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Abstract. In this paper, we describe how feature clustering on real-
world cell-phone data can be used to locate the impact area of emergency
events. We first examine the effect of two emergency events on the call
activity in the areas surrounding the events. We then investigate how
the time series of the affected areas behave relative to the time series
of their respective neighboring areas. Finally, we examine the differences
in hierarchical clusterings of the time series of the affected areas and
neighboring areas.1

1 Introduction

The Wireless Phone-based Emergency Response (WIPER) system is a proof-of-
concept Dynamic Data Driven Application System (DDDAS) designed to lever-
age real-time streaming cell phone data to provide high-level information about
an emergency situation to emergency response managers. WIPER consists of
modules for automatically detecting emergency events and for running and val-
idating predictive simulations of potential outcomes [1,2,3,4]. Schoenharl and
Madey [5] describe an approach for on-line simulation validation for WIPER us-
ing streaming cell phone data as it becomes available. In this paper we address
the problem of identifying the area for which the simulations should be run.

In an emergency situation, it is likely that the area of interest is small relative
to the total coverage area of the cell phone network. Running predictive sim-
ulations for the entire coverage area is problematic in terms of computational
requirements and the amount of data produced that must in turn be validated
and presented to emergency response managers. In this paper we describe an
approach for identifying the area affected by an emergency using feature clus-
tering. We illustrate the effectiveness of this approach using two case studies of
emergency events that appear in real-world cell phone data.

2 Related Work

Dynamic Data Driven Application Systems (DDDAS) are characterized by their
ability to incorporate new data into running models and simulations as they
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become available and to steer data collection, enabling the simulations to re-
ceive and utilize the most relevant data [6,7]. Plale et al. [8] use the amount
of variance in an ensemble of weather forecast simulations to collect additional
data and direct additional computational resources to the areas where additional
simulation runs are needed. Flikkema et al. [9] uses data models to filter obser-
vations at the sensors. In this case, the interesting observations are those that
do not match the data model, and it is these that are transmitted for further
processing.

WIPER receives a single data stream of cell phone usage information that
contains a time stamp, de-identified values indicating the individuals making
and receiving the call, and the tower the caller’s phone is communicating with.
We have the latitude, longitude, and postal code of each tower, and we link this
information with the call data. From this data stream, we generate a set of time
series for spatially disjoint areas using the tower location information. For each
spatial area, we count the number of calls made in 10 minute intervals, producing
a vector of non-negative integers for each time step.

We can view this series of vectors as a data set for machine learning algorithms.
Let the data set D be an n × m matrix with n data items and m features. We
can view the problem of identifying the columns of interest, which corresponds
to an area in the real world, as the feature selection problem.

Feature selection is the process of identifying the best subset of available
features of a data set for machine learning algorithms. Feature selection serves
to improve the quality of machine learning models, reduce the computation
required to train and utilize these models, and provide a better understanding
of the model. One approach to feature selection is to combine similar features
using a clustering algorithm [10]. Feature clustering has been used to reduce
large feature spaces for applications such as text mining [11].

Data clustering is an unsupervised machine learning method for grouping the
rows of a data set D based on some distance measure. Hierarchical algorithms
identify a nested set of partitions in the data. Most hierarchical methods take
an agglomerative approach, meaning that there are initially n clusters, each
containing one data item in D. These clusters are iteratively merged until all
of the data items belong to the same cluster. Popular agglomerative clustering
algorithms include single-link and complete-link. These approaches may be im-
plemented using a graph where the data items are represented as vertices and
edges are added between two vertices in increasing order of distance between
the two corresponding data items. At each step, the clusters in the single-link
approach are the connected components and the clusters in the complete-link
approach are the completely connected components [12].

Feature clustering applies clustering techniques to the transpose of a data set.
Rodrigues et al. [13] describe an algorithm for clustering the features of a data
stream. The algorithm is a divisive-agglomerative algorithm that uses a dissim-
ilarity measure based on correlation along with a Hoeffding bound to determine
when clusters are split. The algorithm utilizes the fact that the pairwise cor-
relation of the time series, corr(a, b), can be computed using a small number
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of sufficient statistics. The key observation by Rodrigues et al. [13] is that it
is only necessary to maintain a small number of values to compute the corre-
lation of two time series. For each time series it is necessary to keep track of∑n

i=1 ai,
∑n

i=1 bi,
∑n

i=1 a2
i , and

∑n
i=1 b2

i . For each pair of time series
∑n

i=1 aibi

must be updated with the arrival of each data item. Additionally, the number
of data items that have arrived so far, n, must be known. Rodrigues et al. [13]
use correlation distance, diss(a, b) = 1 − corr(a, b), as a dissimilarity measure.

