

Dynamic Adaptive Disaster Simulation: Developing A Predictive Model of Emergency Behavior Using Cell Phone and GIS Data¹

Francis Chen, Zhi Zhai, Greg Madey Department of Computer Science and Engineering University of Notre Dame Notre Dame, IN

George Mason University, January 31st, 2011

¹The research presented in this paper is based in part upon work supported by the National Science Foundation, CISE/CNS-DDDAS, Award #0540348.

Outline

- Introduction
 - Motivation
 - Previous Work
 - Contributions
- Our approach
 - Modeling Process
 - Calibration
- □ Validation, Results, and Discussion
- Conclusions and Future Work

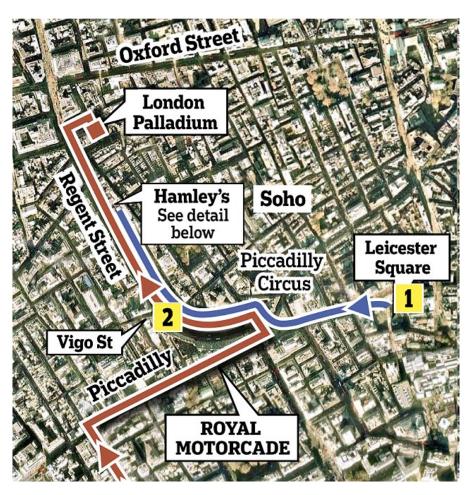
Why Model Populations?

Hurricane Katrina

- No comprehensive information on population movement
 - 70,000 left in New Orleans
- Resources distributed inefficiently
 - High ground areas (Superdome)
 - "fascinating phenomena"

http://www.nerdylorrin.net/jerry/Katrina/KatrinaSuperdome.html

http://media.myfoxphilly.com/slideshows/katrina/1/lg/Fuel%20station %20damaged%20by%20Hurricane%20Katrina,%20Biloxi,%20Mississippi.htm


Francis Chen

fxchen12@yahoo.com

Why Model Populations? (cont.)

- London attacks on royal couple
 - Civil disorder was not reliably tracked
 - 100-person mob allowed to disrupt motorcade
 - Alternative routes were possible

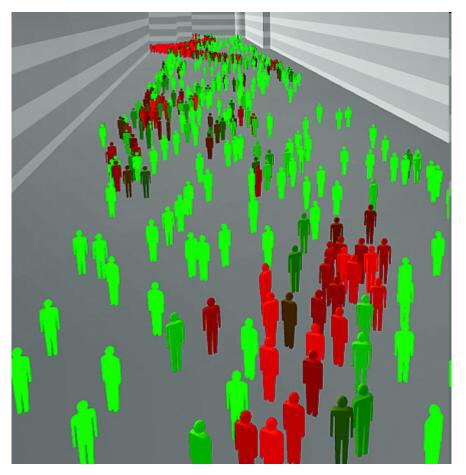
http://www.dailymail.co.uk/news/article-1337478/ROYAL-CAR-ATTACK-Blunder-left-Camilla-cowering-hit-ribs-protestors.html

Existing Methods of Population Modeling

□ Agent-based modeling

Flow/continuum-based modeling

http://1.bp.blogspot.com/_pgrjV7xqqVY/R1mDQIMZqsI/AAAAAAAAAAGM/MPBJzQI6DY4/s400/netlogo.gif


Treuille, A., Cooper, S., and Popovic, Z. (2006). Continuum crowds. ACM Transactions on Graphics, Vol. 25, Issue 3, pp. 1160-1168.

Francis Chen

fxchen12@yahoo.com

Challenges in Disaster Modeling

http://www.siemens.com/innovation/pool/de/Publikationen/Zeitschriften_pof/pof_herbst_2009/virt_real/personenstrom/pof209_virt_personen2.jpg

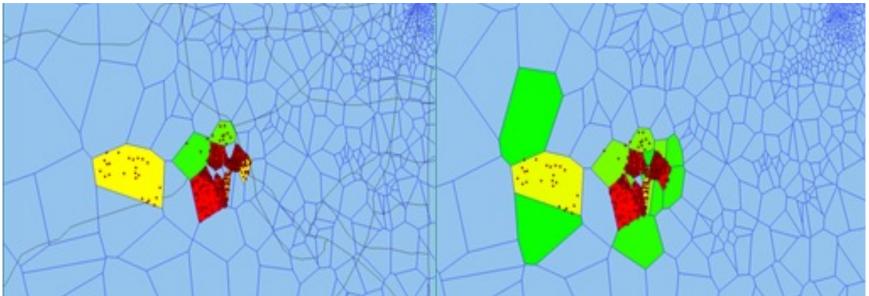
- Restricted to pre-programmed scenarios
- Based on speculations and assumptions
 - > 25-40% difference in predicted evacuation times

