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Alec Pawling

In this dissertation, we address two problems associated with the development of

an emergency response system that utilizes a cell phone network as a sensor network to

facilitate the initiation and online validation of predictive simulations. Schoenharl [77]

describes the simulation component of the emergency response system; this dissertation

addresses two other significant components of the system: the historical data source and

the detection and alert system.

The historical data source is a data warehouse designed to facilitate the development

of additional simulation models for the predictive component of the system and has

wider applications for scientific research on social networks and human mobility.

The detection and alert system provides an automatic mechanism for initiating the

simulation system without intervention by emergency response managers. This system

identifies potential emergency events in both time and space, allowing the simulations

to begin shortly after an event as well as focus on the area affected by the event, reducing

the computational costs significantly.
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CHAPTER 1

INTRODUCTION

In this dissertation, we address two problems associated with the development of

an emergency response system that utilizes a cell phone network as a sensor network to

facilitate the initiation and online validation of predictive simulations. Schoenharl [77]

describes the simulation component of the emergency response system; this dissertation

addresses two other significant components of the system: the historical data source and

the detection and alert system.

The historical data source is a data warehouse designed to facilitate the develop-

ment of additional simulation models for the predictive component of the system and

has wider applications for scientific research on social networks and human mobility. In

this dissertation, we consider two aspects of the data warehouse in detail: 1) the design,

which, given the way in which the data is provided, is treatedas a data reduction and

partitioning problem to facilitate efficient access, and 2) a data cleaning problem which

addresses the necessary issues to permit us to assess the meaningfulness of merging

multiple, noisy data sets that, in theory, describe the sameset of interactions. In prac-

tice, we discover that noise in the data introduces redundant records when merged.

The detection and alert system provides an automatic mechanism for initiating the

simulation system without intervention by emergency response managers. This system

identifies potential emergency events in both time and space, allowing the simulations to
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begin shortly after an event and focus on the area affected by the event, significantly re-

ducing the computational costs. We present two clustering algorithms implemented for

the detection and alert system. The first algorithm, a one pass, incremental algorithm,

is not able to detect events in the data; however, given the correct parameterization, it

produces a model of a data set of comparable quality to an offline algorithm. The sec-

ond algorithm, a feature clustering algorithm over a sliding window, allows us to detect

events that results in a spike in call activity, and, when linked with the information used

to generate the data set, gives a spatial location of the event.

1.1 Organization

The remainder of this chapter provides the context for the research presented in this

document. We discuss the motivating application, the Wireless Phone Based Emer-

gency Response System, and it’s underlying concept, DynamicData-Driven Applica-

tion Systems.

The remainder of the document is split into two parts: the first part describes the

historical data source. Chapter 2 provides a background in database management sys-

tems and data warehousing relevant to the development of thehistorical data source.

Chapter 3 discusses the significant aspects of the design of the historical data source,

often motivated by the way the data has been used in research in the past. Chapter 4

describes an approach for matching redundant records introduced due to noise when

merging the various aspects of the cell phone usage data.

The second part describes the detection and alert system. Chapter 5 gives a back-

ground in data clustering relevant to the development of thedetection and alert system.

Chapter 6 describes a novel one-pass incremental clusteringalgorithm. Chapter 7 de-

scribes an approach for event detection using feature clustering over a sliding window
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of time series, each associated with a spatial location. Using this approach, we identify

anomalies in a subset of the time series, which indicate the location of interest.

1.2 Background

1.2.1 The Wireless Phone Based Emergency Response System

The Wireless Phone-Based Emergency Response (WIPER) system is aproof-of-

concept prototype designed to utilize a cell-phone networkas a set of sensors for gath-

ering and presenting data to emergency response managers. The system would monitor

the network data in real time for anomalous activity, run simulations to predict pop-

ulation movement during a crisis, and provide emergency response managers with a

current view of the affected area using GIS tools [56, 57, 78, 79]1.

Existing software tools, such as EVResponse [88] and COMBINED [86] provide

mechanisms for manually gathering information relating tothe current status of a crisis

situation. There is a high cost associated with such systemsin terms of time and money.

Wireless devices and network infrastructure must be purchased to facilitate data collec-

tion, personnel must be trained to use the technology, and personnel must be deployed

to the affected area to collect the data. In contrast, WIPER provides information about

the situation through a pre-existing network, requiring noinvestment in infrastructure

or deployment; however, we gain these advantages at the costof data flexibility.

To counteract the limitations of the data, the WIPER system isdesigned to use ma-

chine learning methods to generate hypotheses about the causes of anomalies detected

in the data. These hypotheses are tested using a dynamic datadriven application system

of simulations. Dynamic data driven application systems (DDDAS) are characterized

by an ability to incorporate new data into running simulations. Research in DDDAS is

1Portions of this section were published in the Proceedings of the 5th International ISCRAM Confer-
ence [67]
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motivated by a need for greater accuracy in complex simulations, e.g. simulations for

predicting weather or wildfire propagation [22]. Once the WIPER system detects an

anomaly, it will start a suite of simulations based on the hypotheses generated. These

simulations will be validated using new data as it becomes available, allowing simula-

tions that do not reflect the real world situation to be discarded.

In addition to the prediction capabilities, WIPER will provide the ability to view the

development of a crisis in real-time, the ability to proposeand evaluate responses in near

real-time, and the ability to collect and analyze streaminginformation from a cellular

communication network. The WIPER system will analyze dynamic data from the cell

phone network in real-time, providing the functionality todetect crises as they emerge.

Responding to events from the anomaly detection system, GIS-based simulations of the

region will be launched and results collated and presented to planners. Finally, the web-

based console will allow emergency response managers to quickly examine the current

state of the environment, see predicted outcomes from the simulations, and evaluate

possible courses of action.

The WIPER system consists of five components, each of which is described briefly

below.

• The Decision Support System (DSS) is a web-based front end through which

emergency response managers interact with the WIPER system.

• The Detection and Alert System (DAS) monitors streaming network data for

anomalous activity. There are various aspects of the cell-phone network data

that may be of interest, including overall usage levels, spatial distribution of the

call activity, and the underlying social network.

• The Simulation and Prediction System (SPS) receives anomaly alerts from the

DAS, produces hypotheses that describe the anomaly, and uses simulations in
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conjunction with streaming activity data to validate or reject hypotheses.

• The Historical Data Source (HIS) is a repository of cell phone network data that

resides in secondary storage. This data is used to determinethe base-line behavior

of the network against which anomalies are detected and to periodically calibrate

and update the DAS.

• The Real-Time Data Source (RTDS) is designed to receive transaction data di-

rectly from a cellular service provider. The RTDS is responsible for handling

requests for streaming data from the DAS, SPS, and DDS and streaming incom-

ing data to these components in real-time.

Figure 1 shows an architectural overview of the WIPER system.The RTDS and

HIS will provide the bridge from the service provider and theWIPER system. The

figure shows the flow of streaming data from the service provider through the RTDS,

possibly by way of the HIS for development and training, and to the remaining compo-

nents. Requests for streaming data from the RTDS occur via SOAP messages. SOAP

messages are also used by the DAS to inform the SPS of potential anomalies in the

streaming data.

In this dissertation, we develop two components of the WIPER system: the histori-

cal data source, in the form of a data warehouse, and the detection and alert system.

1.2.2 Dynamic Data Driven Application Systems

Dynamic data driven application systems (DDDAS) simulations and models make

use of new data (typically provided by a sensor network) as itbecomes available. This

data validates and steers running simulations in order to improve their quality. Dynamic

data driven application systems typically consist of threecomponents: a simulation
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Figure 1.1. WIPER system architecture.

system, a sensor network, and a software system that provides data from the sensor

network to the simulation system as requested [20].

Darema [20] identifies four areas of research that are necessary for the development

of DDDAS applications:

• Application simulations must be able to utilize new data dynamically at runtime.

• Mathematical algorithms that ensure stability and robustness when subjected to

dynamic inputs.

• Systems software provide fault tolerance and a certain level of quality of service

to ensure that the applications are making sufficient progress (several DDDAS

applications must run faster than real time), and that the applications can receive

the streaming data required to improve accuracy.
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• Interfaces to measurement infrastructure, such as wireless sensor networks, for

management of data collection.

There are several DDDAS applications related to the problemof emergency re-

sponse under development. We briefly describe two of these applications below.

The Vehicle-Infrastructure Integration initiative uses aset of roadside and in-vehicle

sensors to monitor traffic flow and evaluate the highway system. The system also pro-

vides emergency detection and response support by detecting changes in flow of traffic,

even in cases where part of the sensor network is lost, and running distributed simula-

tions in support of a dynamic emergency response plan [30].

The iRevive system is intended to help emergency responders in the triage phase of

mass casualty emergencies. The system uses data received through wireless hand-held

computers carried by emergency responders and sensor that monitor patient vital signs

to help the responders determine the order in which patientsare treated [31].

Additionally, DDDAS application systems have been appliedto problems such as

agent based simulation [80], wildfire forecasting [58], simulation of fire spreading in a

building [14], hurricane forecasting [4], and weather forecasting [71].
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CHAPTER 2

BACKGROUND ON DATABASE MANAGEMENT SYSTEMS AND DATA

WAREHOUSING

In this chapter, we provide background information on database management sys-

tems and data warehousing. Database management systems traditionally provide trans-

action processing in a manner that protects data consistency for a particular operation,

a business for instance. In the first section of this chapter,we discuss the elements of

database management systems that are relevant to the implementation of the historical

data source. More recently, database management systems have provided a foundation

for data analysis associated with decision support in businesses. The long term data

required for this type of analysis is stored in a data warehouse, which is discussed in

the second part of this chapter.

2.1 Database Management Systems

Database management systems provide a number of advantagesover using tradi-

tional file storage, including concurrency control, data protection via transaction log-

ging, and efficient data extraction and manipulation in a manner that is transparent to

the user or application developer.
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2.1.1 Introduction to the Relational Model

The relational data models used in database today is first described by Codd in a

seminal paper [18]. The model was introduced as a foundationfor addressing a num-

ber of existing problems in information systems at the time.Several of these problems

related to data dependencies that have the potential to create problems when the under-

lying data storage format changes. These dependencies include those that arise when

information systems rely on a particular data ordering, thepresence of indexes on par-

ticular elements of the data, and the underlying organization of the files storing the

data.

The model describes data in terms of relations. RelationR is a set ofn-tuples where

each element of the tuples are drawn from a set of setsS1,S2, . . . ,Sn which define the

domains of each column, or field. Letr ∈ R be a row of the relation. A row can be

expressed asr = (s1, s2, . . . , sn) wheres1 ∈ S1, s2 ∈ S2, . . . sn ∈ Sn, or, equivalently,

r ∈ S1 × S2 × · · · × Sn. Along with this definition of a relation, certain properties are

specified: each row in the relation must be distinct and no assumptions can be made

about the order in which the rows are stored [18].

With the requirement that each row is distinct, a mechanism for identifying each

row is specified. Aprimary key, defined as a set of fields serves as a unique identifier

for the records in a relation, serves this purpose. The primary key can be referenced

by other relations to link the two relations. Supposesi is a primary key in relationR1,

andR2 is a relation that contains some fieldsj that has the same domain assi and is

used to refer to records inR1. In this case we callsj a foreign key[18]. The definition

of primary and foreign keys provide a mechanism for the decomposition of tables with

compound attributes. The compound attributes can be moved into new relations after

adding a foreign key that maps the new to the corresponding record in the original table
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[18].

2.1.2 Key Constraints

The uniqueness of records, as described by Codd [18], is enforced by akey con-

straint, which is a minimal subset of fields that uniquely identifies atuple in a relation.

More generally, the set ofcandidate keysconsists of all key constraints of a relation,

and asuperkeyis a set of fields that is a super set of a candidate key [72].

More formally, a keys can be defined as a functional dependency. Suppose we have

a relationR and thatX andY are two disjoint subsets of the fields inR. Y is func-

tionally dependentonX if for two instances ofX, X1 andX2 and two instances ofY,

Y1 andY2, X1 = X2 implies thatY1 = Y2. If X andY are a partition of the fields in

R, thenX is a superkey. Functional dependencies aretrivial in the case whereX is a

superset ofY. Suppose that for a functional relationX → Y we remove one attribute in

X. If the functional dependency no longer holds,Y is said to befully functionally de-

pendentonX; otherwise, it is apartial functional dependency. Furthermore, functional

dependencies have the property of transitivity: letX → Z andZ → Y be functional

dependencies, thenX → Y is atransitive functional dependency[25].

2.1.3 Normalization

Database normalization provides a mechanism for eliminating data redundancy,

which, if not eliminated, can lead to several problems:

• Update anomalies: This type of anomaly occurs when an updateto a data item

stored in multiple locations is not applied to all instancesof that data item in the

database. In this case, the database becomes inconsistent.
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• Insert anomalies: This type of anomaly occurs when an instance of redundant

data containing an error is added to the database.

• Delete anomalies: This type of anomaly occurs when the last instance of redun-

dant data is removed from the database because the instance of the entity it is

associated with is removed, even though it is beneficial to retain this data [25].

Normal forms enforce particular relationships between theprimary key of a relation

and the remaining attributes. First through third normal forms provide a progression of

increasingly strict constraints on the nature of functional dependencies present in the

relation: each form must conform to the requirements of all previous normal forms as

well as its own particular constraint. First normal form only requires that each field

of a relation consist of a single item. Second normal form requires that fields that

are not part of the primary key be fully functionally dependent on the primary key.

Third normal form forbids any field not in the primary key frombeing transitively

functionally dependent on the primary key. Boyce-Codd normalform forbids elements

of the primary key from being functionally dependent on any other set of fields [25].

2.1.4 Relational Algebra

Relational algebra is a formal query language on the relational model. It consists

of two types of operations: set-theoretic operations and relation-theoretic operations.

