

# Dynamic Adaptive Disaster Simulation: A Predictive Model of Emergency Behavior Using Cell Phone and GIS Data<sup>1</sup>

# Francis Chen, Zhi Zhai, Greg Madey Dept. of Computer Science and Engineering University of Notre Dame Notre Dame, IN

CSSS 2010, Arizona State University, November 6, 2010

<sup>1</sup>The research presented in this paper is based in part upon work supported by the National Science Foundation, CISE/CNS-DDDAS, Award #0540348.

#### **Outline**



- **□** Introduction
  - Motivation
  - > Previous Work
  - **Contributions**
- ☐ Our approach
  - Modeling Process
  - Calibration
- ☐ Validation, Results, and Discussion
- ☐ Conclusions and Future Work

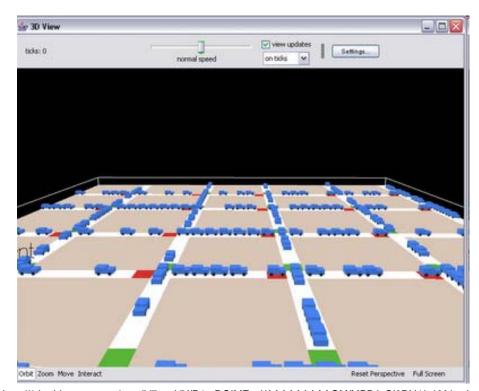
## Why Model Populations?



- ☐ Hurricane Katrina
  - > No comprehensive information on population movement
    - ◆ 70,000 left in New Orleans
  - Resources distributed inefficiently
    - ◆ High ground areas (Superdome)
    - "fascinating phenomena"



http://www.nerdylorrin.net/jerry/Katrina/KatrinaSuperdome.html



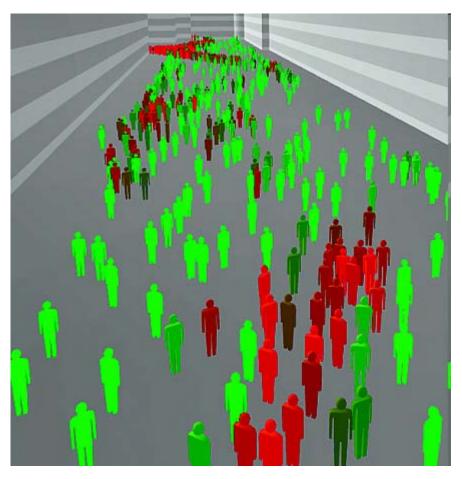

http://media.myfoxphilly.com/slideshows/katrina/1/lg/Fuel%20station %20damaged%20by%20Hurricane%20Katrina,%20Biloxi,%20Mississippi.htm

## **Existing Methods of Population Modeling**



- □ Agent-based modeling
- ☐ Flow/continuum-based modeling




http://1.bp.blogspot.com/\_pgrjV7xqqVY/R1mDQIMZqsI/AAAAAAAAAGM/MPBJzQl6DY4/s400/netlogo.gif

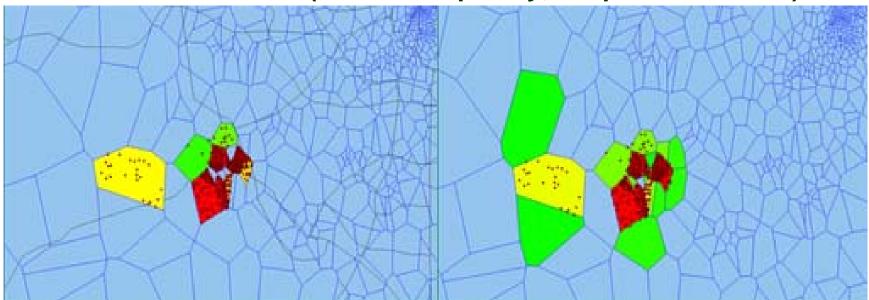


Treuille, A., Cooper, S., and Popovic, Z. (2006). Continuum crowds. ACM Transactions on Graphics, Vol. 25, Issue 3, pp. 1160-1168.