Online validation and data incorporation are difficult

Dynamic Data-Driven Application Systems (DDDAS)

Better for real-time, adaptive predictions (Darema 2006)

The WIPER Project



- □ Wireless Phone-based Emergency Response System
 - Cell phones used as dynamic data source

□ Simulation and Prediction

- Pedestrian and vehicle agents
- Basic movements: flee, flock, jam

□ More work is needed (model complexity, adapt to scenarios)

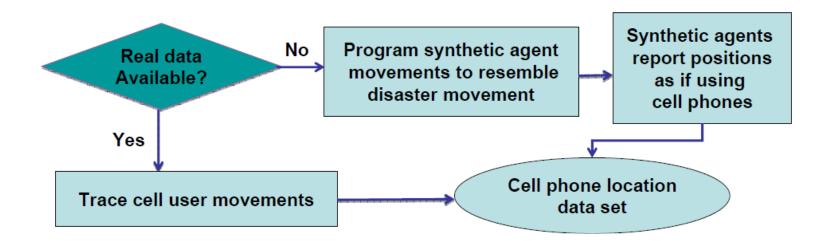
Contributions

Developed Dynamic Adaptive Disaster Simulation (DADS)

Proof-of-concept

DDDAS concepts

- ♦ Adapts to specific scenarios
- Continuously refines predictions
- Can incorporate data
 - Geographic Information System (GIS)
 - Streaming real-time cell phone location data
 - Tested on synthetic cell phone data
- Netlogo language and modeling environment, version 4.1.1
 - Used GIS extension


Outline

□ Introduction

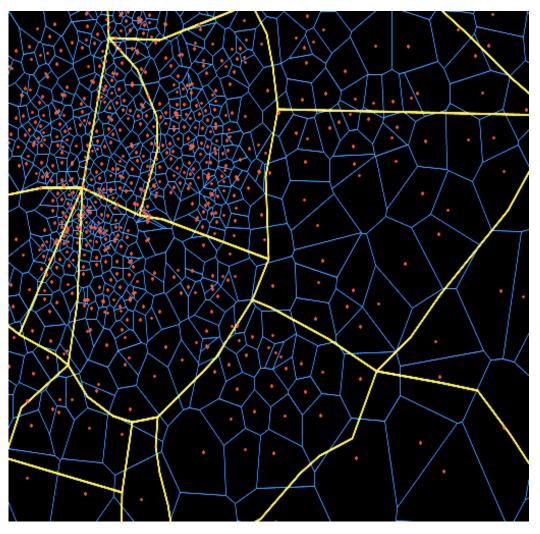
- Motivation
- Previous Work
- Contributions
- Our approach
 - Modeling Process
 - Calibration
- □ Validation, Results, and Discussion
- Conclusions and Future Work

System Architecture

Agent Types

Synthetic agents

- Move as people would during a disaster
- Represent real cell phone users
 - ♦ Movements generate synthetic cell phone data
 - Necessary because of nondisclosure agreements (NDA) with cell phone company—I am a minor


Predictive agents

- > Move according to inferences drawn from cell phone data
- Represent predictions of future population movement
 - Attempting to adaptively model disaster evacuation
 - Emergency management can be conducted based on agents' predictions

Modeling Environment: GIS Space

□ Place names removed to maintain anonymity

Cell Phone Data

20070127 | 000400 | @6f19d5 | @fafd42 | 10004 | 20070127 | 000600 | @69a50b | @fafd42 | 10004 | 20070127 | 000600 | @31f919 | @fafd42 | 10004 | 20070127 | 000700 | @570f5c | @fafd42 | 10004 | 20070127 | 000700 | @e940a6 | @fafd42 | 10893 | 20070127 | 000800 | @3e97cd | @fafd42 | 10893 | 20070127 | 000900 | @a620f5 | @fafd42 | 1005 | 20070127 | 000900 | @687ae0 | @fafd42 | 10011 | 20070127 | 001000 | @2297d7 | @fafd42 | 10011 |

