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ABSTRACT 

This paper describes the WIPER system, a proof of concept prototype, and progress made on its development to 
date. WIPER is intended to provide emergency response managers with an integrated system that detects possible 
emergencies from cellular communication data, attempts to predict the development of emergency situations, and 
provides tools for evaluating possible courses of action in dealing with emergency situations. We describe 
algorithms for detecting anomalies in streaming cellular communication network data, the implementation of a 
simulation system that validates running simulations with new real world data, and a web-based front end to the 
WIPER system. We also discuss issues relating to the real-time aggregation of data from the cellular service 
provider and its distribution to components of the WIPER system. 
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INTRODUCTION 

The Wireless Phone-Based Emergency Response (WIPER) system is a proof of concept prototype designed to 
utilize a cell-phone network as a set of sensors for gathering and presenting data to emergency response managers. 
The system would monitor the network data in real time for anomalous activity, run simulations to predict 
population movement during a crisis, and provide emergency response managers with a current view of the affected 
area using GIS tools (Madey et al., 2007, Madey, Szabó, & Barabási, 2006, Schoenharl, Bravo, & Madey, 2006, 
Schoenharl, Madey, Szabó, & Barabási, 2006). In this paper, we describe the current status of the development of 
the WIPER system. 

Existing software tools, such as EVResponse (Thomas, Andoh-Baidoo, & George, 2005) and COMBINED (Tatomir 
& Rothkrantz, 2005) provide mechanisms for manually gathering information relating to the current status of a crisis 
situation. There is a high cost associated with such systems in terms of time and money. Wireless devices and 
network infrastructure must be purchased to facilitate data collection, personnel must be trained to use the 
technology, and personnel must be deployed to the affected area to collect the data. In contrast, WIPER provides 
information about the situation through a pre-existing network, requiring no investment in infrastructure or 
deployment; however, we gain these advantages at the cost of data flexibility.  

To counteract the limitations of the data, the WIPER system is designed to use machine learning methods to 
generate hypotheses about the causes of anomalies detected in the data. These hypotheses are tested using a dynamic 
data driven application system of simulations. Dynamic data driven application systems (DDDAS) are characterized 
by an ability to incorporate new data into running simulations. Research in DDDAS is motivated by a need for 
greater accuracy in complex simulations, e.g. simulations for predicting weather or wildfire propagation (Douglas & 
Deshmukh, 2000). Once the WIPER system detects an anomaly, it will start a suite of simulations based on the 
hypotheses generated. These simulations will be validated using new data as it becomes available, allowing 
simulations that do not reflect the real world situation to be pruned. 

In addition to the prediction capabilities, WIPER will provide the ability to view the development of a crisis in real-
time, the ability to propose and evaluate responses in near real-time, and the ability to collect and analyze streaming 
information from a cellular communication network. The WIPER system will analyze dynamic data from the cell 
phone network in real-time, providing the functionality to detect crises as they emerge. Responding to events from 
the anomaly detection system, GIS-based simulations of the region will be launched and results collated and 
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presented to planners. Finally, the web-based console will allow emergency response managers to quickly examine 
the current state of the environment, see predicted outcomes from the simulations, and evaluate possible courses of 
action. 

OVERVIEW OF THE WIPER SYSTEM 

The WIPER system consists of five components, each of which is described briefly below. 

 The Decision Support System (DSS) is a web-based front end through which emergency response managers 
interact with the WIPER system.  

 The Detection and Alert System (DAS) monitors streaming network data for anomalous activity. There are 
various aspects of the cell-phone network data that may be of interest, including overall usage levels, 
spatial distribution of the call activity, and the underlying social network.  

 The Simulation and Prediction System (SPS) receives anomaly alerts from the DAS, produces hypotheses 
that describe the anomaly, and uses simulations in conjunction with streaming activity data to validate or 
reject hypotheses. 

 The Historical Data Source (HIS) is a repository of cell phone network data that resides in secondary 
storage. This data is used to determine the base-line behavior of the network against which anomalies are 
detected and to periodically calibrate and update the DAS. 

 The Real-Time Data Source (RTDS) is designed to receive transaction data directly from a cellular service 
provider. The RTDS is responsible handling requests for streaming data from the DAS, SPS, and DDS and 
streaming incoming data to these components in real-time.  

Figure 1 shows an architectural overview of the WIPER system. The RTDS and HIS will provide the bridge from 
the service provider and the WIPER system. The figure shows the flow of streaming data from the service provider 
through the RTDS, possibly by way of the HIS for development and training, and to the remaining components. 
Requests for streaming data from the RTDS occur via SOAP messages. SOAP messages are also used by the DAS 
to inform the SPS of potential anomalies in the streaming data. 

 

Figure 1: WIPER system architecture. 

