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The rich set of interactions between individuals in the society [1, 2, 3, 4, 5, 6] results in com-
plex community structure, capturing highly connected circles of friends, families, or professional
cliques in a social network [3, 7, 8, 9, 10]. Although most empirical studies have focused on snap-
shots of these communities, thanks to frequent changes in the activity and communication patterns
of individuals, the associated social and communication network is subject to constant evolution
[6, 11, 12, 13, 14, 15, 16]. Our knowledge of the mechanisms governing the underlying commu-
nity dynamics is limited, but is essential for a deeper understanding of the development and self-
optimisation of the society as a whole [17, 18, 19, 20, 21, 22]. We have developed a new algorithm
based on a clique percolation technique [23, 24], that allows, for the first time, to investigate in de-
tail the time dependence of overlapping communities on a large scale and as such, to uncover basic
relationships of the statistical features of community evolution. Our focus is on two networks of
major interest, capturing the collaboration between scientists and the calls between mobile phone
users, observing that their communities are subject to a number of elementary evolutionary steps
ranging from community formation to breakup and merging, representing new dimensions in their
quantitative interpretation. We find that large groups persist longer if they are capable of dynam-
ically altering their membership, suggesting that an ability to change the composition results in
better adaptability and a longer lifetime for social groups. Remarkably, the behaviour of small
groups displays the opposite tendency, the condition for stability being that their composition re-
mains unchanged. We also show that the knowledge of the time commitment of the members to a
given community can be used for predicting the community’s lifetime. These findings offer a new
view on the fundamental differences between the dynamics of small groups and large institutions.

The data sets we consider contain the monthly roster of articles in the Los Alamos cond-mat archive
spanning 142 months, with over 30000 authors [25], and the complete record of phone-calls between the
customers of a mobile phone company spanning 52 weeks (accumulated over two week long periods),
and containing the communication patterns of over 4 million users. Both type of collaboration events (a
new article or a phone-call) document the presence of social interaction between the involved individuals
(nodes), and can be represented as (time-dependent) links. The extraction of the changing link weights
from the primary data is described in the Supplementary Material. In Fig.1a-b we show the local struc-
ture at a given time step in the two networks in the vicinity of a randomly chosen individual (marked by
a red frame). The communities (social groups represented by more densely interconnected parts within
a network of social links) are colour coded, so that black nodes/edges do not belong to any community,
and those that simultaneously belong to two or more communities are shown in red. The two networks
have rather different local structure: due to its bipartite nature, the collaboration network is quite dense
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and the overlap between communities is very significant, whereas in the phone-call network the com-
munities are less interconnected and are often separated by one or more inter-community nodes/edges.
Indeed, while the phone record captures the communication between two people, the publication record
assigns to all individuals that contribute to a paper a fully connected clique. As a result, the phone data
is dominated by single links, while the co-authorship data has many dense, highly connected neigh-
bourhoods. Furthermore, the links in the phone network correspond to instant communication events,
capturing a relationship as is happens. In contrast, the co-authorship data records the results of a long
term collaboration process. These fundamental differences suggest that any potential common features
of the community evolution in the two networks potentially, represent generic characteristics of commu-
nity formation, rather than being rooted in the details of the network representation or data collection
process.

The communities at each time step were extracted with the Clique Percolation Method (CPM) [23,
24], defining a community as a union of all k-cliques (complete subgraphs of size k) that can be reached
from each other through a series of adjacent k-cliques (where adjacency means sharing k − 1 nodes)
[24, 26, 27]. When applied to weighted networks, the CPM has two parameters: the k-clique size k,
(in Fig.1a-b we show the communities for k = 4), and the weight threshold w∗ (links weaker than w∗

are ignored). The criterion for selecting these parameters is discussed in the Supplementary Material.
The key feature of the communities obtained by the CPM are that (i) their members can be reached
through well connected subsets of nodes, and (ii) the communities may overlap (share nodes with each
other). This latter property is essential, since most networks are characterised by overlapping and nested
communities [5, 23].