The set-theoretic operations are used to combine relationsusing the standard set opera-

tions: union (∪), difference (−), intersection (∩), and Cartesian product (×). The union,

difference, and intersection operations requireunion compatibilityof the two relations,

i.e. the two relations have the same number of fields and the corresponding fields are

of the same type. The relation-theoretic operations constrain the set and fields that are

returned by the query. The select operator,σi, returns the set ofn-tuples for which a
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condition i holds, and the project,πJ, operator constrains the members of each tuple

returned to the setJ ⊆ {R1,R2, . . . ,Rn} [72, 84].

2.1.4.1 Relational Join Operations

The join operations extend the set operations to pairs of relations that are not union

compatible, assuming that there is some subset of the two relations that are union com-

patible. There are two types of join operations: inner joins, which are analogous to

set intersection; and outer joins, which are analogous to set union. Each join has an

associated boolean condition,θ, that gives the selection criteria for inner joins [25, 72].

Let R = (R1,R2, . . . ,RnR) andS = (S1,S2, . . . ,SnS be two relations. The inner join

of R and S gives a relation (R1,R2, . . . ,RnR,S1,S2, . . . ,SnS) such that some boolean

conditionθ on a union compatible subset of attributes ofR andS holds,e.g. let θ be

R1 = S1 ∧ R2 = S2 where (R1,R2) and (S1,S2) are union compatible attributes. The

inner join,Zθ, is, therefore, defined as a selection on a Cartesian product:

R Z
R1=S1

S= σR1=S1(R × S) (2.1)

[25, 72].

The outer join,[θ, is a super set of the inner join where all of the records inR

andS that are not in the inner join are added to the resulting relation padded with null

values as necessary. Here we derive the relational algebra expression for an outer join

following the description from [25]:

• We already know how to express the inner join:

RZ
θ

S (2.2)
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• We compute set difference to find the elements inRandS that are not in the inner

join:

R− πR1,R2,...RnR

(

RZ
θ

S
)

(2.3)

S − πR1,R2,...,SnS

(

RZ
θ

S
)

(2.4)

• We need to take the union of the two expressions above; however, we must first

make them union compatible with the inner join by padding theset differences

with nS-tuples andnR-tuples populated with null values, represented byω:

(

R− πR1,R2,...,RnR

(

RZ
θ

S
))

×




ω,ω, . . . , ω
︸       ︷︷       ︸

nS




(2.5)




ω,ω, . . . , ω
︸       ︷︷       ︸

nR




×

(

S − πS1,S2...,SnS

(

RZ
θ

S
))

(2.6)

• The outer join is the union of equations 2.2, 2.5, and 2.6:

R[
θ

S=
(

RZ
θ

S
)

∪





(

R − πR1,R2,...,RnR

(

RZ
θ

S
))

× (ω,ω, . . . , ω)
︸          ︷︷          ︸

nS





∪




(ω,ω, . . . , ω)
︸          ︷︷          ︸

nR

×

(

S− πS1,S2,...,SnS

(

RZ
θ

S
))





(2.7)

There are two commonly used subsets of the outer join: the left outer join and right

outer join. The left outer join is the union of the inner join of the two tables and the null
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padded rows of the left table that are not in the inner join:

RX
θ

S=
(

RZ
θ

S
)

∪





(

R − πR1,R2,...,RnR

(

RZ
θ

S
))

× (ω,ω, . . . , ω)
︸          ︷︷          ︸

nnS





(2.8)

The right outer join is the union of the inner join and the nullpadded rows of the right

table that are not in the inner join:

RY
θ

S=
(

RZ
θ

S
)

∪





(ω,ω, . . . , ω)
︸          ︷︷          ︸

nnR

×

(

S− πS1,S2,...,SnS

(

RZ
θ

S
))





(2.9)

[25, 72].

2.1.5 Algorithms

In this section, we describe algorithms commonly used by database management

systems for binary operations within the database, set operations and joins in particular.

These operations require identifying whether two records match on some subset of the

field values, and there are two widely used approaches of accomplishing this: sorting

and hashing. Once it is determined whether the rows match or not, the combined rows

are either added to the result set or discarded, depending onthe particular operation.

To sort relations too large to store in main memory, the data is partitioned into

subsets that will fit into memory, and each of these subsets issorted and stored. These

stored, sorted partitions of the data are then merged, resulting in a fully sorted relation

[25, 72].

Database hashing algorithms utilize two steps: a partitioning step and a probing

step. The partitioning step of the basic hash algorithm builds a hash from the smaller

of the two relations using a hash functionh, or partitions it. The second relation is
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then scanned, hashed, and the original hash is then probed todetermine if there is a

matching record. In cases where the hash of the smaller tablewill not fit in main

memory, a second hash function,hp, is used to partition both relations, ideally into

subsets of approximately uniform size. Using the same hash function to partition both

relations means that matching records in the two relations are found in corresponding

partitions, so the probing step consists of iterating through the partitions, probing for

matching hashes usingh. This requires two passes over the table, but maintains the

O(1) time complexity of the basic hashing algorithm [25, 72].

2.1.6 Concurrency Control

In many cases, it is desirable to permit concurrent updates to a database; however,

if not handled correctly, problems can arise. The main problem is maintaining consis-

tency; and this problem is addressed using the concept of transactions in conjunction

with table locking.

Conceptually, transactions can be thought of as a group of database operations—

select, insert, update, delete—that perform a single logical operation. For example,

suppose we want to move a record from one table to a another: this transaction would

consist of inserting the record into the target table and removing it from the source

table. If either of these operations fails, the goal is not achieved.

Each transaction must maintain the consistency of the database. Since database

consistency is, to a certain extent, application independent, the DBMS cannot be re-

sponsible for this,i.e. it is the responsibility of the application developer. If all trans-

actions maintain the consistency of the database, the DBMS can ensure consistency by

ensuring that each transaction is atomic: either every action in the transaction is com-

pleted or no action is completed. After all components of a transaction are executed,

15



the transaction is finalized with a “commit” operation. Oncethe transaction has been

committed, it must persist in storage: a property called durability. Finally, each trans-

action must execute in isolation; that is, it cannot be affected by any other transaction

that is running concurrently. [72]

Isolation of transactions is directly related to the issue of schedule serializability.

Suppose there is a set of transactions that are run concurrently. This set of transactions

is said to be serializable if the result of the concurrent execution is guaranteed to be

equivalent to the result of one of the possible serial execution schedules for the set of

transactions, without any guarantee of the result matchinga particular serial schedule.

[72].

There are three issues that can arise when concurrent execution is allows without

ensuring serializability:

• Dirty read: uncommitted data from another transaction is read.

• Non-repeatable read: a commit by another transaction results in consecutive

reads of the same data item producing different values.

• Phantom read: a commit by another transaction results in twoconsecutive execu-

tions of the same query to produce different set of rows [87].

Two phase locking can be used to guarantee serializability.In this scheme, each

data item can be locked in one of two ways: 1) a shared lock is obtained to read a value

and allows other transactions to also obtain shared locks and 2) an exclusive lock must

be acquired to write an object and can only be obtained when the data item is not locked

by any other transaction. Once an exclusive lock is held, no additional locks, shared

or exclusive can be acquired on the data item. During the firstphase of the two phase

locking protocol, all needed locks are obtained, no locks are released, and no lock is

16



downgraded from exclusive to shared. In the second phase, all locks are released, no

locks are obtained, and no locks are upgraded from shared to exclusive [72].

An alternative approach, and the approach relevant to the work presented in this

dissertation, is multiversion concurrency control. In this case, some history of values

for each data item is maintained. Each transaction, upon initiation, is labelled with a

timestamp that indicates when execution began. When a value is used, the most recent

value of the data item that was committed before the transaction began is read. Write

operations are blocked if there is a shared lock on the data item held by a transaction

started more recently [72].

Some database management systems use multiversion concurrency control but do

not ensure serializability by default,e.g. PostgreSQL. Serializability is the highest of

four isolation levels, and for each increase in isolation level, one additional anomaly of

concurrent access is prevented:

• Read Uncommitted: all anomalies are possible.

• Read Committed: prevents only dirty reads.

• Repeatable read: prevents dirty and unrepeatable reads.

• Serializable: prevents all anomalies.

By default, PostgreSQL uses the read committed isolation level, which, in general, is

not a problem for our application; however, it does raise onedata loading issue which

we describe in Chapter 3 [87].

2.2 Data Warehousing

Data warehouses serve a fundamentally different function than databases. Databases

are typically used to store operational data that must remain up to date; data warehouse
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store historical data.

2.2.1 Warehouse Design

In his canonical work on data warehousing, Inmon [45] describes several important

elements of warehouse design, including granularity, partitioning, and normalization.

According to Inmon, the most important of these is the granularity of the data. The

granularity refers to the level of detail of the stored data;and Inmon provides a very

concise explanation regarding the importance of choosing the correct granularity:

Granularity is the single most critical design issue in the data warehouse
environment because it profoundly affects the volume of data that resides
in the data warehouse and the type of query that can be answered [45].

Data with higher granularity can be store in less space; however, fewer types of results

can be obtained from the data [45].

Another significant aspect of warehouse design is data partitioning. Without par-

titioning, certain tables in the warehouse may become so large that they are no longer

manageable with respect to indexing, sequential scans, anddata reorganization. There

are two approaches to data partitioning: system level and application level. In system

level partitioning, the partitioning of the data is handledby the database management

system. In application level partitioning, the partitioning is handled by the applications

developed for manipulating the warehouse and in this case the partitioning scheme is

not represented in the database management system in any way. Generally, the latter

is preferred because it is the more flexible approach. The main drawback of the sys-

tem level partitioning is that, often, only a single data definition is permitted for the

partitions of a particular relation [45]. For example, in PostgreSQL table partitioning

is accomplished by creating a root table that will contain norows and creating a set of

tables that inherit the fields of this table. Querying the root table accesses the rows in
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the children. Since all tables in the partitioning for a single logical table represented

by the parent, they must have the same set of fields. The elements of the partition can,

however, be indexed independently. Additionally, each element of the partition can be

defined with field constraints to ensure that each row is inserted into the proper parti-

tion. These constraints can also be leveraged by the query planner to exclude scans of

partition elements that do not contain any relevant records[87].

The final aspect of warehouse design that we will discuss is that of data normal-

ization vs. denormalization. The trade-off to consider in this case is that of storage

requirements and I/O cost. The issues of update and delete anomalies are not relevant

since, once populated, the warehouse is a read-only data repository. Insertion anoma-

lies can be handled by the data loading applications. Data normalization reduces the

redundancy in the data and, therefore, reduces the volume ofstorage required for the

data. The cost of the reduction in storage requirements comes when the data must be

retrieved: the records must be re-assembled from various tables, and accessing each ta-

ble incur I/O costs. In some cases, two levels of normalization are used to reduce both

storage and I/O costs. Data that is accessed often remains in a less normalized form and

data that is rarely accessed is stored in a more normalized form [45].
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CHAPTER 3

DESIGNING A DATA WAREHOUSE FOR SOCIAL NETWORK AND HUMAN

MOBILITY RESEARCH

3.1 Introduction

In this chapter, we describe a data warehouse for complex network and human mo-

bility research. The warehouse currently stores 14 months of call data from a cellular

service provider and continues to grow.

Motivated by difficulties in dealing with the flat files provided by the service provider

and the fact that researchers often perform the same set of cleaning steps before using

the data, we move the data into a database management system,do general cleaning

of the data, and organize the records using a star schema and table partitioning. Our

goal is to provide a repository for efficient extraction of subsets for the data for specific

research projects through simple SQL queries.

This chapter is organized as follows: section 3.2 discussesrelated work in data or-

ganization, section 3.3 describes the design of the warehouse, section 3.4 describes the

implementation of the warehouse, including a description of the flat files from which the

data is obtained (section 3.4.1), the data validation and loading process (section 3.4.2,

and merging and partitioning of the usage table (sections 3.4.5 and 3.4.6, respectively).
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3.2 Related Work

Traditionally, researchers in the sciences have relied on standardized file formats

for organizing data and achieving data independence. For example, the Flexible Image

Transport System (FITS) is a data format developed for sharing images from telescopes.

The format consists of a header that contains the information about the data, the meta-

data, required to effectively use the images along with the data itself [92]. The NetCDF

file format was developed for a similar purpose in the atmospheric sciences community.

NetCDF is an extension of NASA’s Common Data Format and utilizes Sun’s eXternal

Data Representation to store the data in a machine independent manner [73]. The Hier-

archical Data Format (HDF) is a library for sharing technical and scientific data using

a “self-describing” file format [29].

A major drawback of these early file formats is the lack of a powerful search func-

tion. As the volume of available data increases, the existing functionality to find the

data items of interest becomes prohibitively expensive [36].

The lack of adequate search functionality also arises in bioinformatic databases; the

INTERACT database for the study of protein interactions was developed in response

to this issue as well as the problem that protein interactionis spread over a number of

distinct databases [24]. Development of the INTERACT database was motivated by the

difficulty in extracting protein interaction data from the yeastprotein database (YPD)

[43] and the yeast genome database of the Munich InformationCenter for Protein Se-

quences (MIPS) [61]. The Yeast Protein Database (YPD) contains manually curated

documents about each protein found inSaccharomyces cerevisiae, and it is in these

documents that the interaction data is found [43]. The Munich Information Center for

Protein Sequences (MIPS) yeast genome database also contains information about the

proteins found inSaccharomyces cerevisiae, but is organized by gene name [61]. The
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INTERACT database contains the data from the MIPS database along with data pro-

vided by scientists and data from the literature organized in such a way that researchers

studying protein interactions can readily obtain relevantdata. The design was devel-

oped in consultation with potential users.