THE DETECTION AND ALERT SYSTEM 

The detection and alert system is designed to examine the streaming data from the cellular service provider for 
anomalous activity on three axes: call volume, spatial call activity distribution, and the underlying social network. In 
this section we describe our work relating to the first two axes. 
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Markov Modulated Poisson Processes 

The most basic indicator of anomalous behavior in a cell phone network is an increase or a decrease in call activity. 
This type of anomaly can be detected by monitoring a time series consisting of the number of calls made in disjoint 
time intervals of a fixed size, e.g. the number of calls made every 5 minutes. A Poisson process, which models the 
number of random events that occur during a sequence of time intervals, can be used to model the baseline behavior 
of such a time series: the number of events per time interval follows a Poisson distribution with an expected value of 
λ, the rate parameter for the process. In this model, the probability of N events occurring in a time step is:  

  (1) 

for N=0,1,… (Mitzenmacher & Upfal, 2005). 

The standard Poisson process is too simple to model many real-world phenomena since the rate of many natural 
processes varies over time. In the case of human activities, there are daily and weekly cycles. Ihler, Hutchins, & 
Smyth (2006, 2007) show how a Markov modulated Poisson process, a method that combines Poisson processes and 
hidden Markov models, can be used to detect anomalies in count data. 

A Markov modulated Poisson process uses a rate function that takes into account the overall average rate, the day 
effect, and the time of day effect. The overall average, , is simply the average rate over all time intervals. The day 
effect, , is the average rate over all time intervals for each day of the week, normalized such 

that the average day effect is 1, i.e. . The time of day effect, , is the average 
rate for each time interval for each day of the week. The time of day effect for each of the 7 days of the week is 
normalized such that average time of day effect for each day is 1, i.e. . 

 

The overall average establishes the baseline rate. The day effect and time of day effect indicate the relationship 
between the overall average and the expected rate for the day or time of day. The product of the three terms gives a 
weekly cycle that approximates the real world data. So, the rate function for a Markov modulated Poisson process is  

    (2) 

To illustrate the components of the rate function, we compute the overall average rate, the day effect, and the time of 
day effect from one month of real cell phone data. Figure 2 shows each component of the rate function along with 
one week of empirical data. 

The use of a Markov modulated Poisson process to identify anomalies in the cellular transaction data is described in 
detail in Yan, Schoenharl, Pawling, and Madey (2007). 

An Online Hybrid Clustering Algorithm 

In this section, we consider the problem of detecting anomalies in the spatial distribution of the call volume. The 
coverage area is divided into spatially disjoint areas: Voronoi cells centered at the cell towers. We describe an online 
hybrid clustering algorithm for detecting anomalies in a multivariate time series in which each item consists of the 
vector of call volumes for each cell tower. 

The clustering problem is defined as follows: let a data set D consists of a set of data items  such that 

each data item is a vector of measurements, . The goal of clustering is to group similar data 
items together. For our purposes, the distance between similar items is small. Clustering provides a convenient way 
for finding anomalous data items: anomalies are the data items that are far from all other data items. These may be 
data items that belong to no cluster, or they may be the data items that belong to small clusters.  
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Figure 2: The overall average rate ( ), day effect combined with the overall average ( ), and time of day effect 

combined with the overall average and the day effect ( ) along with one week of empirical count data 

from the cellular communication network. 

Traditional clustering algorithms can be divided into three types: partitional, hierarchical, and incremental. 
Partitional algorithm, such as k-means and expectation maximization, divide the data into some number, often 
predefined, of disjoint subsets. These algorithms often start with a random set of clusters and iterate until some 
stopping condition is met. As a result, partitional algorithms tend to converge at local minima. Hierarchical 
algorithms divide the data into a nested set of partitions and are useful for discovering taxonomies in data. They may 
either take a top-down approach in which an initial data cluster containing all of the data items is iteratively split 
until each data item is in its own cluster, or a bottom-up approach in which clusters initially consisting of only a 
single element are iteratively merged until all of the data items belong to a single cluster. Often, hierarchical 
algorithms must compute the distance between each pair of data items in the data set, and, therefore, tend to be 
computationally expensive. Incremental algorithms consider each data example once, immediately deciding either to 
place it in an existing cluster or to create a new cluster. These algorithms tend to be fast, but the result often depends 
on the order of the data items (Jain, Murty, & Flynn, 1999).  

For online detection of anomalies in telecommunication data, none of these traditional clustering algorithms are 
appropriate. Partitional algorithms, typically require a priori knowledge of the number of clusters in the data. To 
complicate matters, the appropriate number of clusters may change over time as the underlying process changes. 
Hierarchical methods are too computationally expensive. Incremental methods tend to be too inflexible. Therefore, 
we use a hybrid clustering algorithm, which combines two clustering algorithms to take advantage of the strengths 
of both, while minimizing the drawbacks (Cheu, Keongg, & Zhou, 2004, Chipman & Tibshirani, 2006, Surdeanu, 
Turmo, & Ageno, 2005). 