As a first step, it is important to check if the uncovered communities correspond to groups of in-
dividuals with a shared common activity pattern. For this purpose we compared the average weight of
the links inside communities, wc, to the average weight of the inter-community links, wic. For the co-
authorship network wc/wic is about 2.9, while for the phone-call network the difference is even more
significant, since wc/wic ' 5.9, indicating that the intensity of collaboration/communication within a
group is significantly higher than with contacts belonging to a different group [28, 29].

While for coauthors the quality of the clustering can be directly tested by studying their publication
records in more detail, in the phone-call network personal information is not available. In this case
the zip-code and the age of the users provides additional information for checking the homogeneity
of the communities. In Fig.1c we show the size of the largest subset of people having the same zip
code in the communities, 〈nreal〉, averaged over the time steps, as the function of the community size
s, divided by 〈nrand〉, representing the average over random sets of users. The significantly higher
number of people with the same zip-code in the CPM communities as compared to random sets indicates
that the communities usually correspond to individuals living relatively close to each other. It is of
specific interest that 〈nreal〉 / 〈nrand〉 has a prominent peak at s ' 35, suggesting that communities
of this size are geographically the most homogeneous ones. However, as Fig.1d shows, the situation is
more complex: on average, the smaller communities are more homogeneous, but there is still a noticeable
peak at s ' 30 − 35. In Fig.1c we also show the average size of the largest subset of members with an
age falling into a three years wide time window, divided by the same quantity obtained for randomly
selected groups of individuals. The fact that the ratio is larger than one indicates that communities
have a tendency to contain people from the same generation, and the 〈nrand〉 /s plot indicates that the
homogeneity of small groups is on average larger than that of the big groups. In summary, the phone-call
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Figure 1: a) The local community structure at a given time step in the vicinity of a randomly selected
node in case of the co-authorship network. b) The same picture in the phone-call network. c) The
black symbols correspond to the average size of the largest subset of members with the same zip-code,
〈nreal〉, in the phone-call communities divided by the same quantity found in random sets, 〈nrand〉, as
the function of the community size s. Similarly, the white symbols show the average size of the largest
subset of community members with an age falling in a three year time window, divided by the same
quantity in random sets. d) The 〈nreal〉 /s as a function of s, for both the zip-code (black symbols) and
the age (white symbols). e) Possible events in the community evolution. f) The identification of evolving
communities. The links at t (blue) and the links at t + 1 (yellow) are merged into a joint graph (green).
Any CPM community at t or t + 1 is part of a CPM community in the joined graph, therefore, these can
be used to match the two sets of communities.
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communities uncovered by the CPM tend to contain individuals living in the same neighbourhood, and
with comparable age, a homogeneity that supports the validity of the uncovered community structure.
Further support is given in the Supplementary Material.

The basic events that may occur in the life of a community are shown in Fig.1e: a community can
grow by recruiting new members, or contract by loosing members; two (or more) groups may merge
into a single community, while a large enough social group can split into several smaller ones; new
communities are born and old ones may disappear. Given that community finding algorithms extract
only static “snap-shots” of the community structure, and that a huge number of groups are present at each
time step, it is a significant algorithmic and computational challenge to match communities uncovered at
different time steps. The basic idea of the algorithm developed by us to identify community evolution is
shown in Fig.1f. For each consecutive time steps t and t + 1 we construct a joint graph consisting of the
union of links from the corresponding two networks, and extract the CPM community structure of this
joint network (we thank I. Derényi for pointing out this possibility). Any community from either the t or
the t + 1 snap-shot is contained in exactly one community in the joint graph, since by adding links to a
network, the CPM communities can only grow, merge or remain unchanged. Thus, the communities in
the joint graph provide a natural connection between the communities at t and at t + 1. If a community
in the joint graph contains a single community from t and a single community from t + 1, then they are
matched. If the joint group contains more than one community from either time steps, the communities
are matched in descending order of their relative node overlap (see the Supplementary Material).