In the bioinformatics community, the data has become spreadacross a large number

of databases. It is often desirable to access data distributed across multiple locations;

consequently, three techniques have arisen to accomplish this: 1) link driven federa-

tion, 2) view integration, and 3) data warehousing. Link driven federation consist of

links in the results of one data source that direct users to additional information. View

integration provides a query system that, in turn, queries aset of remote sites, receives

and processes the results, and presents an integrated result to the user. A data ware-

house stores the data from the remote sites at a central location [21]. More recently,

several additional warehousing systems have been developed, including EnsMart [48],

BioWarehouse [53], and the Biochemical Network Database (BNDB)[52].

Additionally, very large databases are found in the areas ofastronomy and high en-

ergy physics. As of 2005 the Sloan Digital Sky Survey (SDSS) had approximately 50

TB of raw image data. From this data, 1.6 TB of catalog data derived from the raw

images, organized, and stored in an database and made available online through Sky-

Server via a number of query mechanisms [1, 62]. The storage requirements for high

energy physics research are even greater. As of 2005, the BaBardatabase, developed at

CERN, contained approximately 10 billion data items and required 1.3 PB of storage.

The data is accessed through the metadata, which is heavily indexed to improve access

efficiency [6].

The system we describe in this chapter merges data from multiple sources in a single

company and organizes the data to allow efficient access.
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3.3 Warehouse Design

In this section, we describe the design of the warehouse. We describe the data set

and the database schema used to organize the data in the database management system.

Additionally, we describe our data partitioning approach that, in many cases, prunes

irrelevant rows from the table scans.

3.3.1 Data Overview

Our warehouse consists of three major tables: the usage table describes service

usage on the network, the customer table which describes thecustomers of the service

provider, and the antenna table which provides location information associated with

the towers owned by the service provider. Note that all user identifiers have been de-

identified by the service provider. Tables 3.1, 3.2, and 3.3 describe the fields of the

usage, customer, and antenna tables, respectively.

Each record in the usage table can be uniquely identified by the time at which the

service is activated, the de-identified account initiatingthe service, the de-identified

account receiving the service, and the type of service beingaccessed; therefore, of

the fields in the usage table,start time, call from, call to, service form the

primary key. Thecall from and call to fields can be linked to additional data

when they contain values corresponding to current individual customers of the com-

pany. Theantenna from andantenna to fields can be linked to geographical infor-

mation found in theantenna table.

For simplicity, we limit the discussion of the customer datato the fields that are

relevant to the design; specifically, the fields that allow usto identify active accounts
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TABLE 3.1

DESCRIPTION OF THE FIELDS IN THE USAGE TABLE

Field name Description

start time The time the service is activated

call from The account initiating the service

call to The account receiving the service

service The type of service being accessed,e.g.call, SMS

destination code A company generated code providing additional information
about the recipient

duration The length of time the service is in use

cost The amount charged to the account for the usage instance

antenna from The antenna the initiating device is connected to

antenna to The antenna the receiving device is connected to

of the service provider in the usage data: the activation date, the day the account was

opened, the disconnect date, the day the account was closed or null if the account is still

open, and the service type, which indicates whether the account is prepaid or postpaid.

We use these fields to partition the usage data based on whether the caller and recipient

have active accounts with the service provider.

Similarly, we link the antenna fields in the usage data to a table that gives loca-

tion information for the company’s towers. Each antenna is uniquely identified by an

integer ID. For many of these antennas we have the location ofthe tower (latitude

and longitude). We also have GIS data describing various features of the geographical

area covered by the phone data that we include in tables to facilitate spatial queries.

The most prominent of these features is a set of shape files that describe the postal
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TABLE 3.2

DESCRIPTION OF THE FIELDS IN THE CUSTOMER TABLE

Field Name Description

effective date The month in which the record for the account was last up-
dated.

phone id The de-identified phone number identifying the account.

activation date The date on which the account was connected.

disconnect date The date on which the account was terminated. This field is
NULL for accounts that are active on the effective date.

service type The type of payment plan for the account: prepaid or post-
paid.

codes. From these values, we add additional fields to the antenna table: thetower field

uniquely identifies each distinct antenna location, thetower point is a shape object

that contains the geographic point of the tower, thepostal code andpostal code

points identify the postal code containing the tower, and the city identifies the city in

which the tower is located.

The customer and antenna tables are relatively small; however, the usage table con-

tains at least 1 billion records per month. In the next section, we describe how the data

is partitioned into subsets of manageable size.

3.3.2 Usage Table Partitioning

We partition the usage table for two reasons: 1) there are well known performance

benefits to partitioning the fact table of a data warehouse [44], and 2) there are subsets

of the data that the researchers are likely to want that can bepre-partitioned to eliminate

25



TABLE 3.3

DESCRIPTION OF THE FIELDS IN THE ANTENNA TABLE

Field Name Description

antenna An integer uniquely identifying the antenna.

tower An integer identifying the tower on which the antenna
is mounted.

latitude The latitude of the tower.

longitude The longitude of the tower.

tower point A geometry field containing the point at which the
tower is located.

tower voronoi cell A geometry field containing the boundary of the cell of
a Voronoi diagram containing the tower.

postal code The postal code containing the tower.

postal code shape A geometry field containing the boundary of the postal
code containing the tower.

city The name of the city in which the tower is located.

the need to perform sequential scans or joins over the entireset of usage records.

We look to past publications using the dataset and conversations with the researchers

to develop the partition hierarchy. In practice, the data isoften filtered along two axes:

1) service type and 2) the relationship of the accounts with the service provider.

In most cases, the only services of interest are voice calls and SMS: Onnelaet al.

[63] use only voice calls in their study of graph robustness with respect to the removal

of ties of varying strength. Gonzálezet al. [34] and Wanget al. [91] use only voice

calls SMS in their studies of human mobility and the spreading of viruses to mobile

phones, respectively. We, therefore, partition the records into three tables based on
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Figure 3.1. The service hierarchy.

service: one table contains only voice call records, a second table contains only SMS

records, and a third table contains the records of all other services. Figure 3.1 illustrates

this portion of the hierarchy.

Additionally, it is often desirable to partition the records based on whether the caller

and recipient are current customers of the company because the data is most complete

for this set of accounts. Onnelaet al. [63] use only records where both the caller

and recipient are current customers of the company so that they have the complete call

activity for each node in the network. In human mobility studies, it may be sufficient

to restrict only the caller to current customers of the company and impose no constraint

on the recipient, depending on the role of the social networkin the study.

We partition the usage data into 4 groups based on whether thecaller and recipient

are current customers of the company based on the data available in the customer table:

• in-in: both the caller and recipient are current

• in-out: only the caller is a current customer

• out-in: only the recipient is a current customer

• out-out: neither the caller nor the recipient are current customers

We also partition the usage records based on whether “in-network” users have pre-

paid or postpaid accounts. Figure 3.2 illustrates this portion of the hierarchy for the
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voice call service. Identical hierarchies exist for the “SMS” and “other” branches of the

usage hierarchy.
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3.3.3 Schema

We use a variant of the star schema for the warehouse. The starschema consists of

two components: the fact table, which contains a history of measurements taken over a

period of time, and the dimensional tables, which contain descriptive information about

elements of the fact table. The elements in the fact table arerelated to records in the

dimensional table using foreign key constraints [50]. In our warehouse, the usage table

is the fact table and the customer and antenna tables are dimensional tables. Figure 3.3

shows the tables organized in a standard star schema.

Unfortunately, the dimensional model is problematic for our warehouse because the

foreign key constraint requires that for each value in a fieldassociated with a dimen-

sional table,e.g.call from, there must be a corresponding record in the dimensional

table. Our records include calls to and from phones owned by customers of other com-

panies, so we do not have customer records for most of the values that appear in the

call from andcall to fields of the usage table due to the market share of the ser-

vice provider. One possible solution is to pad the customer table with empty records;

however, this would more than double the size of the table without adding any new

data.

Alternatively, we can leverage the fact that the usage tablehas been partitioned

based on whether thecall from andcall to fields are in the customer table. For

each partition, we add only the appropriate foreign key constraints. Figure 3.4 shows

the modified star schema.

3.4 Warehouse Implementation

To build the warehouse, we validate the fields of each row, load the data into tem-

porary tables, and use the database management system to transform the data into its
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Figure 3.3. The standard star schema for the warehouse. The usage table
records the facts of the warehouse and references the customer to provide
further information about the subscribes and the antenna table to provide

additional location information.

final form. In this section, we describe these processes.

3.4.1 Data Sources

A company provides the data using a variety of file types. Three of these file types

contain the usage data: call, interconnect, and call recorddata (CDR). The call and

interconnect files provide billing information, such as theduration and cost, of each

use of a service. The CDR files contain location information for each call and SMS.

The customer data arrives after each month in 4 files containing current prepaid ac-

counts, current postpaid accounts, prepaid accounts that have been deactivated during

the month, and postpaid accounts that have been deactivatedduring the month. In ad-

dition to these data sets, we have location data for the antennas that are not updated.

Figure 3.5 shows how the source files are merged into the usageand customer tables.

Details of this process are provided in the next section.
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Figure 3.4. The partitioned fact table schema. The fact table is partitioned
based on whether the caller and recipient are customers of the company and
foreign keys are only applied in cases where there is a corresponding record
in the customer table,i.e. in cases where the caller or recipient is a current

customer.
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Figure 3.5. Overview of the data source files

3.4.2 Data Loading

The data loading process consists of three steps: 1) record validation, 2) record

insertion, and 3) user string replacement.

Validating and transferring the data from the file server to the database server is

very time consuming; however, we are able to accelerate the process via parallelization.

Each record is validated using a perl script which first splits each record into an array

and then uses regular expressions to ensure that the fields are in the required form. This

allows us to catch erroneous records that would cause the bulk load to terminate and

set them aside for further cleaning. Using a single thread weare able to validate and

transfer 4 GB/ hour of data from the file server to the database. The machine being

used for validation has 8 cores, so rather than serially validating all of the files for a

month, we validate them concurrently, loading them into temporary tables, and finally

merging these tables. With this approach, we’ve achieved validation and transfer rates

of up to 27 GB/ hour using 7 threads.

Once the data is in the database, we replace the hash strings,the de-identified user
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identifiers provided by the company, with integers, eliminate duplicate rows that appear

in the raw data, and separate rows with non-unique primary keys for further analysis.

3.4.2.1 Hash Replacement

Before releasing the data, the service provider de-identifies the phone numbers us-

ing a hash function. To reduce storage requirements and the time required for compar-

ison operations, we replace the 27 character strings with a 4byte integers. We keep a

table, a hash map, that contains a (hash, integer) pair for each hash value we encounter

in loading the data. For each file we load, we identify the new hashes, update the hash

map, and replace each hash value with the corresponding integer.

In this section, we first define the relation that maps hashes to integers; we then de-

scribe our approaches for updating this map and replacing the hashes in the warehouse

tables, including proofs of correctness where necessary.

Let H = (H, I ) be the hash map relation whereI is the integer representing hash

H such thatH is a functionH : H 7−→ I . By definition, eachH maps to a unique

I . This constraint ensures that the hashes will be replaced ina consistent manner. We

leverage the DBMS to enforce this constraint using a table where the hash field is the

primary key, requiring each row to have a unique hash value, and the ID field is an

auto-incrementing integer. Table 3.4 shows the PostgreSQLdefinition of this table.

For each file we process, we need to add previously unseen hashes to the hash map.

To accomplish this, we insert the items in the set difference between the hashes in the

usage and hash map tables:

πHu

(

σ (U)
)

− πH
(

σ (H)
)

(3.1)
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Figure 3.6. Activity diagram for validating the data contained the flat files and
loading these into the DBMS. Most of the process can be parallelized, with

the exception of the hash replacement. The PostgreSQL concurrency
mechanism does not sufficiently handle our case, so we must use explicit
table locks to insure that the constraints of the hash map arenot violated.
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TABLE 3.4

THE HASH MAP TABLE

Column Type Modifiers

hash text PRIMARY KEY

id integer NOT NULL default nextval(’hash map id seq’::regclass)

The PostgreSQL query evaluation mechanism computes this set difference via sorting,

requiringO
(
(|U| + |H|) log(|U| + |H|)

)

time. Alternatively, we can obtain the set differ-

ence using a left join,

πHu

(

σI=ω

(

σHu=H(U × H) ∪
((

U − πU.∗
(

σHu=H(U × H)
))

× (ω,ω)
))
)

(3.2)

Since PostgreSQL uses hash joins, this query computes the set difference inO(|U|+ |H|)

time.

We now show that the left join query in equation 3.2 is equivalent to the set dif-

ference query in equation 3.1. First, we establish that in relational algebra selection is

distributive over set unions. We then use this result to showthe equivalence.

Lemma 1. Selection(σ) is distributive over union(∪), i.e.

σθ(R1 ∪ R2) ≡ σθ(R1) ∪ σθ(R2) (3.3)

Proof. To prove this equivalence, we show that for an elementr,

1. r ∈ σθ(R1 ∪ R2) =⇒ r ∈ σθ(R1) ∪ σθ(R2),

2. r < σθ(R1 ∪ R2) =⇒ r < σθ(R1) ∪ σθ(R2),
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3. r ∈ σ(R1 ∪ R2) =⇒ r ∈ σθ(R1) ∪ σθ(R2), and

4. r < σ(R1 ∪ R2) =⇒ r < σθ(R1) ∪ σθ(R2).

Suppose a rowr ∈ σθ(R1 ∪ R2). Thenr satisfiesθ andr ∈ R1 or r ∈ R2. Therefore,

r ∈ σθ(R1) ∪ σθ(R2). Now suppose that a rowr < σθ(R1 ∪ R2). There are two cases to

consider: 1)r does not satisfyθ, in which caser < σθ(R1) andr < σθ and 2)r < R1∪R2,

in which caser < R1 andr < R2. In either case,r < σθ(R1) ∪ σθ(R2). Thus,

r ∈ σ(R1 ∪ R2) =⇒ r ∈ σθ(R1) ∪ σθ(R2) (3.4)

and

r < σ(R1 ∪ R2) =⇒ r < σθ(R1) ∪ σθ(R2). (3.5)

Now suppose rowr ∈ σθ(R1) ∪ σθ(R2). Thenr satisfiesθ andr ∈ R1 or r ∈ R2.