In this paper, we explore the possibility of using feature clustering for se-
lecting spatial areas of interest in the WIPER system. We examine the distance
between the time series of neighboring postal codes using the correlation distance
described above and Euclidean distance, and we use these distance measures in
conjunction with the single-link algorithm to visualize changes in the relation-
ship between the call activities in neighboring postal codes when an emergency
event occurs.

3 Experimental Setup

We examine the expression of two emergency events in real-world cell phone
usage data. The first emergency event is an explosion, and the second is a riot.
The two emergencies occur in different geographic locations and take place at
different times of the year. First, we establish that each emergency event pro-
duces a corresponding change in the service usage and that the impact of the
event on the call activity decreases as an increasing area surrounding the emer-
gency event is considered. We aggregate the call data to count the number of
phone calls made in a set of postal codes every 10 minutes in the city in which
the emergencies occur. We study the two postal codes in which the emergency
events occur and their neighbors. Next, we examine the correlation distance and
Euclidean distance between the call activity time series of the postal codes in
which the emergencies occur and the neighboring postal codes. Finally, we clus-
ter the call activities time series for each set of postal codes for a normal day
and the day of the emergency using an agglomerative clustering algorithm.

To measure the effect of the emergency events on the call activity of area
surrounding the event, we first determine the location of the event from news
reports. Using geographic information system tools, we establish an approximate
latitude and longitude of the event. With this information and the latitude and
longitude of the towers, we can filter the data to obtain calls made within any
desired radius around the event.

For the remaining work, we aggregate the call activity by postal code. For
each emergency event, we examine the postal codes containing the approximate
latitude and longitude established for each emergency and their neighboring
postal codes in the city in which the emergency occurs. There are 6 postal codes
surrounding the first emergency (an explosion) and 9 surrounding the second
(a riot). We denote the postal codes for each emergency as PC.1.1, PC.1.2, . . . ,
PC.1.6 and PC.2.1, PC.2.2, . . . PC.2.9, respectively. The first emergency occurs
in PC.1.4, and the second occurs in PC.2.8. Figure 1 shows the approximate
configuration of the postal codes.
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(a) Emergency 1 (b) Emergency 2

Fig. 1. Approximate configuration of the postal codes. Emergency event 1 occurs in
PC.1.4, which is at the edge of the city. Emergency event 2 occurs in PC.2.8, which is
in the center of the city.

For each emergency event, we examine the correlation distance and the Eu-
clidean distance between the postal code in which the emergency occurs and the
neighboring postal codes for two weeks leading up to each event. We examine
both the cumulative correlation distance and utilize a sliding window. Euclidean
distance is computed only over a sliding window of 1 day of data. Both sliding
windows contain the most recent 144 observations (taken at 10 minute intervals).

Finally, we compare time series clusterings for the two emergency events with
those of normal call activity. We use single link agglomerative clustering with
correlation distance and Euclidean distance, and we visualize the clusters using
dendrograms.

4 Results

The columns in Fig 2 show the time series of call activities for the five days
leading up to each emergency. Each row, from the top of the figure to the bottom,
includes data from a greater area surrounding the location of the emergencies.
The first emergency (left column) occurs at about 11 A.M. on the fifth day, and
we see a corresponding increase in call activity at this time (approximately 640
minutes). The severity of this spike in activity decreases as the radius of the area
increases from 1 km to 5 km. The second emergency (right column) occurs at
approximately 2 o’clock on the morning of the fifth day, though we see elevated
call activity even before midnight. As with the first scenario, the spike in call
activity becomes less dramatic as a larger area, up to 2 km in radius, surrounding
the emergency is included.

Figures 3 and 4 each show the correlation (both cumulative and over a slid-
ing window) and Euclidean distances between the postal codes in which the
emergency events occur and the neighboring postal codes for two weeks leading
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Fig. 2. This figure shows the effect of the emergency situations on the call activity
through the surrounding cell towers. The left column shows the time series for the first
situation, which occurs at approximately 11 A.M. on the fifth day in the time series
(approximately 642 minutes). The right column shows the time series for the second
situation, which occurs at approximately two o’clock on the fifth day (approximately
588 minutes). In both cases, the severity of the activity spike decreases as a greater
area is considered.

up to the emergency events. The left columns show the cumulative correlation
distance used by Rodrigues et al. [13]. The center and right columns show the
correlation distance and Euclidean distance, respectively, over a one day sliding
window.