## **Challenges in Disaster Modeling**






http://www.siemens.com/innovation/pool/de/Publikationen/Zeitschriften\_pof/pof\_herbst\_2009/virt\_real/personenstrom/pof209\_virt\_personen2.jpg

- ☐ Restricted to pre-programmed scenarios
- ☐ Based on speculations and assumptions
  - ➤ 25-40% difference in predicted evacuation times
- ☐ Online validation and data incorporation are difficult
- □ Dynamic Data-DrivenApplication Systems (DDDAS)
  - ➤ Better for real-time, adaptive predictions (Darema 2006)

## The WIPER Project



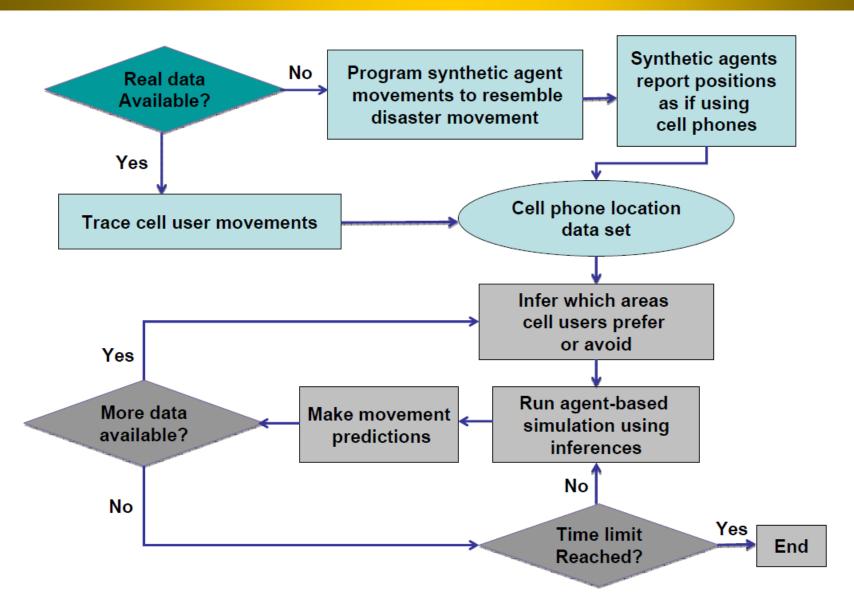
- ☐ Wireless Phone-based Emergency Response System
  - > Cell phones used as dynamic data source
- ☐ Simulation and Prediction
  - > Pedestrian and vehicle agents
  - > Basic movements: flee, flock, jam
- More work is needed (model complexity, adapt to scenarios)



#### **Contributions**



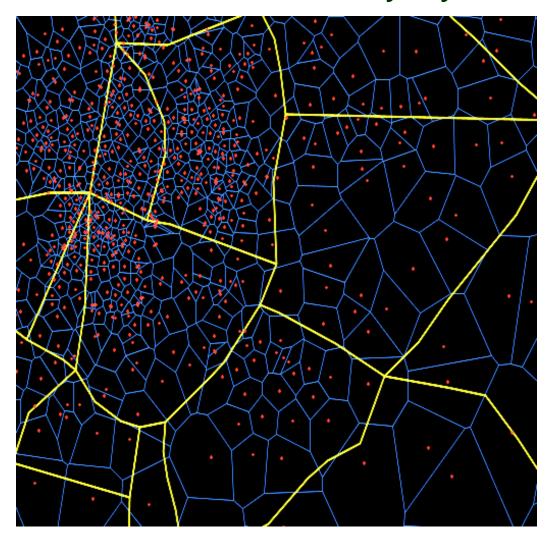
- □ Developed Dynamic Adaptive Disaster Simulation (DADS)
  - > Proof-of-concept
  - > DDDAS concepts
    - **♦** Adapts to specific scenarios
    - **♦** Continuously refines predictions
  - Can incorporate data
    - **♦** Geographic Information System (GIS)
    - ◆ Streaming real-time cell phone location data
    - **◆** Tested on synthetic cell phone data
  - Netlogo language and modeling environment, version 4.1.1
    - Used GIS extension