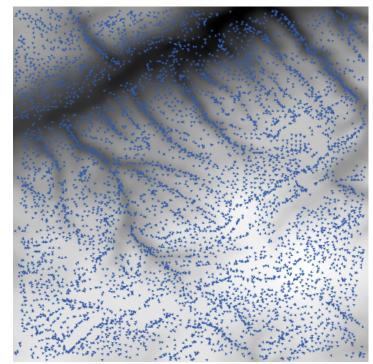
http://googlephonetracking.com/

- Networks must be able to constantly track cell phones
 - Call Data Records (CDR)
 - Accuracy varies

Phone-integrated GPS technology

http://tuberose.com/Graphics/cell%20tower.jpeg

fxchen12@yahoo.com


Modeling Approach

□ Dynamic Potential Fields or elevation fields (Park 2009)

- Agents move from high to low potential
- Conceptually portrayed as a terrain of varying elevations
- Used for both synthetic data and DADS itself

□ Use fluid-like agents (Helbing 2002)

Wilensky, U. (2006). NetLogo GIS Gradient Example. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.

Example

Francis Chen

fxchen12@yahoo.com

Implementing Modeling Approach

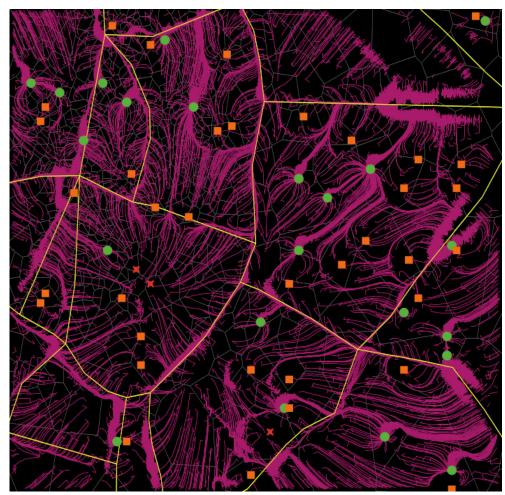
- □ Elevation field represented as matrix (Wilensky 2006)
 - Each element represents a patch of ground
 - Convolve the matrix with kernels:

 $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$ (1) $\begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$ (2)

For each of two gradient matrices:

- Calculate aspect: $a(x, y) = \arctan(y/x)$
- Done in Netlogo, with GIS Extension

Agents continuously set headings to match aspect of patch

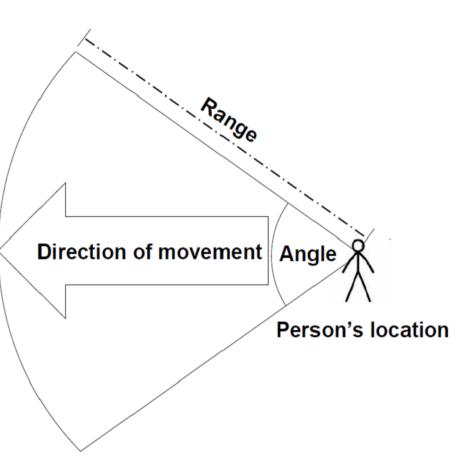

Generating Synthetic Data

Synthetic elevation field

- > Types of regions in a scenario
 - Disaster (fixed)
 - Dangerous (random)
 - Safe (random)
 - Roads (fixed)
- □ 3200+ synthetic agents
 - Realistic pedestrian speeds
- Random scenarios
 - Example

Francis Chen

Road

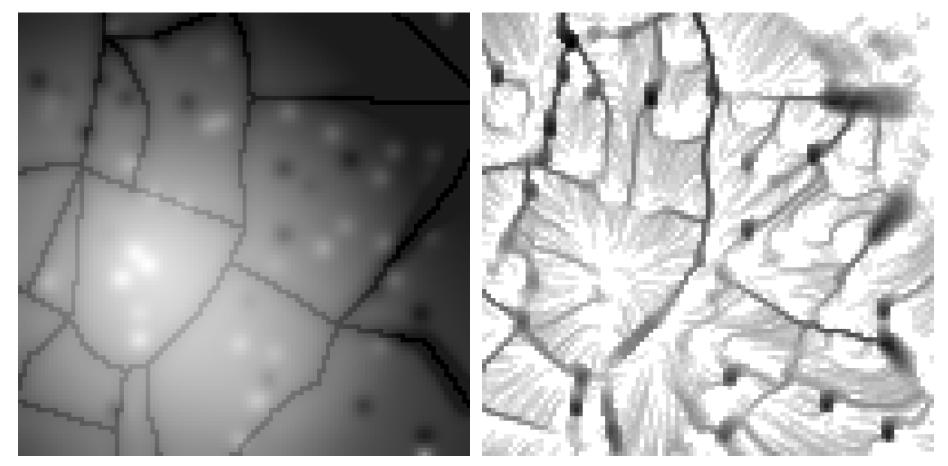

X Disaster Iocation Dangerous

location

Safe

Conducting Inference on Data

Uses "vision cone" (Torrens 2007)