Thus,r ∈ σθ(R1 ∪ R2). Now suppose thatr < σθ(R1) ∪ σθ(R2). There are two cases

to consider: 1)r does not satisfyθ, in which caser < σθ(R1 ∪ R2) and 2)r < R1 and

r < R2, which caser < R1 ∪ R2. In either case,r < σθ(R1 ∪ R2). Thus

r ∈ σθ(R1) ∪ σθ(R2) =⇒ r ∈ σθ(R1 ∪ R2) (3.6)

and

r < σθ(R1) ∪ σθ(R2) =⇒ r < (R1 ∪ R2). (3.7)

Since expressions 3.4, 3.5, 3.6, and 3.7 are true, we know that σθ(R1 ∪ R2) ≡

σθ(R1) ∪ σθ(R2). �

Theorem 1. LetU = (Hu) andH = (H, I ) be relations. The set difference

πHu (U) − πH (H) (3.8)
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is equivalent to the left join

πHu

(

σI=ω

(

σHu=H(U × H) ∪
((

U − πU.∗
(

σHu=H(U × H)
))

× (ω,ω)
))
)

(3.9)

Proof. To prove this equivalence, we start with the expression for the left join and

derive the set difference expression. First, we distribute the selection onI = ω:

σI=ω

(

σHu=H

(

U × H
)

∪
((

U − πU.∗ (U × H)
)

× (ω,ω)
))

(3.10)

Since none of (H, I ) ∈ H and Hu ∈ U can beNULL (H and Hu are at least part of

the primary key and there is an explicit constraint that prevents I from beingNULL),

σI=ω(σHu=H(U × H)) = ∅. Thus, we can drop the left hand side of the union to get

πHu

(

σI=ω

((

U − πHu (σU.∗(U × H))
)

× (ω,ω)
))

(3.11)

This expression gives the set difference between the values ofHu ∈ U and the values

of Hu that are also in the fieldH ∈ H. Therefore, if ah is in the result set of the above

query, thenh ∈ πHu(U) andh < πHu(U) ∩ πH(H), thush ∈ πHu(U) − (πHu(U) ∩ πH(H)) ≡

πHu(U) − πH(H). �

PostgreSQL uses, by default, the read committed isolation level, so there is nothing

to prevent phantom reads, the case where a commit by one transaction changes the set

of rows that would be produced by a select statement in another transaction. A problem

arises when a new hash value appears in two concurrent insertions: the second insertion

of the value, which is based on the result of a select statement that is no longer valid,

will violate a uniqueness constraint on the hash field required to ensure that the hashes

map consistently to a single integer. Since PostgreSQL doesnot block the second hash
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map update query, we must explicitly obtain an exclusive lock on the entire hash map

table when updating it. Figure 3.6 shows the activity diagram for validating and loading

the data in parallel, including the hash map table locks.

To replace the hashes with integers, we use an inner join. Since each unique hash

maps to a unique integer, we replace the hashes using an innerjoin,

πI

(

U Z
Hu=H

H
)

, (3.12)

without introducing duplicate records.

Once the hashes are replaced, we proceed with merging the data into unified tables.

3.4.3 The Customer Table

Each month of customer data is loaded from four files. Two files, prepaid and

postpaid, identify accounts that have been closed during the month. Two similar files

identify active accounts. There is significant overlap among the fields in these files, so

we merge them into a single table.

Only a small number of the records for the current users change from month to

month; therefore, we considered using a single customer table with an additional field

indicating the effective date of the record. In this case, we only add records tothe

customer data when at least one field for a customer has changed, including account

termination or activation. To retrieve the churn data for a given month,m, we select

the record for each customeri with the latest effective datee such thate ≤ m. Let

C = (E, I , . . . ) be our customer relation. The query for selecting the customer data for

monthm is

σ(E,I )∈πmaxE,I (σE≤M(C)) (C) (3.13)
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This organization results in a tradeoff: we reduce the storage requirements; however,

queries on this data are more computationally expensive dueto the join required to

extract a particular month of data.

Beyond the issue of the time-storage trade-off, this organization only works if the

data is clean, which it is not in this case. The problem is thatany missing or spurious

records propagate to later months. We discovered that, due to this propagation, the

data yielded several million additional users for the latermonths than there should have

been1.

3.4.4 The Antenna Table

The antenna data was compiled, cleaned, and loaded into a PostgreSQL database by

Schoenharl [77]. The antenna data initially consisted of anantenna ID, the latitude and

longitude of the tower on which the antenna is mounted, and the postal code in which

the tower is located.

We use PostGIS, an extension of PostgreSQL that implements the OpenGIS stan-

dard, to represent spatial objects in the warehouse. PostGIS provides a geometry field

type that stores spatial objects, such as points and polygons. It also provides efficient

spatial functions that can be included in SQL queries such ascontains, a boolean

function that returns true if one spatial object is completely within the bounds of an-

other, andtouches, a boolean function that returns true if two spatial objectstangen-

tially intersect.

We added some additional fields to this table from other sources, including a geom-

etry object giving the borders of the postal codes (also froma table built by Schoenharl

[77]), a geometry field containing a point giving the location of the tower, and the shape

of the Voronoi cell in which the tower is located (this Voronoi diagram has been used

1The spurious users were discovered by Dr. Jim Bagrow and Dashun Wang.
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for a variety of purposes in [34, 77]).

3.4.5 The Usage Table

The call, interconnect, and CDR tables are combined to form the usage table. The

call and the interconnect call files contain the duration andcost of each call; therefore,

we refer to these as billing data. The CDR files contain the antennas that each call is

routed through and provide coarse location data. The primary key of the usage files

consists of the start time of the call, the ID of source phone,the ID of the receiving

phone, and the service used. Since the start time of the call is measured to the second,

we assume that these fields form a unique identifier for each record. We, therefore, use

this primary key to match the call records among the three filetypes.

3.4.5.1 The Billing Table

The billing data consists of two data sets that are, in theory, disjoint. The call data

consists of records of service usage by customers of the company and the interconnect

data contains calls and SMS received by customers of the company from people who

are not customers.

We find a small number of cases where calls are recorded in boththe call and inter-

connect data. This appears to be an artifact of the way in which the customer’s status is

determined during the generation of these files, and we describe how we deal with this

situation in the next section. For the time being we include the record from the call file

in the billing table and put the record from the interconnectfile into a separate location.
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Figure 3.7. Merging the call and interconnect tables to produce the billing
table.

3.4.5.2 The CDR Table

The CDR data contains the antennas through which each voice call and SMS is

routed. There are four types of records in the CDR data: originating and terminating

records for voice calls and SMS messages. The MOC and MTC records give the tower

information for the caller and the recipient, respectively, for a voice call. Similarly,

the SOM and STM records give the tower information for the sender and recipient,

respectively, of an SMS message.

The MOC and MTC records are merged using a full outer join, matching records on

start time, call from, andcall to (all these records describe usage of the voice

service).

The SOM records are generated at the time the SMS is sent and the STM records are

generated at the time the SMS is downloaded by the recipient.Therefore, the SOM and

STM records cannot be merged into a single record. The SOM records are inserted into

the CDR table with the antenna number in theantenna from field and aNULL value
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in theantenna to field. The STM records are inserted into the CDR table withNULL

value in theantenna from field and the antenna number in theantenna to field.

3.4.6 Data Partitioning

We leverage the table inheritance functionality of PostgreSQL to implement the

partitioning of the usage table. Only the leaf tables in the hierarchy contain records; the

tables at higher levels are formed by concatenating a subsetof the leaves. The tables at

the service level of the hierarchy are constrained by service. With these constraints, the

query planner can prune irrelevant service subtrees (voice, SMS, and other) based on the

service values specified in theWHERE clause of a SQL statement. Similarly, thestart

time field in each leaf table is constrained to only allow records from a particular

month, allowing the query mechanism to omit tables outside the start time range

specified in the query from the database search.

Separating the records based on service is straightforwardand can be accomplished

by examining the service field; however, partitioning the records based on whether the

caller or recipient is a customer of the company is more complicated. We merge the

usage and customer tables using a left join on thecall from field and again on the

call to field:

(U X
UCf =CC

C) X
UCt=CC

C (3.14)

This produces a table that gives the activation and disconnect dates for the caller and

recipient in each row of the usage table. We then process eachrow in the resulting table

and place it into the correct partition based on theservice field and the following

rules for determining whether the account is part of the company’s network or another

network:

• If the start time is after theactivation date and it is either before the
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disconnect date or there is nodisconnect date, the field corresponds to a

current customer. We use theservice type field to determine if it is a prepaid

or a postpaid account.

• If thestart time is before theactivation date, after thedisconnect date,

or if there is noactivation date, the field corresponds to a non-customer.

We also implement views to provide data in a format compatible with applications

written for the original data files. There are simple rules that we can use to determine

which file types—call, interconnect, and CDR—a record, or partof a record, appears

in:

• Records from the call files have values in the destination codeand cost fields.

• Records from the interconnect files have values in the cost field and areNULL in

the destination code field.

• Records from the CDR files have a value in at least one ofantenna from or

antenna to.

Queries performed on these views will, like the usage table they are generated from,

utilize the table constraints to prune unnecessary leafs from the set of table scans.

3.5 Summary and Conclusion

In this chapter, we have described the design of a large data warehouse for social

network and human mobility research. We have leveraged the PostgreSQL database

management system to facilitate data cleaning and organization. We sped the data

loading process by showing we can use a left join to compute set difference in linear
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time rather than using the SQL set operations which requireO(n lg n) time. Addition-

ally, we parallelized the process where possible and used manual table locks where the

PostgreSQL concurrency mechanisms were insufficient.

The design of the warehouse is based on actual use cases for the data and provides

a substantial improvement over the use of flat files. The partitioning scheme, in many

cases, allows many records irrelevant to particular research projects to be ignored alto-

gether and yields a straightforward variant of the star schema that can handle the case

where there are no dimensional records for most values in a field of the fact table.

It should be noted that only minimal data cleaning is performed as part of the data

loading process, and the warehouse described only providesdata storage. At this point,

no analysis tools are provided. In the next chapter, we perform additional data cleaning

to eliminate redundancy introduced when merging the elements of the usage table.
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CHAPTER 4

AN APPROACH FOR MERGING NOISY DATA IN A SCIENTIFIC DATA

WAREHOUSE

4.1 Abstract

In this chapter, we examine the consequences of naively merging the CDR and

billing records as described in the previous chapter. We show that there is a time syn-

chronization issue between the MOC and MTC records in the CDR data and, to a lesser

extent, between the call and CDR data that introduces redundancy into the data set

when merged. We describe and evaluate an approach for merging the data that corrects

for the redundancy.

4.2 Introduction

When first merging the CDR data, we discovered that the number ofcalls for which

we have both the MOC and the MTC records was significantly smaller than we expected

(around 20%). There are several reasons why only one of the MOC or MTC record may

be present. Suppose the caller or the recipient is either using a landline or outside the

coverage area of the service provider. In this case, one of the records for that call is

missing. We can account for some of this by including only records where the caller

and the recipient are customers of the service provider. This eliminates all landlines and

calls to customers of other service providers, who are likely using towers owned by that
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company but does not eliminate all cases where only one of therecords is present (data

will be missing for roaming users), we expect it to significantly improve the fraction of

transaction for which we have both records. Unfortunately,we discover that the rate of

matching is still fairly low (around 40%).

In this chapter, we show that the low matching rate is due to noise in the timestamp

of the records and that merging the tables naively results inredundant records in the

tables. We also present an approach for reducing the effect of this noise by merging

MOC and MTC records that likely describe the same call. In section 3, we consider

related work in the areas of record linkage, redundancy elimination, and event correla-

tion. Section 4 describes our approach for merging the tables in the presence of noise.

We conclude with the results of the merge in Section 5 and discussion in Section 6.

4.3 Related Work

Redundancy in data can arise in several different ways. It can be the result of merg-

ing databases from different sources into a single warehouse, or it can arise from mul-

tiple observations of the same event in a sensor network. Several approaches have been

developed to address this problem, including record linkage, redundancy elimination,

and event correlation.

Record linkage is an approach used in building data warehouses that matches records

from different sources, which may have small errors in the key fields, using only evi-

dence in the records themselves to determine whether two records represent the same

entity.

Fellegi and Sunter [27] formalize a theory of record linkagewhere they assume that

two sets of records are generated by two distinct processes.In some cases, there is a

record in both sets that correspond to the same entity, and inother cases an entity is
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only represented in one set. Formally, let the two sets beL andR. The cross product of

the two sets,

L × R = {(l, r) ; l ∈ L , r ∈ R}, (4.1)

can be partitioned into two sets: the entities that exist in both sets, the matched records,

are

M = {(l, r) ; l = r, l ∈ L , r ∈ R}, (4.2)

and the unmatched records are

U = {(l, r) ; l , r, l ∈ L ,R ∈ R} (4.3)

The field values of the records provide the evidence requiredto match a pair of records,

or not, using a linkage rule that assigns a probability for each decision based on the

value of some vector function on a pair of records.

Herńandez and Stolfo [42] describe a sorted-neighborhood method for merging

records from multiple databases. The approach operates under the assumption that

keys can be identified for each record such that errors in the field values do not signif-

icantly affect the order of the records when sorted by the key. Once a key is identified,

the records are merged into a single list and sorted by the key. A sliding window of

w records is moved over the list and each record that is added tothe sliding window

is compared with all other items in the window according to some domain specific

equational theory to identify matches.