#### **Outline**



- □ Introduction
  - Motivation
  - Previous Work
  - Contributions
- □ Our approach
  - **→ Modeling Process**
  - Calibration
- ☐ Validation, Results, and Discussion
- ☐ Conclusions and Future Work

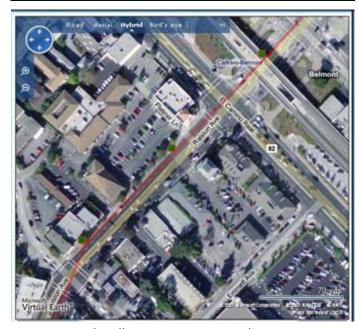
## **System Architecture**






## **Modeling Environment: GIS Space**




☐ Place names removed to maintain anonymity



#### **Cell Phone Data**

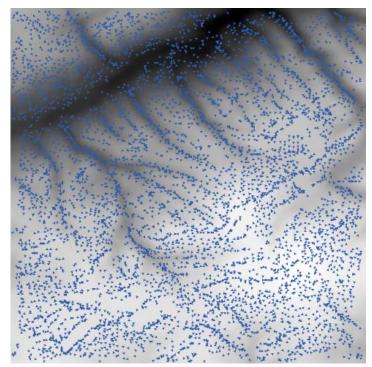


| 20070127 000400 @6f19d5 @fafd42 10004                               |
|---------------------------------------------------------------------|
| 20070127 000600 @69a50b @fafd42 10004                               |
| 20070127 000600 @31f919 @fafd42 10004                               |
| 20070127 000700 @570f5c @fafd42 10004                               |
| 20070127 000700 @e940a6 @fafd42 10893                               |
| $20070127 000800 @3\mathtt{e}97\mathtt{cd} @\mathtt{fafd}42 10343 $ |
| 20070127 000900 @a620f5 @fafd42 10005                               |
| 20070127 000900 @687ae0 @fafd42 10011                               |
| $20070127 001000 @2297d7 @\mathtt{fafd}42 10011 $                   |
|                                                                     |



http://googlephonetracking.com/

- □ Networks must be able to constantly track cell phones
  - > Call Data Records (CDR)
  - > Accuracy varies
- ☐ Phone-integrated GPS technology




http://tuberose.com/Graphics/cell%20tower.jpeg

## **Modeling Approach**



- ☐ Dynamic Potential Fields or elevation fields (Park 2009)
  - Agents move from high to low potential
  - > Conceptually portrayed as a terrain of varying elevations
  - > Used for both synthetic data and DADS itself
- ☐ Use fluid-like agents (Helbing 2002)
- **□** Example



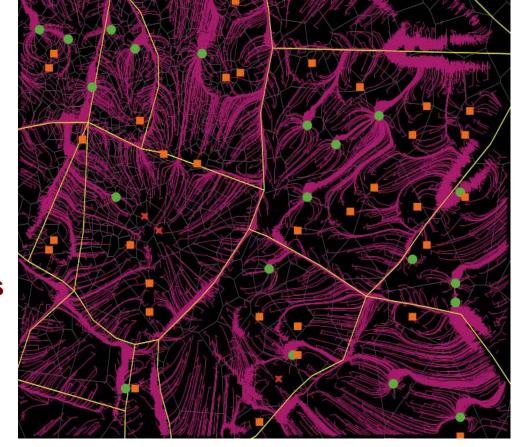
Wilensky, U. (2006). NetLogo GIS Gradient Example. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.