In Fig 3, we see an increase in each distance measure at the end of each
time series. The cumulative correlation distance has only a slight increase at
the end of the time series when the emergency event happens. These increases
are more dramatic in the cases where a sliding window is used. Note that in
the time series of Fig 3 there are two days of missing data, from 576 to 864
minutes. These missing data are not noticeable in the cumulative correlation
distance; however, they lead to undefined correlation distances and Euclidean
distances of 0 for 144 time steps when the entire sliding window contains 0 for
all features. In Fig 4 we see similar increases in distance. The fact that the
cumulative correlation distance shows only a small increase compared to the
case where only a portion of the history of the time series is considered may
indicate that this distance measure is dominated by older observations, making
this cumulative measure to insensitive anomalies. The detrimental affect of old,
stale data is discussed by Aggarwal in [14].
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Correlation distance: cumulative Correlation distance:
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(f) PC.1.6

Fig. 3. This figure shows the correlation distance (cumulative and sliding window)
and Euclidean distance between the postal code in which emergency event 1 occurs
(PC.1.4) and its five neighboring postal codes for a two week period leading up to the
emergency situation

Figures 5 and 6 show the contrast in clusterings for a day of normal activity
(left column) and a day containing an emergency (right column). We cluster
each day of data with the single link agglomerative algorithm using two differ-
ent dissimilarity measures: correlation distance and Euclidean distance. Figure 5
shows the clusters for the first emergency situation. In both the correlation and
Euclidean distance clusterings, the distance of PC.1.4, the postal code in which
the emergency occurred, is significantly larger than the distance between any
two clusters on the day of normal activity. In Fig 6, we see a similar separation
of PC.2.8, the postal code in which the emergency occurred, along with PC.2.1
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Correlation distance: cumulative Correlation distance:

1 day sliding window
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Fig. 4. This figure shows the correlation distance (cumulative and sliding window) and
Euclidean distance between the postal code in which emergency 2 occurs (PC.2.8) and
its five neighboring postal codes for a two week period leading up to the emergency
situation
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Fig. 5. This figure shows the clustering of the call volume time series for postal codes
surrounding the first emergency event. The left column shows the clustering of one day
of normal activity and the right column shows the clustering of the day of the first
emergency event, which occurs in PC.1.4. Note that for both the correlation distance
(top row) and Euclidean distance (bottom row), PC.1.4 is near other clusters during
the day of normal activity but far from all other clusters during the day of the event.
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Fig. 6. This figure shows the clustering of the call volume time series for postal codes
surrounding the second emergency event. The left column shows the clustering of one
day of normal activity and the right column shows the clustering of the day of the
second emergency event, which occurs in PC.2.8. In this case, the call activity in
PC.2.1 is also affected by this event. Note that for both the correlation distance (top
row) and Euclidean distance (bottom row), the cluster containing PC.2.1 and PC.2.8
is near other clusters during the day of normal activity but far from all other clusters
during the day of the event.
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from the remaining clusters, though the increase in distance is not as dramatic
as in the previous case. It is not surprising that PC.2.1 and PC.2.8 end up in the
same cluster on the day of the emergency since we do not see the same increase
in distance in Fig 4 between these to features as we do between PC.2.8 and the
remaining features at the time the emergency occurs.

5 Conclusions and Future Work

In this paper, we have explored the possibility of using feature clustering to
identify areas of interest from a set of spatially disjoint time series from real-world
cell phone data. We have shown that emergency events can cause a spatially
constrained change in call activity and that the area affected by this change can
be detected using a clustering algorithm.

While this approach is promising, there is more work to be done before it
can be deployed in the WIPER system. We need to determine the appropriate
parameters for the approach, including the time series sampling interval, the level
of spatial aggregation, and the length of the sliding window. Most importantly,
while the dendrograms we have presented are compelling, we must do more work
to understand how the clusters change over time in the absence of emergency
events to gain an understanding of their stability and the amount of variation to
be expected under normal circumstances. The work in this paper has been mostly
qualitative, we must now pursue a more quantitative approach to automate the
detection of areas of interest using feature clustering.
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