□ Used as "cone of inference"

- Patches inside the cone are inferred to be attractive
 - When a synthetic agent moves, decrease predictive elevation of patches
 - Generate a field of predictive elevations
- DADS predictive agents move on predictive elevation field
 - Represent prediction of future locations of cell phone users

Example

Conducting Inference on Data (cont.)

- Problem becomes that of "reconstructing" a reasonable predictive elevation field
 - > Must accurately capture factors influencing movement

Francis Chen

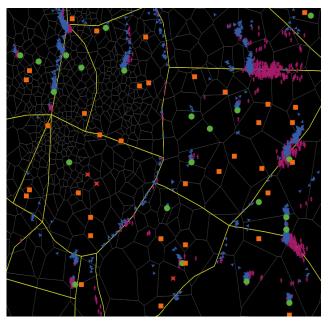
fxchen12@yahoo.com

Summary of Methods

政

- □ Generate synthetic elevation field
 - Synthetic agents move on it to produce synthetic data
- □ Conduct inference as location data streams in
 - Generate predictive elevation field
- Predictive agents move on predictive field
 Represent predictions of population movement
 Example

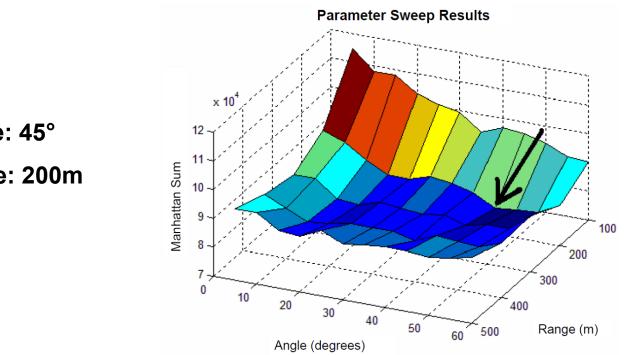
Measuring Simulation Quality



□ Manhattan distance metric (Schoenharl 2008)

Compare synthetic vs. predictive agents

• p_i and q_i represent numbers of each agent type at each cell tower


□ Smaller Manhattan distance = more accurate simulation

Experimental Setup and Results

- □ Identified optimal values for vision cone angle and range
- □ Multi-resolution approach
 - Coarse, then finer parameter sweeps
 - Compared predictions of all possible parameter pairs
 - Evaluated in three random scenarios

Best angle: 45°

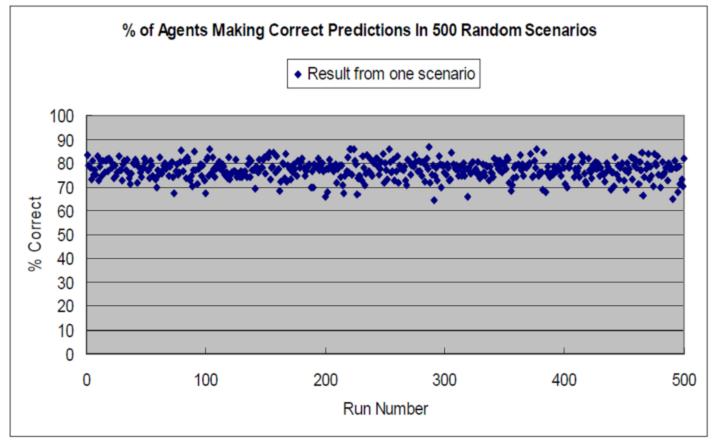
Best range: 200m

Outline

□ Introduction

- Motivation
- Previous Work
- Contributions
- Our approach
 - Modeling Process
 - Calibration
- □ Validation, Results, and Discussion
- Conclusions and Future Work