## Implementing Modeling Approach



- ☐ Elevation field represented as matrix (Wilensky 2006)
  - > Each element represents a patch of ground
  - Convolve the matrix with kernels:

$$\begin{bmatrix}
1 & 1 & 1 \\
0 & 0 & 0 \\
-1 & -1 & -1
\end{bmatrix}$$
(1)

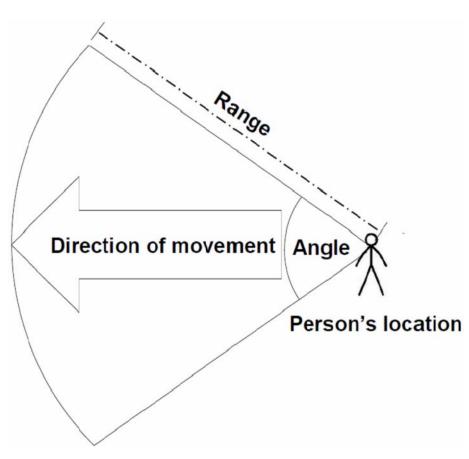

$$\begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
 (2)

- > For each of two gradient matrices:
  - ♦ Calculate aspect:  $a(x,y) = \arctan(y/x)$
- Done in Netlogo, with GIS Extension
- ☐ Agents continuously set headings to match aspect of patch

## **Generating Synthetic Data**



- ☐ Synthetic elevation field
  - Types of regions in a scenario
    - **♦** Disaster (fixed)
    - **◆** Dangerous (random)
    - **♦** Safe (random)
    - **♦** Roads (fixed)
- ☐ 3200+ synthetic agents
  - > Realistic pedestrian speeds
- □ Random scenarios
  - **Example**
- X Disaster location
- Dangerous location

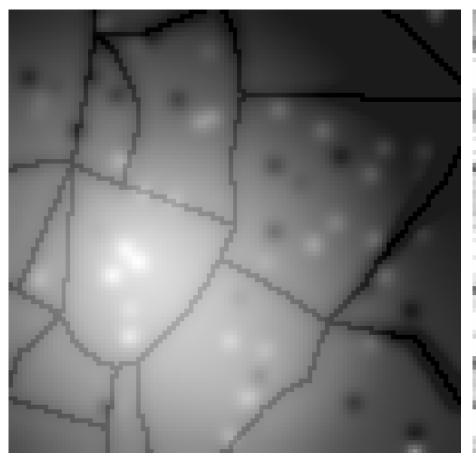



Safe location

Road

## **Conducting Inference on Data**






- ☐ Uses "vision cone" (Torrens 2007)
- ☐ Used as "cone of inference"
  - Patches inside the cone are inferred to be attractive
    - When a synthetic agent moves, decrease predictive elevation of patches
    - Generate a field of predictive elevations
  - DADS predictive agents move on predictive elevation field
    - ◆ Represent prediction of future locations of cell phone users
  - **Example**

## **Conducting Inference on Data (cont.)**



- □ Problem becomes that of "reconstructing" a reasonable predictive elevation field
  - > Must accurately capture factors influencing movement

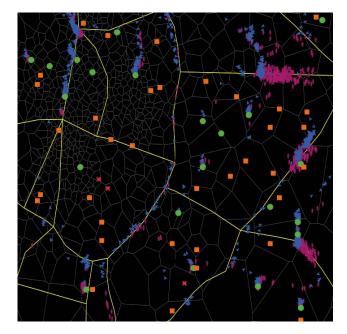




## **Summary of Methods**



- ☐ Generate synthetic elevation field
  - > Synthetic agents move on it to produce synthetic data
- □ Conduct inference as location data streams in
  - Generate predictive elevation field
- ☐ Predictive agents move on predictive field
  - Represent predictions of population movement
  - > Example