In sensor networks, redundancy elimination is often used toincrease the life of

the network, which typically consists of cheap disposable components with limited

resources that are discarded when their batteries are exhausted. Typically, these ap-

proaches rely on knowing the location of each sensor relative to the others as well as
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their coverage areas.

Carbunaret al. [11] describe an approach for identifying nodes who contribute no

additional area to the coverage of the sensor network so thatthese nodes can be shut

down and reactivated later after the batteries of other nodes sensing the same area are

exhausted to extend the life of the network. The approach relies on knowing the position

and sensing range of each node.

Even if the sensors do not have overlapping coverage areas, they may detect the

effects of the same phenomenon,e.gan increase in temperature due to a fire. This re-

dundancy may be detected by computing the correlation of themeasurements collected

by neighboring sensors. Vuranet al. [90] describe an approach for leveraging this

redundancy to reduce the bandwidth required to transmit data from the sensors to the

base station which in turn reduces the power used to transmitdata, extending the life of

the network. In cases where the data collected by a sensor network is not continuously

sent to a base station, but is instead collected periodically, Tilak et al [89] describe

an approach for using correlation among sensor measurements to increase the storage

capacity of the sensor network.

In networked systems, event correlation is used for fault localization. Events refer

to conditions that arise when a problem is present in the network and, often, a sin-

gle problem with the system, a fault, produces a number of events as it propagates

through the network. The goal of event correlation is to locate faults by identifying

sets of events with a common cause. A number of approaches forevent correlation

have been proposed, including expert systems, machine learning techniques such as

decision trees, and fault propagation models such as causality or dependency graphs.

Expert systems tend to be less flexible with respect to changes in the network, where

graph based models tend to be more robust since they directlyencode the relationships
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among components of the network [83].

Gruschhke [37] describes a dependency graph approach to event correlation. The

graph consists of nodes representing the physical components of the network,e.g.

routers, and the edges represent functional dependencies between the physical com-

ponents. When events are generated by the network, the event is placed in the graph at

the appropriate node and traverses the graph along the edgesto model the propagation

of the event through the network. The locations of potentialfaults in the network are

the components represented by the nodes in the graph where the paths of propagating

events merge.

We have only originating and terminating records that matchon the caller and re-

cipient fields and nearly match on the timestamp field. The redundancy elimination

techniques in the sensor network literature rely on the ability to correlate time series

data, which is not applicable to our problem. Event correlation in networked systems

relies on knowledge of the relationship between componentsin the system to under-

stand how events propagate through the system. In our problem, we do not have this

propagation; each transaction over the network is independent of the others. For these

reasons, we turn to the record linkage literature for guidance on matching the originat-

ing and terminating records in presence of noise in the timestamp field.

4.4 Merging the Data Set

The data set used in this chapter is one month of voice calls from cleaned billing

and CDR data. The data contains only records of calls made and received by customers

that maintain active accounts for a particular year. By removing all non-customers of

the service provider, we eliminate most of the cases where wewould expect to find

incomplete records (one party is using a landline or the network of another provider),
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particularly for the CDR data. Additionally, only MOC records in the CDR data con-

taining antennas with known locations are included.

We assume that there is only noise in thestart time component of the key (this is

the only field in which perturbations may be detected since itprovides an ordering for

the records). Our approach iteratively accounts for increasing amounts of clock skew

by adjusting the value of thestart time field during a join operation.

Conceptually, we start by merging the CDR data. LetL = (T,C f ,Ct,Af ) represent

the MOC table andR = (T,C f ,Ct,At) represent the MTC table, whereT is the time the

call is made,C f is the caller, andCt is the recipient,Af is the originating antenna and

At is the terminating antenna. We start with an initial matching setM where the records

of L andR have identical primary keys,i.e. L .T = R.T ∧ L .C f = R.C f ∧ L .Ct = R.Ct.

We ignore the service field because all records are voice calls. ThusM is the inner join

of the two tables on the primary key:

M = L Z
L .T=R.T∧L .C f=R.C f∧L .Ct=R.Ct

R (4.4)

We can decomposeM into two subtablesML andMR that give the matched records

from the original tablesL andR:

ML = πT,C f ,Ct ,Af (M ) (4.5)

and

MR = πT,C f ,Ct ,At (M ) . (4.6)

Using these tables, we can extract the sets of unmatched records,UL andUR from the
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original tables by taking the set differences:

UL = L −ML (4.7)

and

UR = R −MR. (4.8)

Computing the outer join ofUL andUR gives us a new table,U consisting of only the

unmatched records:

U = UL [
UL .T=UR.T∧UL .C f=UR.C f∧UL .Ct=UR.Ct

UR (4.9)

Note that

M ∪ U = L [
L .T=R.T∧L .C f=R.C f∧L .Ct=R.Ct

R (4.10)

Now that we have identified the matched and unmatched recordsin L andR, we

attempt to match records inU by incrementally searching for records with matching

caller and recipient IDs that differ in start time by some±∆t ∈ [1,120]. To accomplish

this, we joinUL andUR using a condition that adjusts thestart time of the right

table,UL .T = UR.T + ∆t. So, the join operation is

UL Z
UL .T=UR.T+∆t∧UL .C f=UR.C f∧UL .Ct=UR.Ct

UR (4.11)

Each record in this join is moved fromUL andUR to ML andMR, respectively. By

repeating this process over the sequence∆t = +1,−1,+2,−2, . . . , we ensure that we

match records inL to a record inR with the minimum possible|∆t|, and by updating the

setsUL andUR, we ensure that each record is only matched up to one time. Figure 4.1

provides an illustrative example of this process.
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Figure 4.1. An illustration of the the merging process. The left column shows
the process of decomposing the MOC table,L , and the MTC table,R into the
matched,M , and unmatched,U, sets. The right column shows one step of the
process where we account for clock skew in the MTC table and migrate the

newly match records to the matched setM .
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In practice, we build a working tableW. This table is the full outer join ofL andR,

W = L [
L .T=R.T∧L .C f=R.C f∧L .Ct=R.Ct

R, (4.12)

with an additional field,S, that indicates the skew of the record. SoW = (T,C f ,Ct,Af ,At,S).

Initially, the skew field is 0 for complete records,i.e. the records in the inner join, and

null for the remaining records:

S←






0 σAf,ω∧At,ω(W)

ω σAf=ω∨At=ω(W).

(4.13)

Records with a null skew field are in the unmatched set,U; all other records are inM .

For each∆t = 1,−1,2,−2, . . . 120,−120, we compute the inner join ofUL andUR:

M ′ = ρσS=ω∧Af ,ω(W)(UL ) Z
UL.T=UR.T+∆t∧UL.C f=UR.C f∧UL.Ct=UR.Ct

ρσS=ω∧At,ω(W)(UR) (4.14)

For each element inM ′, we update the skew:S← ∆t.

For each subsequent step in the merge, we update the skew fieldfor both of the

matched records. Once we have updated the skew field for the largest∆t, we add an

additional field that gives the corrected time. The corrected time field is set for all

records in the table according to the following rules:

• If the skew field is 0, null, or the record is from the left tablethe corrected time

is equal to the start time.

• The remaining records,i.e. the records from the right table with a non-null,

nonzero skew, the corrected time field is the start time field plus the interval given

by the skew field.
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Formally, for each record inW after the correction,

Tc←






T σS=0∨S=ω∨Af,ω(W)

T + ∆t σAt,ω∧S,0∧S,ω(W).

(4.15)

The resulting table allows us to extract both the corrected and uncorrected data. The

uncorrected data is straightforward to extract as all modifications have been made to the

newly added field, leaving all of the original field values untouched; therefore, a simple

SELECT statement obtains the data. The corrected data can be obtained by performing

the full outer join using the corrected time, caller, and recipient. We can determine the

left and right tables for the join by looking for the presenceof non-key field values.

Consider the merged CDR data: the MOC records must have a non-null value in Af

and the MTC records must have a non-null value inAt, so we obtain the corrected table

with the following query:

ρπTc,Cf ,Ct ,Af

(

σAf ,ω(W)
) (L ) [

L .Tc=R.Tc∧L .C f=R.C f∧L .Ct=R.Ct

ρπTc,Cf ,Ct ,At(σAt,ω(W)) (R) (4.16)

4.5 Evaluation Method

We use the Kullback-Leibler divergence to measure the distance between the inter-

call time distribution of the merged CDR data and the call data. The Kullback-Leibler

divergence, or relative entropy, is a result from information theory [51]. Suppose we

have an alphabetX = {x1, x2, . . . , xn} where each element,xi occurs with probability

pi. The information provided by each elementxi, in bits, is lg(pi). Intuitively, elements

that are more likely contain less information (and can be represented with fewer bits)

than elements that appears rarely. The entropy ofX, which can be viewed as a random
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Figure 4.2. An illustration of the process of extracting corrected data from a
table with supplementaryskew andcorrected time fields.

variable, is the expected information over the entire alphabet:

H =
∑

xi∈X

−pi log pi (4.17)

[19, 60, 81].

Suppose we have the same alphabetX as before; however, we assume each element

xi now occurs with a probabilityqi while the true probability is stillpi. For eachxi,

the difference in information islogpi

qi
, and the relative entropy, or Kullback-Leibler

divergence is the average difference in information over the setX:

DKL =
∑

xi∈X

pi log
pi

qi
(4.18)

Intuitively, this gives the average number of additional bits required to encode a symbol

using the assumed probabilitiesqi rather than the actual probabilitiespi [19, 51].
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We considered using the Kolmogorov-Smirnov test (KS-test); however, this proved

problematic. Suppose we have two cumulative distribution functionsP and Q. The

KS-test statistic,d, is the maximum distance between these two distributions:

d = max
x∈X
|P(x) − Q(x)| (4.19)

The critical values ofd for a given confidence interval depend on the sample size (the

larger the data size, the smaller the critical value) [59]. When we examined results

generated using the KS-test statistic, we found that the best stopping point was, in

reality, too small. When looking at plots of the distributionclosest to the distribution

for the call data, that there was obvious noise in the tail. Weconcluded that the KS-

test is not expressive enough, since it only considers the maximum distance between the

cumulative distributions and a method using a pairwise comparisons of the points in the

distribution would be more appropriate. For this reason we use the Kullback-Leibler

divergence.

To determine the need for clock skew correction, we examine the intercall proba-

bility distribution over a two minute interval. Consider thedirected call multi-graph

where the vertices represent phones and the calls are directed edges from the caller to

the recipient and each edge is labeled with the time the call was made. For the set

of directed edges from a particular vertex to another particular vertex, we find the in-

tervening time between each pair of consecutive calls. Figure 4.3 illustrates how we

compute this distribution.

We use the intercall time distribution to evaluate our approach because it is a mea-

sure that is sensitive to potential redundancy introduced by noise in the timestamps. In

the cases where noise prevents two records from being merged, the resulting data set

will have the two records with a small time interval between them, skewing the intercall
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Figure 4.3. Example showing how the intercall time distribution is generated.
There are three pairs of consecutive calls in this graph: 1 pair of edges from 1

to 2, separated by 1 second and 2 pairs of edges from 3 to 4, (07:01:58,
07:03:17) and (07:03:17, 07:03:20), separated by 79 seconds and 3 seconds,
respectively. The other two edges are unique in their sourceand destination,
so there is no consecutive call in either case; therefore, neither of these edges
contributes to the intercall time distribution. Dividing by the number of data
points gives the empirical probability density function (each of 1, 3, and 79

seconds occurs with probability13).

time distribution to the left. In theory, the call and CDR databoth describe the same

set of events. We therefore expect that there is significant overlap and the properties of

the data are similar. Our experience with the data has shown that the call data is signif-

icantly cleaner than the CDR data, and because we do not have toperform a merge to

obtain it, as we would with the CDR data, we use the intercall time distribution from

this data set as our baseline.

4.6 Results

In this section, we describe the behavior of the KL-divergence as we increase|∆t|

when performing the two merges and its use for determining the stopping point of the

merge process. We also examine the effect of the merging process on the fraction of

matched and unmatched records in the data sets.
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The graph at the top of figure 4.4 shows the KL-divergence of the merged CDR

intercall time distribution from the call data intercall time distribution for|∆t| ∈ [1,120],

and the inset shows the same value over the range|∆t| ∈ [60,120] to expose detail near

the minimum. We select|∆t| = 81 seconds, the minimum, as our stopping point and

continue our analysis with the data correction applied up tothis point.

The center row of figure 4.4 shows the intercall time distribution of the merged

data set corrected up to|∆t| = 81 in the center with the distribution for the uncorrected

merged data on the left and the baseline call data distribution on the right. The similarity

between the corrected distribution and the baseline is striking.

The bottom row of figure 4.4 show the intercall time distribution for the merged

CDR data at various points in the correction process: two points before the stopping

point (up to|∆t| = 20,45) and one point after (up to|∆t| = 120). In the former cases,

there is visible noise in the distributions for|∆t| < 81; however, the distribution of

the latter case looks quite similar to the base line. In fact,its KL-divergence from the

baseline is only slightly larger at|∆t| = 120 than the stopping point (7.45× 10−3 and

7.23× 10−3, respectively).

The graph at the top of figure 4.5 shows the KL-divergence of the merged call and

CDR intercall time distribution from that of the call time alone for |∆t| ∈ [1,120], and

the inset shows the same value over the range|∆t| ∈ [45,120] to expose detail near the

minimum. There is consistent decrease in the range|∆t| = [1,55], however, in [55,81],

the behavior of the function is sporadic. This sporadic behavior, however, occurs over a

small range of values of the KL-divergence ([1.5340×10−2,1.5385×10−2], a difference

of 4.5× 10−5).