We first consider two basic quantities characterising a community: its size s and its age τ , represent-
ing the time passed since its birth. s and τ are positively correlated: larger communities are on average
older (Fig.2a), which is quite natural, as communities are usually born small, and it takes time to recruit
new members to reach a large size. Next we used the auto-correlation function, C(t), to quantify the
relative overlap between two states of the same community A(t) at t time steps apart:

CA(t) ≡
|A(t0) ∩ A(t0 + t)|

|A(t0) ∪ A(t0 + t)|
, (1)

where |A(t0) ∩ A(t0 + t)| is the number of common nodes (members) in A(t0) and A(t0 + t), and
|A(t0) ∪ A(t0 + t)| is the number of nodes in the union of A(t0) and A(t0 + t). Fig.2b shows the
average time dependent auto-correlation function for communities born with different sizes. We find
that in both networks, the auto-correlation function decays faster for the larger communities, indicating
that the membership of the larger communities is changing at a higher rate. On the contrary, small
communities change at a smaller rate, their composition being more or less static. To quantify this aspect
of community evolution, we define the stationarity ζ of a community as the average correlation between
subsequent states:

ζ ≡

∑
tmax−1

t=t0
C(t, t + 1)

tmax − t0 − 1
, (2)

where t0 denotes the birth of the community, and tmax is the last step before the extinction of the com-
munity. In other words, 1 − ζ represents the average ratio of members changed in one step; larger ζ

corresponds to smaller change (more stationary membership).
We observe a very interesting effect when we investigate the relationship between the lifetime τ ∗

(the number of steps between the birth and disintegration of a community), the stationarity and the
community size. The lifetime can be viewed as a simple measure of “fitness”: communities having higher
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fitness have an extended life, while the ones with small fitness quickly disintegrate, or are swallowed by
another community. In Fig.2c-d we show the average life-span 〈τ ∗〉 (colour coded) as a function of
the stationarity ζ and the community size s (both s and ζ were binned). In both networks, for small
community sizes the highest average life-span is at a stationarity value very close to one, indicating that
for small communities it is optimal to have static, time independent membership. On the other hand,
the peak in 〈τ ∗〉 is shifted towards low ζ values for large communities, suggesting that for these the
optimal regime is to be dynamic, i.e., a continually changing membership. In fact, large communities
with a ζ value equal to the optimal ζ for small communities have a very short life, and similarly, small
communities with a low ζ (being optimal at large sizes) are disappearing quickly as well.
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Figure 2: a) The average age τ of communities with a given size (number of people) s, divided by
the average age of all communities 〈τ〉, as the function of s, indicating that larger communities are on
average older. b) The average auto-correlation function C(t) of communities with different sizes (the unit
of time, t, is one month). The C(t) of larger communities decays faster. c) The average life-span 〈τ ∗〉
of the communities as the function of the stationarity ζ and the community size s for the co-authorship
network. The peak in 〈τ ∗〉 is close to ζ = 1 for small sizes, whereas it is shifted towards lower ζ values
for large sizes. d)Similar results found in the phone-call network.

To illustrate the difference in the optimal behaviour (a pattern of membership dynamics leading
to extended lifetime) of small and large communities, in Fig.3. we show the time evolution of four
communities from the co-authorship network. As Fig.3. indicates, a typical small and stationary com-
munity undergoes minor changes, but lives for a long time. This is well illustrated by the snapshots of
the community structure, showing that the community’s stability is conferred by a core of three indi-
viduals representing a collaborative group spanning over 52 months. While new co-authors are added
occasionally to the group, they come and go. In contrast, a small community with high turnover of its
members, (several members abandon the community at the second time step, followed by three new
members joining in at time step three) has a lifetime of nine time steps only (Fig.3b). The opposite is
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Figure 3: Time evolution of four communities in the co-authorship network. The height of the columns
corresponds to the actual community size, and within one column the yellow colour indicates the number
of ”old” nodes (that have been present in the community at least in the previous time step as well),
while newcomers are shown with green. The members abandoning the community in the next time step
are shown with orange or purple colour, depending on whether they are old or new. (This latter type
of member joins the community for only one time step). From top to bottom, we show a small and
stationary community (a), a small and non-stationary community (b), a large and stationary community
(c) and, finally, a large and non-stationary community (d). A mainly growing stage (two time steps) in
the evolution of the latter community is detailed in panel e).

seen for large communities: a large stationary community disintegrates after four time steps (Fig.3c). In
contrast, a large non-stationary community whose members change dynamically, resulting in significant
fluctuations in both size and the composition, has quite extended lifetime (Fig.3d). Indeed, while the
community undergoes dramatic changes, gaining (Fig.3e) or loosing a high fraction of its membership,