## **Measuring Simulation Quality**

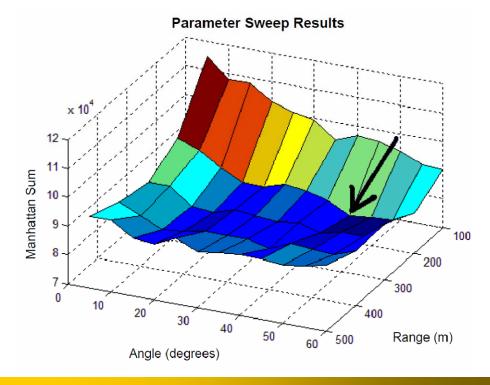


- ☐ Manhattan distance metric (Schoenharl 2008)
  - > Compare synthetic vs. predictive agents

$$d(\overline{p}, \overline{q}) = \sum_{i=1}^{n} |p_i - q_i|, \text{ where } \overline{p} = (p_1, p_2, ..., p_n), \overline{q} = (q_1, q_2, ..., q_n)$$
 (3)

- ☐ Smaller Manhattan distance = closer simulation




## **Experimental Setup and Results**



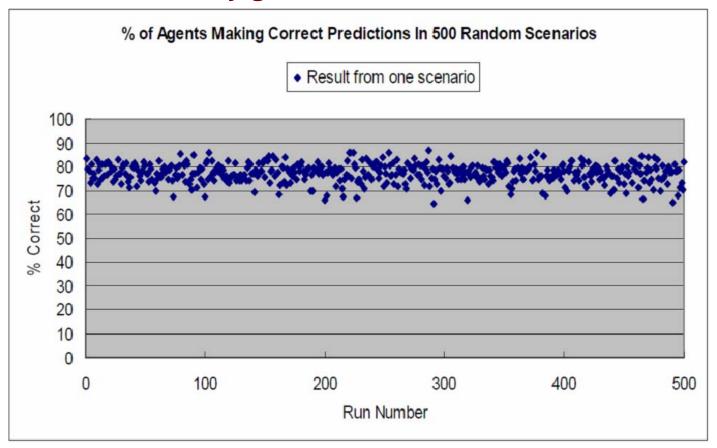
- ☐ Identified optimal values for vision cone angle and range
- Multi-resolution approach
  - > Coarse, then finer parameter sweeps
  - > Compared predictions of all possible parameter pairs
    - **♦** Evaluated in three random scenarios

Best angle: 45°

Best range: 200m



#### **Outline**

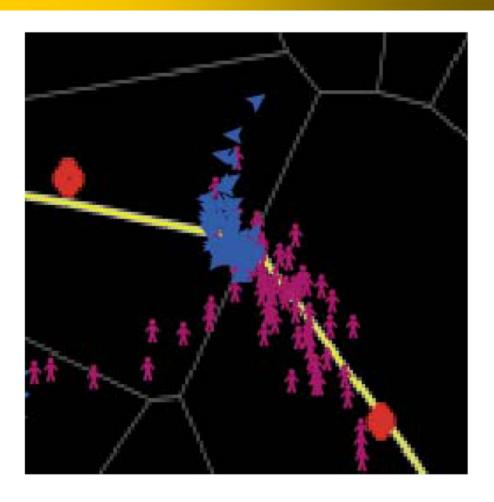



- □ Introduction
  - Motivation
  - Previous Work
  - Contributions
- ☐ Our approach
  - Modeling Process
  - Calibration
- ☐ Validation, Results, and Discussion
- ☐ Conclusions and Future Work