The center row of figure 4.5 shows the intercall distributionof the merged call and

CDR data corrected up to|∆t| = 62 in the center with the uncorrected merged data on
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Figure 4.4. The top figure shows Kullback-Leibler divergence between the
merged CDR intercall time and call data intercall time distributions as the

correction procedure progresses. The middle right figure shows the
KL-divergence for the larger half of the range to show detailaround the

minimum at 81 seconds. The middle left and center show the uncorrected
merged CDR intercall time distribution and the call data intercall time

distribution that is used for the baseline, respectively. The bottom row shows
snapshots of corrected merged CDR intercall time as the correction process

proceeds, at 20, 45, 81, and 120 seconds.
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the left and the baseline call distribution on the right. Again, the similarity between the

corrected distribution and the baseline is compelling.

The bottom row of figure 4.5 shows the intercall time distribution for the merged

call and CDR data at various points in the correction process:two points before the

stopping point (up to|∆t| = 20,40) and one point after (up to|∆t| = 90). Again,

when we stop the process before reaching the minimum KL-divergence values, there is

visible noise in the distribution after the stopping point and the distribution shown that

is beyond the stopping point appears very similar to the baseline distribution.

We are also interested in how many records are merged in this process, so we mea-

sure the fraction of records in the setsM , UL , andUR before and after each merge.

When merging the CDR data,UL consists of records only in the MOC table,UR con-

sists of records only in the MTC table, andM consists of records that appear in both

tables. Figure 4.6 shows the fraction of records belonging to each set before and af-

ter the correction (of up to|∆t| = 81). Applying the correction reduces the number of

records in the CDR table 15%, from 115,778,284 records to 98,128,532, increases the

number of records inM 35%, from 50,477,486 to 68,127,208, and reduces the num-

ber of records inUL and UR 62%, from 28,518,775 to 10,869,033, and 48%, from

36,782,013 to 19,132,291, respectively.

Figure 4.7 shows the fraction of records in each setM , UL , andUR when merging

the call and CDR data before and after the correction is applied. Applying the correction

reduces the number of records in the table 3%, from 102,701,857 records to 99,878,208,

increases the number of records inM 5%, from 54,173,052 to 56,996,701, and reduces

the number of records inUL andUR 62%, from 4,872,325 to 1,749,676, and 4%, from

43,955,480 to 41,131,831, respectively. We see right away that the clock skew isn’t as

significant in this case becauseUL is very small (only about 4% of the records), and we
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Figure 4.5. The top figure shows Kullback-Leibler divergence between the
merged usage intercall time and call data intercall time distributions as the

correction procedure progresses. The middle right figure shows the
KL-divergence for the larger half of the range to show detailaround the

minimum at 81 seconds. The middle left and center show the uncorrected
merged usage intercall time distribution and the call data intercall time

distribution that is used for the baseline, respectively. The bottom row shows
snapshots of corrected merged CDR intercall time as the correction process

proceeds, at 20, 40, 62, and 120 seconds.
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Figure 4.6. The fraction of records in the matched and unmatched sets before
and after the merge correction of the MOC and MTC tables. “MOCand
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only” corresponds toUR.
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Figure 4.7. The fraction of records in the matched and unmatched sets before
and after the correction of the billing and CDR tables. “Billing and CDR”

corresponds toM , “Billing only” corresponds toUL , and “CDR only”
corresponds toUR.

are able to merge more than half of these records by applying the correction.

4.7 Discussion and Conclusion

In this chapter, we have shown that there is some noise in the timestamps associated

with the usage records that introduces redundancy if the components of the data are

merged naively, and we have described an approach for removing this redundancy.

Whether this noise has an impact on the results of work using these data depends on

the particulars of the study. Many of the major studies usingthese data are not affected

by this problem. In these cases, no merge is performed. Onnela et al [63] use only the

billing data to build a weighted network. Gonzálezet al [33] and Wanget al [91] use

only the originating (MOC) records of the CDR data.
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In cases where the tables are merged, unweighted graphs built using the data will

not be affected since the redundancy does not affect whether a particular edge is present

or not. Similarly, graph with weighted edges based on some attribute only present in

one table,e.g. cost or duration, will not be affected because the redundant records do

not provide information to be added to the weights. Problemswith this redundancy do,

however, arise when weighting the edges of a graph by the number of times that edge

appears in the data or when counting the overall number of calls.

65



CHAPTER 5

BACKGROUND ON DATA CLUSTERING

The goal of data clustering is to identify meaningful groupsin data in which similar

data items belong to the same group and dissimilar items belong to different groups.

Traditionally, groups were identified subjectively, by eye; however, this is only feasible

for data with only 2 or 3 dimensions, due to the limits of humanperception, and tends

to yield inconsistent results. As datasets have grown in thenumber of features, many

clustering algorithms have been implemented in a number of different areas of research.

Data clustering is an approach for exploratory data analysis that is widely applicable to

a number of fields [46, 49]1.

The clustering problem is defined as follows: let a data setD consist of a set of

data items (~d1, ~d2, . . . , ~dn) such that each data item is a vector of measurements,~di =

(di,1,di,2, . . . ,di,m). Using some measure of dissimilarity,D(~di , ~dj), group the data into

setsC1,C2, . . . ,Ck based on some criteria [35].

At the highest level, clustering algorithms can be divided into two types: partitional

and hierarchical. Partitional algorithms divide the data into some number of disjoint

sets. Hierarchical algorithms divide the data into a nestedset of partitions. They may

either take a top-down approach, in which the hierarchy is generated by splitting clus-

ters, or a bottom-up approach, in which the hierarchy is generated by merging clusters

1Portions of this chapter are to appear inIntelligent Techniques for Warehousing and Mining Sensor
Network Data, ed. A. Cuzzocrea, 2009 [68]
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[47]. Incremental and stream clustering algorithms have also been developed. In this

section, we present a brief overview of clustering algorithms.

5.1 Partitional Clustering

Partitional clustering divides the data set into some number, often a predefined num-

ber, of disjoint subsets. Some of the most widely know partitional clustering algorithms

are iterative relocation algorithms. Such algorithms are constructed by defining 1) a

method for selecting the initial partitions, and 2) a methodfor updating the partitions

[35]. K-means and expectation maximization use this approach. Ink-means,k data

points are randomly selected as centroids, each data point is assigned to the nearest

centroid, and the centroids are recomputed. This process isrepeated until no data items

move to a different cluster. The expectation maximization algorithm is similar, the ini-

tial clusters are random Gaussians, each data item is assigned to the Gaussian with the

highest probability of generating the point, and the Gaussians are iteratively recomputed

[94].

A partitional clustering can also be computed using a minimum spanning tree ap-

proach. Let the data set be represented as a complete graph where the data items are

represented as vertices and the edges weights are the distance between the two con-

nected data items. From this graph, compute the minimum spanning tree. To obtaink

clusters, remove thek− 1 edges with the largest weights [35].

5.2 Hierarchical Clustering

Hierarchical clustering algorithms generate a nested set of partitions. There are two

common types of hierarchical algorithms: agglomerative and divisive [49].

Most hierarchical algorithms are agglomerative, meaning that they take a bottom-up
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approach in which the data set is initially partition in ton clusters, each of which con-

tain one data item. The algorithm then iteratively merges the two nearest clusters until

all of the data belongs to a single cluster. The various agglomerative algorithms vary

in the definition of the difference between two clusters [49]. Well known agglomera-

tive algorithms include the single and complete link algorithms. For these algorithms,

the distance between clusters is the minimum (equation 5.1)and maximum distance

(equation 5.2) between data items of the two clusters, respectively [47].

D(Ci ,C j) = min
~di∈Ci ,~d j∈C j

(d(~di , ~dj)) (5.1)

D(Ci ,C j) = max
~di∈Ci ,~d j∈C j

(d(~di , ~dj)) (5.2)

The agglomerative nesting algorithm described by Kaufman and Rousseeuw [49] uses

a distance measure weighted by the inverse of the product of the sizes of the clusters:

D(Ci ,C j) =
1

|Ci ||C j |

∑

~di∈Ci ,~d j∈C j

d(~di , ~dj) (5.3)

Divisive algorithms proceed from the top-down, starting with all data items in a

single cluster and repeatedly split clusters until each cluster has only a single member.

These algorithms are less common and, when implemented naively, are much more

computationally expensive. Consider the first step of an agglomerative clustering algo-

rithm: the distance between each pair of data items must be computed. This requires

O(n2) calls to the distance function. Now consider the task of examining all possible

ways of splitting a cluster into two: there areO(2n) possible partitions to consider. The

divisive analysis (DIANA) algorithm uses the data item in a cluster that is most dissim-

ilar from the other members of the cluster to seed a new cluster and eliminate the need
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for exhaustive evaluation of the possible partitions. At each step, the largest cluster, the

cluster with the largest distance between two of its members, is split. The data item

in this cluster with the largest average dissimilarity fromthe other items in the cluster

is used to seed the new cluster, and each data point for which the average dissimilarity

from the items in the new cluster is less than the average dissimilarity from the items re-

maining in the original cluster is moved to the new cluster. The process is repeated until

no data points remain in the original cluster with a smaller average dissimilarity from

the data in the new cluster [49]. Another divisive approach uses some criteria to select

a cluster to split,e.g. the cluster with the highest variance, and applies a partitional

algorithm, such ask-means to split the cluster in two [76].

5.3 Hybrid Algorithms

Hybrid clustering combines two clustering algorithms. Cheuet al [15] examine

the use of iterative, partitional algorithms such ask-means, which tend to be fast, as

a method of reducing a data set for hierarchical, agglomerative algorithms, such as

complete-link, that tend to have high computational complexity. Chipman and Tibshi-

ran [17] combine agglomerative algorithms, which tend to dowell at discovering small

clusters, with top-down methods, which tend to do well at discovering large clusters.

Surdeanuet al [85] propose a hybrid clustering algorithm for document classification

that uses hierarchical clustering as a method for determining initial parameters for ex-

pectation maximization.

5.4 Incremental Clustering

Incremental algorithms consider each example once, immediately deciding either to

place it in an existing cluster or to create a new cluster. These algorithms tend to be fast,
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but are also often order dependent [47]. The leader algorithm is a simple incremental

clustering algorithm in which each cluster is defined by a single data item—the first

item assigned to the cluster. For each data example, if the example is within a user

specified distance of the defining item of the closest cluster, the example is assigned

to that cluster; otherwise, the example becomes the definingexample of a new cluster

[41].

Charikaret al. [12] describes incremental clustering algorithms that maintain a

fixed number of clusters with certain properties as new data points arrive. Two algo-

rithms are described; each uses at-threshold graph in which each pair of points in the

data set is connected with an edge if and only if the distance between the two points is

less than some thresholdt. The algorithms are a two step processes in which: 1) the

existing clusters are merged as necessary to ensure that there are no more thank clusters

and 2) new data items are processed until there are more thatk clusters. The updates

are constrained by invariants, and in cases where a point cannot be added to any ex-

isting cluster without violating an invariant, it is added to a new cluster. The doubling

algorithm constrains the maximum radius (the minimum sphere containing all points

in the cluster) and the minimum inter-cluster distance. Whenthe number of clusters

exceedsk, arbitrarily selected clusters are merged with their neighbors until the number

of clusters is less thank. The clique partition algorithm enforces a maximum radius and

diameter (maximum distance between two points in a cluster)during the update phase

and merges are performed by computing a clique partition of the threshold graph and

combining the clusters in each partition.
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5.5 Clustering Algorithms for Streaming Data

Some methods have been developed for clustering data streams. Guhaet al [38]

present a method based onk-mediods—an algorithm similar tok-means. The clusters

are computed periodically as the stream arrives, using a combination of the streaming

data and cluster centers from previous iterations to keep memory usage low. Aggarwal

et al [3] present a method that takes into account the evolution ofstreaming data, giving

more importance to more recent data items rather than letting the clustering results be

dominated by a significant amount of outdated data. The algorithm maintains a fixed

number ofmicro-clusters, which are statistical summaries of the data throughout the

stream. These micro-clusters serve as the data points for a modifiedk-means clustering

algorithm.

5.6 Cluster Evaluation

Since clustering is an unsupervised learning method, it is often not feasible to use a

training and test set for evaluation. There are three major approaches for evaluating the

results of clustering algorithms: external, internal, andrelative methods [39].

External measures require that a labelled training set exists to compare the results of

the algorithm with the grouping determined by the training set labels. Internal measures

use aspects of the data to evaluate the results. These aspects include compactness,

which can be evaluated using sum of squared error or average pairwise intra-cluster

distance, connectedness, which can be measured by comparing the clustering results

with the result ofk nearest neighbors, and separation, which can be measured using the

average weighted inter-cluster distance [40]. Relative measures compare the results of

a set clustering schemes [39].
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5.7 Summary

In the next two chapters, we use the concepts described in this chapter to build tools

for detecting anomalies in multivariate streaming data. Inchapter 6, we use a hybrid

algorithm consisting of a hierarchical algorithm, complete link, and an incremental

algorithm, leader, to detect events. In chapter 7, we use a hierarchical feature clustering

algorithm over a sliding window to detect events and their locations.
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CHAPTER 6

ONLINE CLUSTER ANALYSIS OF SPATIALLY PARTITIONED PHONE USAGE

DATA

6.1 Introduction

In this chapter1, we describe an online clustering algorithm that combines complete

link clustering and a variant of the leader algorithm. Our algorithm differs from a

number of other online clustering algorithms in that we do not fix the number of clusters

throughout; rather, we use heuristics, similar to those in existing algorithms, to allow

the cluster set to grow and contract as more data arrives.

It was our intention to use this algorithm as an approach for detecting events in

phone data for the Wireless Phone Based Emergency Response System; however, at the

time of the initial development we did not have a suitable data set containing known

emergency events. Now that we are in possession of such data sets, we realize that

this type of clustering is problematic for this applicationand that a feature clustering

approach, which we present in the next chapter, is better suited for our goals. Despite

this, the development of this algorithm has yielded some interesting insights, and we

present the work here to share these insights.