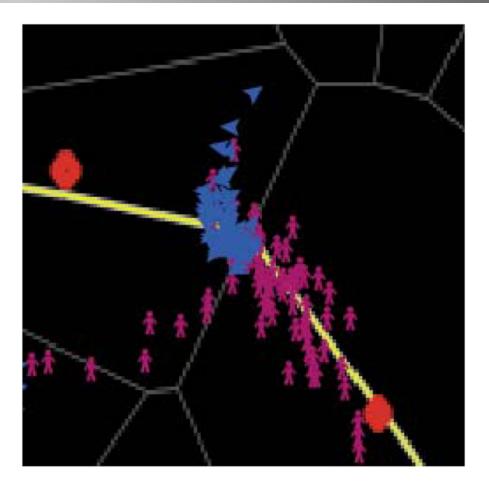
Validation


Verifies that a model "is a reasonably accurate representation of the real world" (Xiang et al. 2005)

- Internal Validation
 - Measures stability
- Predictive Validation
 - Measures predictive accuracy
- Other Validation Methods
 - Online validation is an "open research question" (Schoenharl 2007)

Internal Validation

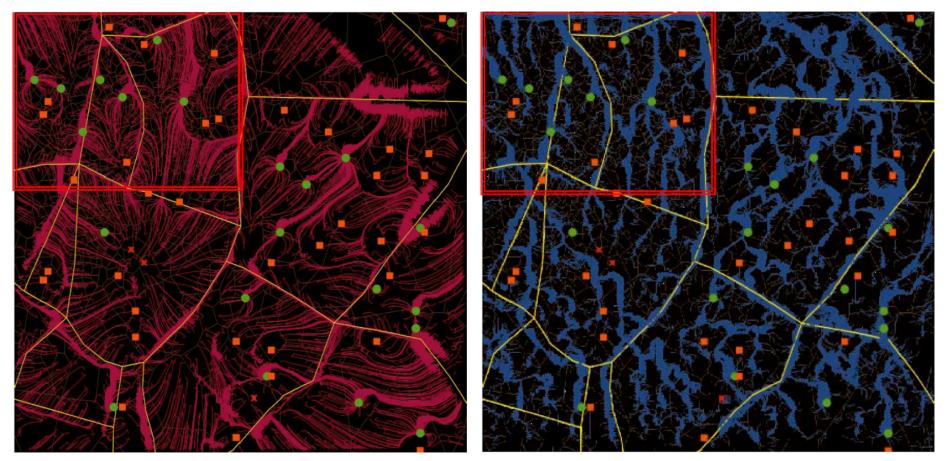
- □ 500 runs; measured final predictions (75 minutes in advance)
 - Different randomly generated scenario each time



Mean correct percentage: 77.30%; standard deviation: 3.87%

Predictive Validation

政


- An average of 77.30% of predictive agents made correct predictions, 75 minutes in advance
- Disadvantage of quantitative validation
 - Predictions are only correct if in the correct serving cell
- Qualitative validation is necessary