#### **Internal Validation**



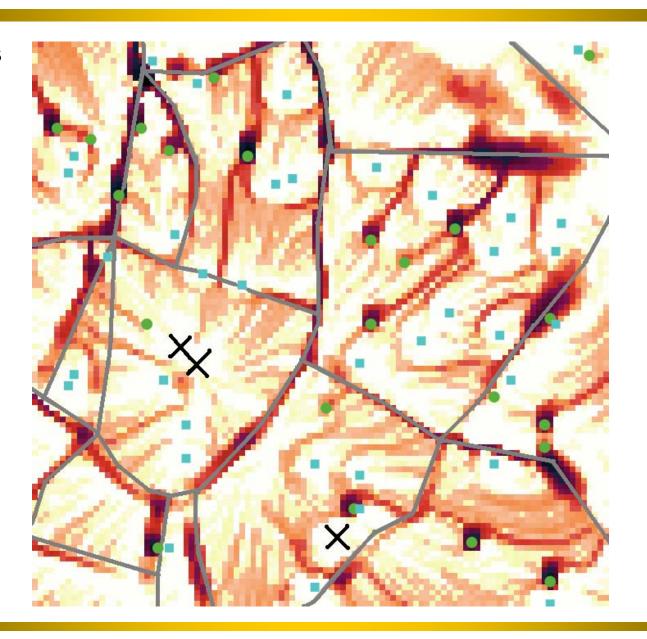
- □ 500 runs; measured final predictions (75 minutes in advance)
  - Different randomly generated scenario each time




➤ Mean correct percentage: 77.30%; standard deviation: 3.87%

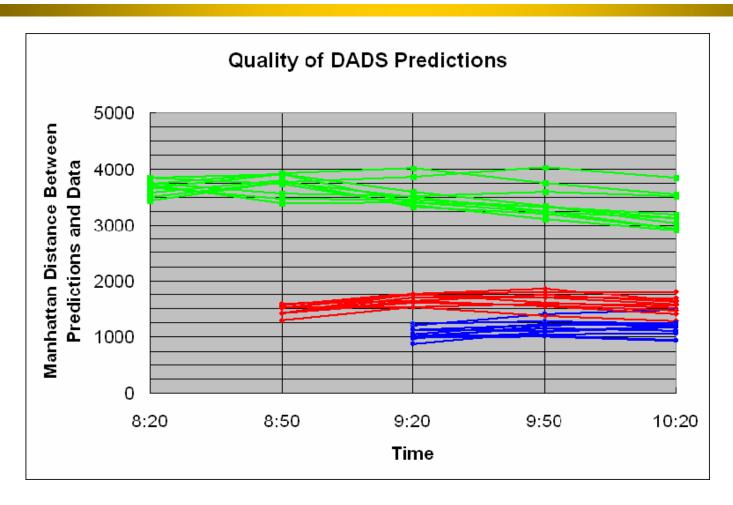
#### **Predictive Validation**




- □ An average of 77.30% of predictive agents made correct predictions, 75 minutes in advance
- ☐ Disadvantage of quantitative validation
  - Predictions are only correct if in the correct serving cell
- ☐ Qualitative validation is necessary



## **Qualitative Predictive Validation**




- Dangerous location
- Safe location
- X Disaster location
- Road



## **Ability to Improve Predictions**





- ☐ Predictions of population locations at 10:20 a.m.
  - > Green lines: at 8:05, red lines: at 8:35, blue lines: at 9:05

#### **Discussion**



- ☐ Assumptions— "a model is only as good as the assumptions on which it is based"
  - > Homogeneous agents
  - > No crowd dynamics
  - > Synthetic data
  - > No restrictions on agent vision or movement



http://blog.creativecurator.com/wp-content/uploads/2010/05/cctv-fire.jpe

#### **Outline**



- □ Introduction
  - Motivation
  - Previous Work
  - Contributions
- ☐ Our approach
  - Modeling Process
  - Calibration
- ☐ Validation, Results, and Discussion
- □ Conclusions and Future Work

## **Summary**



- □ DADS uses streaming cell phone location data to simulate and predict population movement in disasters
  - Makes use of emergent intelligence
  - Can analyze historical data
    - Study tool for past disasters
  - > GPS will further increase utility
- □ Demonstrates DDDAS
  - > Adapts to specific scenarios and constantly improves
- □ Validated on synthetic data
  - Predictively and internally valid
  - Provides useful inferences in situations like Katrina
    - ◆ Helpful in evacuations, even if disaster disables cell service