We combine an incremental method, the leader algorithm (Hartigan, 1975), with a partitional method, the k-means 
algorithm. The leader algorithm is straightforward:  

 For each new data item:  

 Find the nearest cluster.  

 If the distance between the new data item and the nearest cluster is less than a user defined     
threshold, add the data item to the cluster.  

 Otherwise, create a new cluster that is defined solely by the new data item.  

This algorithm is appealing because it is efficient and simple; however, it is too inflexible for the dynamic nature of 
the data. Each cluster has a fixed location and a fixed size, established by the first data item assigned to the cluster 



Pawling, et al. WIPER: An Emergency Response System 
 

Proceedings of the 5th International ISCRAM Conference – Washington, DC, USA, May 2008 
F. Fiedrich and B. Van de Walle, eds. 

and the user defined threshold, respectively. 

To counteract these drawbacks, we use the k-means algorithm to establish clusters with enough data items to provide 
meaningful mean and standard deviation values for each feature. The mean describes the location of the cluster and 
the standard deviation describes the size. Once the clusters are established, each new data item is either added to an 
existing cluster, in which case the feature means and standard deviations are updated, or the data items is flagged as 
anomalous. The threshold depends on the size of the cluster, and is therefore a function of the feature standard 
deviations. See Pawling, Chawla, & Madey (2007) for a detailed description of the online hybrid clustering 
algorithm. 

THE SIMULATION AND PREDICTION SYSTEM 

Once an anomaly is detected, the simulation and prediction system generates hypotheses describing the crisis based 
on the current state of the cellular communication network. Using these hypotheses and a pre-defined set of crisis 
scenarios, the SPS starts a suite of simulations in an attempt to predict the evolution of the situation. 

We divide the crisis scenarios into 3 categories based on the principal movement characteristics of the agents. These 
categories are not meant to be exhaustive nor entirely realistic; rather they provide a reasonable starting point for 
this proof of concept prototype. The categories are as follows: 

 Flock: Agents move as a group, but without explicit leadership in a manner similar to the BOIDS 
movement model (Reynolds, 1987). The Flock category is currently composed of one movement model, 
the mob model. This can be used to simulate scenarios where crowds of people are causing a disturbance, 
such as the WTO protests that occurred in Seattle in 1999 (Burgess & Pearlstein, 1999).  

 Flee: Agents move away from a disturbance. This category is a much broader category and is applicable in 
a wide range of crisis scenarios. The category consists of models where agents are attempting to move 
away from some disturbance. The models in this category can be described concisely as flee from point, 
flee from line (not necessarily a straight line, this can include rivers and coastlines), flee from an area, and 
bounded flee, where the agents get a certain distance away and stop. Some examples of crisis events that fit 
these scenarios would be people fleeing from a burning building (either a flee/bounded flee from point or 
flee from area, depending on map resolution), inhabitants fleeing a chemical spill (flee an area) and 
residents fleeing a tsunami (flee a line). 

 Jam: Agents move towards their customary goals, but are constrained, as in a traffic jam. Agents in this 
category are trying to reach a destination (which may be unique for each agent), but the actions of all the 
agents together serves to create an event where movement is restricted for the entire system. The canonical 
example of this type of behavior is a traffic jam. This type of crisis scenario is often not necessarily an 
emergency event, though it can be, as in the case of the traffic jams on highways in Texas in 2005 during 
the Hurricane Rita evacuation (Harden & Moreno, 2005).  

As the simulations proceed, they are periodically validated and verified using new data from the telecommunication 
network. We use the Kolmogorov-Smirnov (KS) test to compare the output of each simulation with empirical data. 
According to Banks, Carson, Nelson, & Nicol (2005), goodness of fit tests, such as the KS test, are sensitive to 
sample size and have a tendency to reject candidate distributions for large sample sizes, so we are careful to limit the 
size of samples generated by the simulations. 

Our approach for addressing the challenges of creating and updating agent based simulations in a DDDAS is to 
aggregate sensor data to a larger level, to the cell-tower level in the case of WIPER, and to introduce random 
variation in the data. A naive approach would suggest that it is important to maintain as much data as possible about 
each individual in the system. Cell phone data could potentially yield location of every individual within a few 
meters, though our current data set does not have this level of resolution. Canonical model development practice 
suggests that such an approach would be counter-productive, leading to naive realism, unduly adding complexity to 
the model without a corresponding increase in model accuracy or usefulness (Banks et al., 2005, Grimm et al., 
2005).  