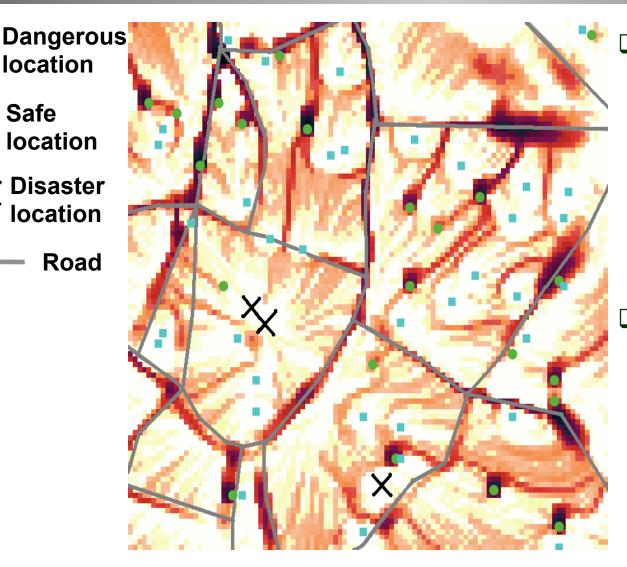
Qualitative Predictive Validation

□ Compare paths taken by synthetic/predictive agents

Synthetic

Predictive

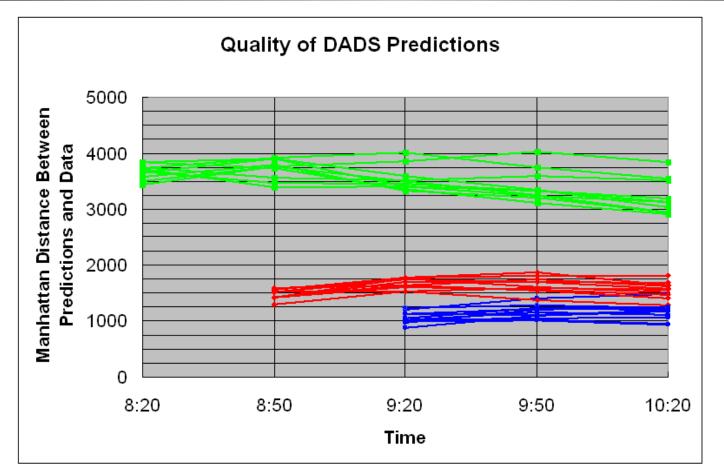
Francis Chen


Qualitative Predictive Validation

location Safe location

Disaster location

Road


□ Shapes of attractive and repulsive regions

- > Can indicate disaster type
 - Can use to refine simulation

Future Work

□ Road networks > Usable for traffic simulations

Ability to Improve Predictions

□ Predictions of population locations at 10:20 a.m.

Green lines: at 8:05, red lines: at 8:35, blue lines: at 9:05

□ Reflects the DDDAS concept of dynamically updating simulations

Discussion

- Assumptions— "a model is only as good as the assumptions on which it is based"
 - Homogeneous agents
 - No crowd dynamics
 - Synthetic data
 - No restrictions on agent vision or movement

http://blog.creativecurator.com/wp-content/uploads/2010/05/cctv-fire.jpg

Outline

□ Introduction

- Motivation
- Previous Work
- Contributions
- Our approach
 - Modeling Process
 - Calibration
- □ Validation, Results, and Discussion
- Conclusions and Future Work

Summary

□ DADS uses streaming cell phone location data to simulate and predict population movement in disasters

- Makes use of emergent intelligence
- Can analyze historical data
 - Study tool for past disasters
- GPS will further increase utility
- Demonstrates DDDAS
 - > Adapts to specific scenarios and constantly improves

□ Validated on synthetic data

- Predictively and internally valid
- Provides useful inferences in situations like Katrina
 - Helpful in evacuations, even if disaster disables cell service

Important Considerations

- Distinguish evacuees from responders
 - Potentially misleading data
 - Heterogeneous agents?
- □ Cell phones as a data source
 - Limited power supply
 - Could be problematic in the long term
 - Cell towers vulnerable
 - Earthquakes
 - Volcanic ash
 - GPS technology
 - How quickly can we draw accurate inferences?

http://www.wirelessestimator.com/t_content.cfm?pagename=Hurricane%20lke%20telecom

http://chicagoist.com/2006/10/25/south_loop_building_fire.php

Future Work—DADS Itself

- □ Test on real cell phone location data
 - > Allow for adjustment of data reception
 - DDDAS concept—sensor adjustment
- □ Further assess modeling techniques
 - Increased realism
 - Agent heterogeneity
 - Crowd dynamics
- □ More sophisticated methods of parameterization
- **Explore more ways to use cell phone data**
 - Examine call volume, distribution, location, etc.

Future Work—Population Simulation

Large-scale

- Modeling citywide or global movement patterns in other situations
- □ Small-scale
 - Modeling individual behavior
 - Depicting movement and/or evacuation in a building

Tool for study as well as prediction

http://thecityfix.com/files/2010/06/public_transport_rome.jpg

http://cdn.wn.com/pd/cd/97/038669f9ba7cf8fcc73da99f5699_grande.jpg

Future Work—Adaptive Simulation

- Simulations designed to adapt to streaming data
- □ Modeling landslides in China
 - Caused by dams, mining, and deforestation
- Better sensor networks enable this sort of technology
 - DADS is an example

http://globalvoicesonline.org/2010/08/09/china-zhouqu-landslide-a-man-made-disaster/

- "The Tradeoff of Confidentiality and Access" (NRC 2007)
 - Must sacrifice precision for privacy
 - WIPER—aggregated by voronoi cell
 - How much precision is needed?
 - ♦ DADS appears to require precision
 - "Naïve realism"

Possible solutions

- > Opt-out (Johnston 2010) or opt-in?
 - How many cell phones are needed?
- Aggregation and other tactics
- "Data enclaves" and legal or licensing systems

Thank you!

Questions?

A paper describing this research has been accepted for SpringSim/ADS 2011, and can be found at the following URL: http://www.nd.edu/~dddas/Papers/papers.html

Francis Chen