#### Future Work—DADS Itself

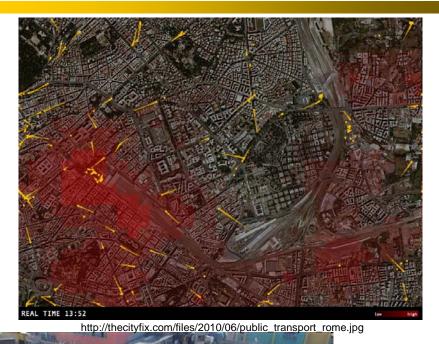


- ☐ Test on real cell phone location data
  - > Allow for adjustment of data reception
    - **◆** DDDAS concept—sensor adjustment
- ☐ Further assess modeling techniques
- More sophisticated methods of parameterization
- ☐ Explore more ways to use cell phone data
  - > Examine call volume, distribution, location, etc.

## **Future Work—Population Simulation**



#### ☐ Large-scale


Modeling citywide or global movement patterns in other situations

#### □ Small-scale

Modeling individual behavior

Depicting movement and/or evacuation in a building

- ☐ Tool for study as well as prediction
- ☐ Ethical issues



http://cdn.wn.com/pd/cd/97/038669f9ba7cf8fcc73da99f5699 grande.jpg



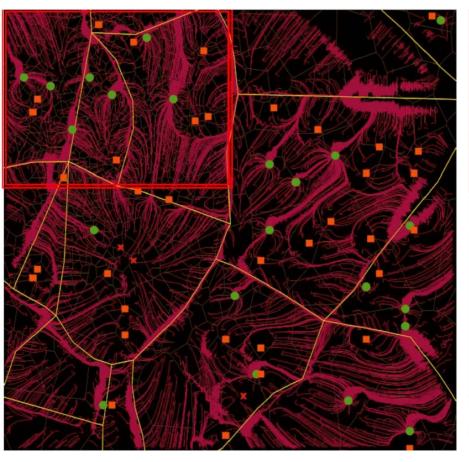
## Thank you!

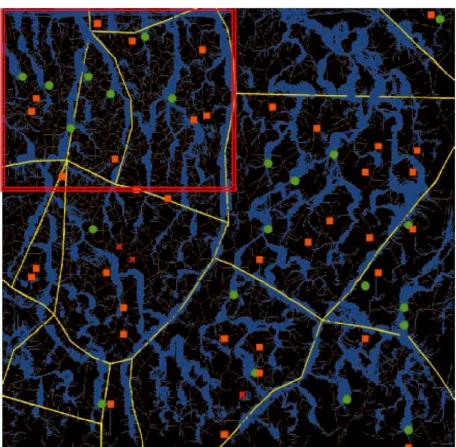
**Questions?** 



### **Additional Slides**

#### **Validation**





- □ Verifies that a model "is a reasonably accurate representation of the real world" (Xiang et al.)
  - > Internal Validation
    - **♦** Measures stability
  - > Predictive Validation
    - **♦** Measures predictive accuracy

### **Qualitative Predictive Validation**



☐ Compare paths taken by synthetic/predictive agents





## **Future Work—Adaptive Simulation**





- ☐ Simulations designed to adapt to streaming data
- Modeling landslides in China
  - Caused by dams, mining, and deforestation
- □ Better sensor networks enable this sort of technology
  - > DADS is an example

http://globalvoicesonline.org/2010/08/09/china-zhouqu-landslide-a-man-made-disaster/

#### **Discussion**



- □ DADS can improve situational awareness in situations like Hurricane Katrina
  - Adapts to different scenarios
  - Continuously improves predictions
  - Provides useful inferences
    - ◆ Helpful in evacuations, even if disaster disables cell service
- ☐ Uses cell phones as data source
  - Sensor network already in place
  - > GPS will further increase utility
  - Can analyze historical data
    - **♦** Study tool for past disasters