6



it can easily withstand these changes.
The quite different stability rules followed by the small and large communities raise an important

question: could an inspection of the community itself predict its future? To address this question, for
each member in a community we measured the total weight of this member’s connections to outside of the
community (wout) as well as to members belonging to the same community (win). We then calculated
the probability that the member will abandon the community as a function of the wout/(win + wout)

ratio. As Fig.4a shows, for both networks this probability increases monotonically, suggesting that if the
relative commitment of a user is to individuals outside a given community is higher, then it is more likely
that he/she will leave the community. In parallel, the average time spent in the community by the nodes,
〈τn〉, is a decreasing function of the above ratio (Fig.4a inset). Individuals that are the most likely to stay
are those that commit most of their time to community members, an effect that is particularly prominent
for the phone network. As Fig.4a shows, those with the least commitment have a quickly growing
likelihood of leaving the community. Taking this idea from individuals to communities, we measured
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Figure 4: a) The probability p` for a member to abandon its community in the next step as a function of
the ratio of its aggregated link weights to other parts of the network (wout) and its total aggregated link
weight (win + wout). The inset shows the average time spent in the community by the nodes, 〈τn〉, in
function of wout/(win + wout). b) The probability pd for a community to disintegrate in the next step in
function of the ratio of the aggregated weights of links from the community to other parts of the network
(Wout) and the aggregated weights of all links starting from the community (Win + Wout). The inset
shows the average life time 〈τ ∗〉 of communities as a function of Wout/(Win + Wout).

for each community the total weight of links (a measure of how much a member is committed) from the
members to others, outside of the community (Wout) , as well as the aggregated link weight inside the
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community (Win). We find that the lifetime of a community decreases with the Wout/(Win+Wout) ratio
(Fig.4b inset), indicating that self-focused communities have a significantly longer lifetime than those
that are open to the outside world. Taken together, these results suggest that a tracking of the individual’s
as well as the community’s relative commitment to the other members of the community provides a clue
for predicting the community’s fate: communities whose members limit most of their “bandwidth” to
members of their own community have a higher chance of survival.

In summary, our results indicate the significant difference between smaller collaborative or friendship
circles and institutions. At the heart of small cliques are a few strong relationships, and as long as these
persist, the community around them is stable. Such social groups can afford to add and loose members,
as long as the core is not perturbed. For this reason, they do show some decay in their membership cor-
relation with time, but the correlation function stabilises at the core membership. It appears to be almost
impossible to maintain this strategy for large communities, however. Thus we find that the condition for
stability for large communities is continuous changes in their membership, allowing for the possibility
that after some time practically all members are exchanged. Such loose, rapidly changing communities
are reminiscent of institutions, that can continue to exist even after all members have been replaced by
new members. For example, in a few years most members of a school or a company could change, yet the
school and the company will be detectable as a distinct community at any time step during its existence.
Thus our results indicate that the key to stability for small groups is continuity in membership. In con-
trast, the key to stability for large groups and institutions is an ability to change by constantly accepting
new members, and letting old members leave. We expect that our approach, allowing the quantitative
analysis of overlapping social group dynamics for very large networks for the first time, will be useful in
establishing a qualitative classification of social groups as well. In addition, results like those presented
in Fig.2c-d can be used to predict the expected lifetime of a given group which could have great practical
implications. In particular, if a large community evolves into a more stationary state (its structure and
membership becomes more ”rigid”) it is likely to become more fragile and eventually disappear.
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[24] Derényi, I., Palla, G., & Vicsek, T., Clique percolation in random networks. Phys. Rev. Lett. 94,
160202 (2005).

9



[25] Warner, S. E-prints and the Open Archives Initiative. Library Hi Tech 21, 151–158 (2003).

[26] Everett, M. G. & Borgatti, S. P. Analyzing clique overlap. Connections 21, 49–61 (1998).

[27] Batagelj, V. & Zaversnik, M. Short cycles connectivity. arXiv cs.DS/0308011 (2003).

[28] Granovetter, M. S. The strength of weak ties. American Journal of Sociology 78, 1360–1380 (1973).

[29] Csermely, P. Weak Links. (Springer Verlag, Heidelberg, Germany, 2006)

10