Figure 3 shows a graphical comparison of two approaches to revising simulations with streaming data: updating and 
reparameterizing. We define updating to refer to the process of restarting simulations with approximate information 
on agent locations (and other parameters). In the figure, this corresponds to receiving information on the number of 
agents in a Voronoi cell, but without specific location information on each agent. We define re-parameterizing as the 
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process of maintaining a 1 to 1 correspondence between human beings in the real world and agents in the 
simulation. As information streams in about the corresponding referent in the real world, we modify the state of each 
agent to reflect it’s current location. Note that, while the simulations have a precise location for each agent, the real 
world data approximates an individual’s location using the Voronoi lattice. When updating or reparameterizing a 
simulation, the agents are positioned randomly within the appropriate Voronoi cell.  

Schoenharl (2007) describes the simulation and prediction system in detail.  

 

Figure 3: A graphical comparison of updating and reparameterizing simulations from streaming data. When 
reparameterizing a simulation, agent locations and parameters are changed to conform to the streaming data. Updating 

a simulation causes larger-scale properties, such as numbers of agents in a cell, to be reset. Note that while the 
simulation agents have specific locations, the real world data consists only of count data for each Voronoi cell. Whether 

updating or reparameterizing the simulation, the agents are distributed randomly within their respective cells. 

THE DECISION SUPPORT SYSTEM 

The decision support system (DSS) is the web-based front end through which emergency response managers interact 
with the WIPER system. Figure 4 shows a screen-shot of the web-based console. The DSS displays the state of the 
SPS simulations, the real-time status of the telecommunication network, and anomaly alerts generated by the DAS. 
Emergency response managers will be able to specify and evaluate mitigation plans, using agent-based simulations, 
through the web interface. Emergency response managers will be able monitor crisis areas using satellite maps and 
GIS images overlaid with activity data, as well as view the raw data from the telecommunication network.  

THE REAL-TIME DATA SOURCE 

The real-time data source (RTDS) forms the bridge between the cellular service provider and the WIPER system. 
The RTDS will receive raw transaction data from the service provider and aggregate and filter the data as needed by 
the components of the WIPER system. The RTDS will stream the processed data to the appropriate components. 

The real-time data source must be a real-time system, meaning that in addition to the functionality constraints, the 
system must conform to temporal constraints, providing guarantees on the maximum time required to complete 
specific tasks (Sha et al., 2004). We want to distribute data to each component as quickly as possible; however, we 
also want all streams to be reasonably synchronized so that no component gets too far ahead or behind of the others. 
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Figure 4: The DSS web-based console of the working WIPER prototype. The console provides easy, standards-
compliant access to all of the components of the WIPER system, allowing emergency planners access to the real-time 

data, both overall activity and spatially aggregated, simulation output and information on system status. The 
components of the system seen here are (clockwise, beginning in the upper left corner): Satellite map of the affected 

area, raw data from cellular service provider, 3D activity intensity map, 2D plot of city-scale network activity, historical 
trend of activity and 2D visualization of the city simulation.  

The main challenge we face in developing the RTDS is the lack of control over the service provider’s network, 
meaning that we cannot make use of real-time network protocols in transmitting data from the towers to the RTDS, 
and we can make no assumptions about the order in which transactions are received by the RTDS. Instead, we will 
empirically and adaptively estimate the time required for transaction information to traverse the network and arrive 
at the RTDS. Using this value, we will determine when each item of the aggregated data streams is sent to the 
WIPER components. With this dynamic estimate, we will attempt to guarantee that most, ideally all, data items for 
an aggregation interval have arrived before sending the data while preventing the delay from becoming too large. 

The RTDS is driven by an aperiodic process: the arrival of transaction items; therefore, the standard periodic task 
model for real-time systems (Liu & Layland, 1973) is not suitable. Instead we use the rate-based execution model, 
which defines the temporal requirements for a task by four parameters: (1) a time interval, y, (2) the maximum 
expected number of transaction arrivals, x, in a time interval y, (3) the maximum desired time, d, required to process 
each transaction, and (4) the maximum execution time, e, to process each transaction. When the rate at which 
transaction records arrive is less than y, the transactions will be processed within the desired time, d; however, when 
the transaction rate exceeds y, the additional transactions are delayed (Jeffay & Goddard, 1999). A system using the 
periodic task model will fail if the transaction rate becomes too large (Pawling, 2007); however, the rate-based 
execution model is robust to overload at the cost of delayed execution. 

SUMMARY 

In this paper, we have described the WIPER system and implementations of several of its components. The WIPER 
system relies on concepts from a variety of areas in computer science, including online data mining for detecting 
anomalies in data from a cellular communication network, dynamic data driven application systems for the online 
validation of predictive simulation, web services for communication among the WIPER system components, and 
real-time systems for timely and synchronized aggregation and distribution of transaction data from the cellular 
service provider. 
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