1An earlier version of this work was presented and received the best student paper awards at the 2006
Conference of the North American Association for Computational Social and Organization Sciences [64]
and was subsequently published in the journalComputational&Mathematical Organization Theory[65].
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6.2 Related Work

Traditional clustering algorithms require random access over the full data set; how-

ever, this may not be feasible due to the nature of the data. Incases where the data set is

too large for main memory or arrives as a fast data stream, more advanced, incremental

algorithms are required. Typically these algorithms take ahybrid approach. The data

items are initially clustering into a large number of small clusters and these clusters are

used as a reduction of the data set to improve the performanceof the main clustering

algorithm, which may be one of the traditional algorithms adapted to group clusters

rather than points.

Zhanget al. [95] describe the Balanced Iterative Reducing and Clustering using

Hierarchies (BIRCH) algorithm. In this work, they define the clustering feature which

is later used in a number of other algorithms. Suppose we havea clusterC containing

data points{~d1, ~d2, . . . , ~dn}. The clustering feature for this cluster is (n, ~s1, ~s2) where~s1 is

vector of feature sums for the data points,s1,i =
∑n

j=1 di, j and~s2 is the vector of squared

sums of the features,s2,i =
∑n

j=1 d2
i, j. BIRCH uses a tree structure to efficiently build the

clustering features that reduce the data set and finalizes the clustering by applying an

agglomerative clustering algorithm to the clustering features.

Bradleyet al. [8] describe an approach for scalingk-means to very large data sets

by using two types of data compression. The algorithm employs a buffer that, at each

step, reads and processes a sample from the data set, updatesthe cluster model, and

then applies the compression techniques to eliminate the need to store points that are

unlikely to move to a different cluster and sets of points that are likely to move from

one cluster to another as a group. In the latter case, the points are collapsed into a sub-

cluster described by a clustering feature. Farnstromet al [26] simplified this algorithm

to repeatedly apply the clustering algorithm to the currentpoints in the buffer and the
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existing set of clusters, clearing the data buffer at each step.

Aggarwal et al. [3] describes a hybrid approach for stream clustering that uses

an extension of clustering features which are updated with the arrival of each point to

provide a manageable sized data set for the application of a second clustering algorithm.

The algorithm for updating the “microclusters” is similar the leader algorithm; however,

in this case, a fixed number of clusters in maintained and the threshold for accepting a

data point into an existing cluster is based on the root mean squared deviation of the data

items in the cluster. The microclusters are stored using an extension of feature clusters.

Two time components are added,t1 and t2, which give the sum and squared sum of

the timestamps for the data items belonging to the microcluster, respectively. When a

new data item does not fit into any cluster, based on the root mean squared deviation,

it is placed in a new cluster, and either an existing cluster is deleted or two clusters are

merged. Using the two time values in the extended feature clusters, the cluster with the

least “relevance” is identified where relevance is a measureof whether the cluster is still

acquiring data items. If the minimum relevance is below somethreshold, the cluster is

removed, otherwise, the two nearest clusters are merged.

6.3 Hybrid Clustering Algorithm

We use a hybrid clustering algorithm designed to expand and contract the number

of clusters in the model based on the data rather than assigning an fixed number of

clusters specifieda priori. The basic idea behind the algorithm is to use complete

link to establish a set of clusters and then use the leader algorithm in conjunction with

statistical process control to update the clusters as new data arrives.

Statistical process control [7] aims to distinguish between “assignable” and “ran-

dom” variation. Assignable variations are assumed to have low probability and indicate
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some anomaly in the underlying process. Random variations, in contrast, are assumed

to be quite common and to have little effect on the measurable qualities of the process.

These two types of variation may be distinguished based on the difference in some mea-

sure on the process output from the mean,µ, of that measure. The threshold is typically

some multiple,l, of the standard deviation,σ. Therefore, if the measured output falls

in the rangeµ ± lσ, the variance is considered random; otherwise, it is assignable.

We use the clustering feature described by Zhanget al [95] to maintain the sufficient

statistics of the clusters: for each cluster, we store the sum and sum of squares of field

values for each example in the cluster and the number of elements in the cluster. We

use the same approach for identifying the cluster membership of a new example as in

[3]; however, we handle cluster retirement differently.

For each new data item, we locate the nearest cluster. If the new data item is within

some multiple of the root mean squared deviation of the nearest cluster, the item is

added to that cluster; otherwise a new cluster is created. Wecall this threshold the

membership threshold, tm. In cases, where the nearest cluster has only 1 data item we

add the item if it is closer to the nearest cluster than the nearest cluster is to its nearest

neighbor. If a new cluster is created, we search for overlapping clusters and merge

them. We consider two clusters to be overlapping if the distance between the centroid

of each cluster is within some multiple of the root mean squared deviation of the other

cluster. We call this theoverlap threshold, to.

6.4 Experimental Setup

We apply the above clustering algorithm to two data sets derived from call record

data of a cellular service provider. The raw data consists ofthe time at which the call is

made and the tower through which the call originates. Using GIS data associated with
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the towers, we partition the data into a set of features that give the number of calls per

10 minute interval over each postal code for a particular city. We use 2 distinct one

month data sets.

We compute the initial clusters for each month using the firstday of data, varying

the number of sets in this partition and then proceed with theonline portion of the algo-

rithm. We evaluate the clusterings using sum squared error to measure the compactness

of the clusters and average distance between centroids to measure the separation. Since

the hybrid algorithm does not keep track of the cluster membership of each data item,

we assign each data item to the cluster with the nearest center at the end of the run. We

compare these results with those of the offline complete link using the same approach

of assigning data items to clusters described by the centroids computed using the data

items and their cluster assignments.

6.5 Results

Table 6.1 shows the results of our algorithm on the first dataset. For each trial, the

first day of data is partitioned into the initial set of clusters, Ci ∈ [2,20] in number

using membership and overlap thresholds of 6 times the root mean squared deviation

(RMSD). For this data set, the algorithm tends to find a small number of clusters, 3-4.

As Ci increases, the results of the clustering algorithm stabilizes such that the resulting

set of clusters is identical forCi ∈ [9,20]. This set of clusterings also gives the best

result for our trials on the first dataset, in terms of compactness and separation; however,

the results are not as good as those for the offline complete link algorithm with 3 and 4

clusters (corresponding to the final number of clusters given by the hybrid algorithm).

Table 6.2 shows clustering quality using sum squared error and average distance

between centroids for the second datasets. In this cases, wesee less sensitivity to the
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TABLE 6.1

CLUSTER SUM SQUARED DEVIATION FOR DATASET 1

Ci C f SSQ Avg Dist Offline SSQ Offline Avg Dist

2 3 1.67× 107 121

3 3 1.69× 107 111 1.29× 107 202

4 4 1.89× 107 86.6 1.13× 107 154

5 4 1.89× 107 86.9

6 3 1.93× 107 102

7 4 1.91× 107 86.0

8 3 1.97× 107 101

[9,20] 3 1.51× 107 143

initial number of clusters than we did with the previous dataset. Ci ∈ [3,4] yield

identical clusterings, as doCi ∈ [5,7] andCi ∈ [8,20]. The best clustering results from

Ci ∈ [3,4], in terms of compactness.Ci = 2 outperformsCi ∈ [3,4] with respect to

separation, but in this case, the compactness is much worse.As with the other dataset,

the hybrid algorithm is outperformed by complete link, particularly with respect to

separation.

The fact that the above results show such a small range in the number of final clus-

ters raises concerns that a few large clusters are forming early and dominating the re-

sults. To determine whether this is the case, we examine how the number of clusters

change over time. Figures 6.1 and 6.2 show the call activity time series and the number

of clusters over time for varyingCi for the two months of data. In the first month of

data (figure 6.1), the number of clusters collapses to 3 or 4 within the first 3 days after
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TABLE 6.2

CLUSTER SUM SQUARED DEVIATION FOR DATASET 2

Ci C f SSQ Avg Dist Offline SSQ Offline Avg Dist

2 2 5.27× 107 140

3 3 2.46× 107 106 2.69× 107 346

4 3 2.46× 107 106 2.84× 107 300

5 4 2.85× 107 82.3

6 4 2.85× 107 82.3

7 4 2.85× 107 82.3

[8,20] 3 2.97× 107 94.8

the incremental component begins. In the cases whereCi is small (< 9), the number of

clusters remains small for the remainder of the stream. In contrast, cases whereCi ≥ 9

the number of clusters eventually settles at around 8 after about 2 weeks. It is only

within the last day and a half of the time series that the number of clusters drops to

around 3. In the second month of data, we do not see such a wide variation in the num-

ber of clusters; however, except for the case ofCi = 2, the cluster structure changes

throughout the duration of the dataset.

To investigate further, we examine the root mean squared deviation (RMSD) of the

clusters once the hybrid clustering algorithm has finished.In both cases, we find that

there is in fact a cluster with a significantly larger RMSD thanthe others. Next, we

look at the evolution of the RMSD over time for each of the clusters and we find that, in

both cases, the large clusters appear relatively early in the execution of the algorithm.

In the case of the first data set, 15% of the data items have beenprocessed when the
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Figure 6.1. The call activity time series for the first month of data and the
number of clusters over time with (from top to bottom) 7, 8, 9,15, and 20

initial clusters.

80



   0
 500
1000
1500
2000
2500
3000
3500
4000

N
um

be
r 

of
 c

al
ls

 

   0
   4
   8
  12
  16
  20

 

 

   0
   4
   8
  12
  16
  20

 

 

   0
   4
   8
  12
  16
  20

N
um

be
r 

of
 c

lu
st

er
s

 

   0
   4
   8
  12
  16
  20

 

 

   0
   4
   8
  12
  16
  20

 

Time (10 minute intervals)

Figure 6.2. The call activity time series for the second month of data and the
number of clusters over time with (from top to bottom) 2, 6, 7,8, and 20

initial clusters.
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TABLE 6.3

CLUSTER EVALUATION FOR DATASET 2 WITH MEMBERSHIP AND

OVERLAP THRESHOLDS OF 3.0 AND AN INITIAL PARTITION WITH

3 CLUSTERS

SSQ Avg Dist

Complete Link 2.84× 107 300

Hybrid 1.75× 107 341

large cluster appears and 37% of the data items in the second dataset. We also find,

however, that this cluster does not collect all of the points, as can be seen in figures 6.1

and 6.2, which both show cluster creation and merges following the point at which the

large cluster appears. The fact that these large clusters appear upon a merge indicates

that the large threshold we are using to determine when clusters are overlapping may

be resulting in a merge of well separated clusters.

While, in general, using smaller thresholds causes the algorithm to produce a very

large number of clusters, we do find one case, where both the membership and overlap

thresholds are 3.0 andCi = 3, that gives good results for the second dataset: the hybrid

algorithm outperforms complete link with respect to both compactness and separation.

In this case, the hybrid algorithm still has one cluster thatdominates all others in size,

and, as in the other cases, it appears early in the execution (after 19% of the data items

have been processed). The quality measures for this clustering are show in table 6.3.
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6.6 Conclusion

In this chapter, we described an online hybrid clustering algorithm for event detec-

tion that uses complete link to create initial clusters and amodification of the leader

algorithm to update clusters as new data arrives. We have compared this algorithm to

complete link clusterings on the full dataset using sum squared error, root mean squared

deviation, and average distance between centroids with mixed results.

In the results we show, the algorithm maintains a small number of clusters relative to

the number of data items in the stream; however, this result is heavily dependent on the

membership threshold used to accept data items into existing clusters. If this threshold

is too low, then number of clusters explodes and, in the worstcase, can grow linearly

with respect to the number of data items. Similarly, if the membership threshold or the

merging threshold is too high, the number of clusters can collapse into a small set of

large, non-descriptive clusters which give little information about the underlying data.

This shortcoming is difficult to overcome since, due to the nature of the clustering fea-

tures used to store the sufficient statistics of the clusters, they cannot be split. We have

shown, however, that, given the proper parameterization, the algorithm can produce

results better than those produced by complete link.

In the next chapter, we describe a feature clustering approach for event detection

that indicates the location of the event as well as its occurrence.
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CHAPTER 7

FEATURE CLUSTERING FOR DATA STEERING IN DYNAMIC DATA DRIVEN

APPLICATION SYSTEMS

7.1 Abstract

In this chapter, we describe an approach for determining thelocation of an event that

causes a dramatic increase in call activity using feature clustering on real-world data.

We first examine the effect of two emergency events on the call activity in the areas

surrounding the events and show how the anomalous call activity becomes dominated

by normal call activity as larger areas around the event are considered. We find that,

in general, the univariate models can detect the event and location more quickly, but is

more prone to detecting false positives. The purpose of our system is to trigger a suite

of simulations, so false positives incur a cost; therefore,we believe that the feature

clustering approach we describe is better suited for our application.1

7.2 Introduction

The Wireless Phone-based Emergency Response (WIPER) system isa proof-of-

concept Dynamic Data Driven Application System (DDDAS) designed to leverage real-

time streaming cell phone data to provide high-level information about an emergency

1An earlier version of this work was published in the 2009 Proceedings of the International Confer-
ence on Computational Science [66].
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situation to emergency response managers. WIPER consists ofmodules for automati-

cally detecting emergency events and for running and validating predictive simulations

of potential outcomes [55, 56, 67, 68]. Schoenharl and Madey[80] describe an ap-

proach for on-line simulation validation for WIPER using streaming cell phone data as

it becomes available. In this paper we address the problem ofidentifying the area for

which the simulations should be run.

