on all of the observed data. The backward

recursion starts withp′(A(T )|N(T )) = p(A(T )|N(T )), for eacht ∈ T, T − 1, ..., 1, p′(A(t)|N(t)) =

M ′ ∗ p(A(t)|N(t)). Then we draw samples:

AA(t) ∼ p(A(t)|A(t + 1) = AA(t + 1))

.

And for a given AA(t) value, we draw samples ofN0(t) andNA(t) by using:

N0(t) ∝ P (i, λ(t))NBIN(N(t) − i));

NA(t) = N(t) − N0(t);



4.3.3 Parameter Estimation and Posterior Sampling

SamplingA0, A1 is straightforward using:

Aij =
∑

∀t:A(t)=i,A(t+1)=j

1; where i, j ∈ 0, 1

Therefore the posterior distributions:

A0 ∼ β(A; aA
0 + A01, b

A
0 + A00)

A1 ∼ β(A; aA
1 + A10, b

A
1 + A11)

5 Implementation

The MMPP system is written in Matlab 7.0.

5.1 Anomaly Detection

One application of our MMPP framework is detecting anomalous events in an observed data sequence.

The existence of an anomaly is represented by the processA(t), and therefore we can use the posterior

probabilityp(A(t)|N(t)) as an indicator of anomalies.

As described in the previous section, we draw samples in the MMPP process and predicate the posterior

marginal distribution of the anomalies. Figure 5 shows the result of using MMPP for modeling calling

activity on a two-week time period. The bottom box shows the posterior probabilityp(A(t)) of anomalous

events at each timet. Since we do not have the ground truth of the anomalous eventsfrom the observed

data sequence, we only give the probability of the events from MMPP in our application.

Figure 6 shows a detailed result on a particular day (Sunday,January 29). The sequence bar of posterior

probabilities also demonstrates the duration of the event.

5.2 Different Time Interval

So far, we have used 10 minute intervals to demonstrate our framework. The shorter the interval, the

more the data we need to process, and more detailed information we obtain. For the same day (January

29, Sunday), figure 7 shows the MMPP results by using 10-minute, 30-minute and 60-minute intervals.

In spite of the difference of the time intervals, the trends of the anomaly and time range of the events are

similar. When the interval is shorter, we get more detailed information, and also more anomalous events

are detected, such as the peak around 5pm, which is detected using 10-minute intervals, but not detected

using 30-minute and 60-minute intervals.
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Figure 5. Data for the first two week time period (Jan 16 (Monda y) - Jan 29 (Sunday)). The blue curve

is generated from the observed data sequence, and the red one is from the sampling data generated

by the MMPP model. The posterior probability of anomalous ev ents are shown in the bottom box.
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Figure 6. Data for January 29 (Sunday). The blue curve is gene rated from the observed data sequence,

and the red one is from the sampling data generated by the MMPP model. The posterior probability of

anomalous events are shown in the bottom box.

6 Discussion and Conclusion

Data from the cell phone network reflects the behaviors and activities of human society, which oc-

cur on daily and weekly schedules, with variations. Out of this periodic, varying data, Emergency and

Crisis Responders and Planners would like to be able to detect crisis events, however, simple stochastic



12pm 2am 4am 6am 8am 10am 12am 2pm 4pm 6pm 8pm 10pm 12pm
0

0.5

1

Time

P
(e

ve
nt

)

12pm 2am 4am 6am 8am 10am 12am 2pm 4pm 6pm 8pm 10pm 12pm
0

20

40

60

80

100

C
al

l a
ct

iv
iti

es

Posterior Distribution Averages

 

 

Observed

Modeled

(a) Time Interval = 10 minutes
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Figure 7. MMPP Results vs. Time Interval



models that rely on aggregate statistics are not able to differentiate between normal daily variations and

legitimate anomalous (and potentially crisis) events. TheMarkov-Modulated Poisson Process provides a

method of modeling call activity that varies on several periodic scales and allows anomalous events to be

differentiated from random variations.

In the examples we show, the MMPP model yields a posterior probability of anomalous events. Careful

examination of the plot of the posterior probability in conjunction with expected and observed activity

show the MMPP model to be tolerant of small variations in the activity level but able to distinguish

anomalous behavior both in short duration (events lasting less than a minute) and longer duration events

(lasting up to 30 minutes).

7 Future Work

This paper and previous work by other authors in the area demonstrate the power and effectiveness

of the Markov-Modulated Poisson Process model for the detection of anomalous events in time series

data that varies according to periodic effects on multiple time scales. Now that its effectiveness has been

shown, it remains to implement the MMPP model as part of a realtime system that operates on streaming

data. This implementation can be relatively straightforward, but we envision the need to develop a more

flexible model that can continually be updated to reflect concept drift in the data stream.

The final anomaly detection model will be incorporated into aservice that will be integrated with the

WIPER system. As a component in the WIPER system, it will monitor a real time stream of call data and

anomalies will be flagged and conveyed to the end user via a web-based console.
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