In an emergency situation, it is likely that the area of interest is small relative to

the total coverage area of the cell phone network. Running predictive simulations for

the entire coverage area is problematic in terms of computational requirements and the

amount of data produced that must in turn be validated and presented to emergency

response managers. In this chapter we describe an approach for identifying the area

affected by an emergency using feature clustering. We illustrate the effectiveness of

this approach using two case studies of emergency events that appear in real-world cell

phone data.

7.3 Related Work

Dynamic Data Driven Application Systems (DDDAS) are characterized by their

ability to incorporate new data into running models and simulations as they become

available and to steer data collection, enabling the simulations to receive and utilize the

most relevant data [20, 23]. Plaleet al. [69] use the amount of variance in an ensemble

of weather forecast simulations to collect additional dataand direct additional compu-

tational resources to the areas where additional simulation runs are needed. Flikkema

et al. [28] uses data models to filter observations at the sensors. In this case, the inter-

esting observations are those that do not match the data model, and it is these that are

transmitted for further processing.
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For the approach described in this chapter, the input is a data stream consisting

of the time at which each call is made and the tower with which the caller’s phone

communicates. We transform this data into a standard machine learning data set. Let

the data setD be ann × m matrix with n data items andm features. At regular time

intervals, we construct a data item consisting of the numberof calls made from each

tower.

In this case, we are interested in analyzing how the time series for the towers, which

correspond to the features of our data set, relate to each other. To accomplish this, we

cluster the features, rather than the observations. This isstraightforward to do, as it

only requires taking the transpose of the data matrix prior to applying the clustering

algorithm.

Data clustering is an unsupervised machine learning methodfor grouping the items

of a data setD based on some distance measure. Hierarchical algorithms identify a

nested set of partitions in the data. Most hierarchical methods take an agglomerative

approach, meaning that there are initiallyn clusters, each containing one data item in

D. These clusters are iteratively merged until all of the dataitems belong to the same

cluster. Popular agglomerative clustering algorithms include single-link and complete-

link. To illustrate these two clustering methods, considera graph where the data items

are represented as vertices and edges are added between two vertices in increasing order

of distance between the two corresponding data items. At each step, the clusters in the

single-link approach are the connected components and the clusters in the complete-

link approach are the completely connected components [47].

Rodrigueset al. [74] describe an algorithm for clustering the features of a data

stream. The algorithm is a divisive-agglomerative algorithm that uses a dissimilarity

measure based on correlation along with a Hoeffding bound to determine when clusters
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are split. The algorithm relies on the fact that the pairwisecorrelation of the time se-

ries,corr(~a, ~b), can be computed using a small number of sufficient statistics. For each

time series it is necessary to keep track of
∑n

i=1 ai,
∑n

i=1 bi,
∑n

i=1 a2
i , and

∑n
i=1 b2

i , and for

each pair of time series
∑n

i=1 aibi must be updated with the arrival of each data item.

Additionally, the number of data items that have arrived so far,n, must be known. Ro-

drigueset al. [74] use correlation distance,diss(~a, ~b) = 1−corr(~a, ~b), as a dissimilarity

measure.

An alternative approach, described by [10], applies a univariate model at each loca-

tion and uses methods from percolation theory to determine the impact of an event. We

examine two univariate models: one is simply thez-scores for the time series and the

other uses Holt-Winters forecasting.

Thez-score gives the deviation of a point from the mean in units ofstandard devia-

tion:

zµ,σ =
x− µ
σ

(7.1)

Thez-score is commonly used in statistical process control to identify mechanical prob-

lems [7].

There are two aspects of distributions relevant to thez-score: location and disper-

sion. Most commonly, mean,µ, and standard deviation,σ, are used; however, both

are sensitive to noise which, unfortunately, is present in our datasets. In our particu-

lar case, we have missing records which, when aggregated into call counts, skews the

distribution to the left.

As the number of outliers in a dataset increases, detecting outliers tends to become

more difficult because the outliers begin to affect the data model. There are a few ap-

proaches to dealing with this problem, and we briefly examinetwo: cleaning the data

and using robust outlier detection techniques. Liuet al [54] describe an on-line ap-
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proach for cleaning outliers in time series data using Kalman filters. This approach

replaces outlying points according to the filter. Alternatively, Chainget al [16] de-

scribes several robust outlier detection that can toleratenoise in some fraction of the

data points (up to 50% in some cases). We opt for the latter approach.

The median, ˜µ provides a robust measure of location. Assuming that the distribu-

tion is symmetric, and by using thez-score we are,µ = µ̃ [9]. Rousseeuw and Croux

[75] describe a scale estimator,Qn, that is robust when up to 50% of the data points

are random noise and efficiently estimates the standard deviation for Gaussian distribu-

tions. The scale estimator is the
(
n
2

)

/4 order statistic of the interpoint distances in the

population:

Qn = d
{∣
∣
∣xi − xj

∣
∣
∣ ; i < j

}

((n
2)/4)

(7.2)

whered = 2.2219 is a constant that scales the values ofQn to correspond with those of

σ.

Using the robust location estimator median, ˜µ, and scale estimatorQn, we define a

robustz-score,zµ̃,Qn:

zµ̃,Qn =
x− µ̃
Qn

(7.3)

We denote the standardz-scorezµ,σ.

The second univariate model, Holt-Winters forecasting, estimates the value at a

particular time step as the weighted average of previous observations. LetLt be the

observed value, or level, at timet. The expected level,̃Lt, is the weighted sum of the

current observed value,Lt and the forecasted value at the previous time stepL̃t−1. Let

α ∈ [0,1] be the weight, or smoothing coefficient. Then

L̃t = αLt + (1− α)L̃t−1. (7.4)
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This model can be expanded to account for seasonality by introducing a seasonality

factor, It to the estimate of̃Lt. Let p be the frequency of the seasonality,e.g. if the

period is one year and data is collected monthly,p = 12. The estimate of̃Lt with

multiplicative seasonality becomes

L̃t = α
Lt

It−p
+ (1− α)L̃t−1. (7.5)

The seasonality factor is a weighted sum of the current ratioof observed level to the

forecast level and the past ratios for the particular time interval, whereδ ∈ [0,1] is the

smoothing coefficient for the seasonality:

Ĩt = δ
Lt

L̃t

+ (1− δ)It−p (7.6)

[13, 93].

Alternatively, the seasonality can be additive, in which case the estimate of the level

becomes:

L̃t = α(Lt − It−p) + (1− α)L̃t−1. (7.7)

and the seasonality index is updated by

Ĩt = δ(Lt − L̃t) + (1− δ)It−p. (7.8)

Finally, we add an additional component for the trend for multiplicative seasonality

L̃t = α
Lt

It−p
+ (1− α)(L̃t−1 + Tt−1). (7.9)
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and additive seasonality

L̃t = α(Lt − It−p) + (1− α)L̃t−1 (7.10)

The trend component is the weighed sum of the change in expected level from the last

time step and the previous trend value:

Tt = γ(L̃t − L̃t−1) + (1− γ)Tt−1. (7.11)

In our analysis, we use the additive model because our time series contain inter-

vals where no calls are made, meaning the value at that time is0. As a consequence,

the multiplicative seasonality is undefined. Therefore, wecompute the level, seasonal

index, and trend as follows:

L̃t = α(Lt − It−p) + (1− α)L̃t−1, (7.12)

Ĩt = δ(Lt − L̃t) + (1− δ)It−p, (7.13)

and

Tt = γ(L̃t − L̃t−1) + (1− γ)Tt−1. (7.14)

We use the R implementation of Holt-Winters forecasting, which determines the

initial starting points for the level and trend using linearregression. The initial values

of the seasonal index are obtained by finding the average of the levels,L̄ over the first

period and settingI i = Li − L̄ for i ∈ [1, p] [70].

We use basic percolation theory to combine the results obtained from the univariate

models, following the approach described by Candiaet al [10]. Percolation theory is

concerned with the connected components that arise on a lattice where sites, vertices,
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or bonds, edges, are activated at random, creating a set of subgraphs [32, 82]. Candiaet

al [10] showed the properties of percolating graphs generatedfrom normal data differ

from those generated from data containing a large, anomalous event.

We use an underlying graph built from the locations in the datasets rather than using

a lattice. The locations are represented as vertices and areconnected with an edge if

they are neighbors. For the postal codes, we extract the edges using a PostGIS query

that returns pairs of postal codes that are “touching.” The coverage area of the towers

is typically approximated using a Voronoi lattice [10, 34, 78, 91], so we compute the

Delaunay triangulation, where an edge is present between two towers if their Voronoi

cells share a common edge, to obtain the edges for the tower graph [5].

7.4 Experimental Setup

We examine the expression of two events in real-world cell phone usage data. The

first event is an explosion, and the second is a large gathering, related to a sporting

event. We identify the approximate time and location (latitude and longitude) of the

events using news reports and maps of the city2.

Our data set consists of call records that give the time at which a call is made and the

originating tower of each phone call. We aggregate this datato generate a time series

for each tower that gives the number of calls made in successive 10 minute intervals. In

some cases, we spatially aggregate these time series to obtain the total call activity over

10 minute intervals for all towers in a particular area,e.g.a postal code.

To explore the effect of events on the call activity in the surrounding area, weuse

PostGIS functions to identify the towers within a particular distance of the estimated

location for the relevant time frame and aggregate the towertime series described above

2The events are drawn from real-world data from a particular city. Due to a non-disclosure agreement,
we can not name the city or give specifics of the events.
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to produce a single time series for the area.

We make heavy use ofz-scores throughout this chapter. In computing thesez-score,

we take into account the fact that the values of interest willvary based on the day of

the week and the time of day. Since we are using 10 minute intervals, a week consists

of 1008 intervals. We compute the measures of location and scale for each of these

intervals and use these to compute the relevantz-score at each time step. We also use

the error in Holt-Winters forecasting,eHW, which is the deviation of the predicted value

from the actual value.

7.5 Results

We first look at how the events affect the call volume in the surrounding areas. The

columns in figure 7.1 show the time series of call activities for the five days leading up

to each event. Each row, from the top of the figure to the bottom, includes data from a

larger area surrounding the location of the events. The firstevent (left column) occurs

in the morning on the fifth day, and we see a corresponding increase in call activity

at this time. The severity of this spike in activity decreases as the radius of the area

increases from 1 km to 5 km. The second event (right column) occurs very early in the

morning the fifth day, though we see elevated call activity even before midnight. As

with the first scenario, the spike in call activity becomes less dramatic as a larger area,

up to 2 km in radius, surrounding the event is included.

Next we look at the pairwise distances between the time series of the affected postal

code and its neighbors. Figures 7.2 and 7.3 each show the correlation (both cumulative

and over a sliding window) and Euclidean distances between the postal codes in which

the events occur and the neighboring postal codes for two weeks leading up to the

events. The left columns show the cumulative correlation distance used by Rodrigues
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Figure 7.1. The effect of the event situations on the call activity through the
surrounding cell towers. The left column shows the time series for the first
situation, which occurs at during the morning of the fifth dayin the time

series. The right column shows the time series for the secondsituation, which
occurs very early in the morning on the fifth day. In both cases, the severity of

the activity spike decreases as a greater area is considered.

et al. [74]. The center and right columns show the correlation distance and Euclidean

distance, respectively, over a one day sliding window.

In figure 7.2, we see an increase in each distance measure at the end of each time

series. The cumulative correlation distance has only a slight increase at the end of the

time series when the event happens. These increases are moredramatic in the cases

where a sliding window is used. In the time series in figure 7.2there are two days of

missing data, from 576 to 864 minutes. These missing data arenot noticeable in the

cumulative correlation distance; however, they lead to undefined correlation distances

and Euclidean distances of 0 for 144 time steps when the entire sliding window contains
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0 for all features. In figure 7.3 we see similar increases in distance in most cases. The

fact that the cumulative correlation distance shows only a small increase compared to

the case where only a portion of the history of the time seriesis considered may indicate

that this distance measure is dominated by older observations, making this cumulative

measure insensitive to anomalies. The detrimental affect of old, stale data is discussed

by Aggarwal in [2].
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In figures 7.4 and 7.5, we compare single link clustering dendrograms for a day of

normal activity and the day of the event. We cluster each day of data with the single

link agglomerative algorithm using two different dissimilarity measures: correlation

distance and Euclidean distance. Figure 7.4 shows the clusters for the first emergency

situation. In both the correlation and Euclidean distance clusterings, the distance, the

postal code in which the emergency occurred is significantlylarger than the distance

between any two clusters on the day of normal activity. In figure 7.5, we see a similar

separation of the postal code in which the emergency occurred along with one neighbor

from the remaining clusters, though the increase in distance is not as dramatic as in the

previous case. It is not surprising that the outlying cluster on the day of the emergency

contains two postal codes since there is one postal code, shown by the time series in the

top row of figure 7.3, that does not exhibit an the same increase in distance seen in the

others, indicating that the call activity in that area is also affected by the event.

Applying what we see in these figures, we compute the maximum intercluster dis-

tance for single link clusterings over a sliding window. That is, we run single link until

there are two clusters and compute the distance between them. To put these values in

perspective with respect to the larger dataset, we compute thez-score at each time step.

Figure 7.6 shows thez-scores for the time around the first event (the bombing) using

the postal code level data. The left panel shows the standardz-score,zµ,σ, and the right

shows the robustz-score,zµ̃,Qn. In both cases, the call activity increases in the hour after

the event. This dataset is particularly affected by noise, and by using the more robust

measures of location, ˜µ, and scale,Qn, the inactive time leading up to the event, while

still high, is closer to 0 without affecting the increase inz-score associated with the

event.

Figure 7.7 shows thez-scores for the time around the first emergency using tower
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Figure 7.4. The clustering of the call volume time series forpostal codes
surrounding the first emergency event. The left column showsthe clustering

of one day of normal activity and the right column shows the clustering of the
day of the first emergency event. The leaf representing the postal code in

which the event occurs is marked with an X. For both the correlation distance
(top row) and Euclidean distance (bottom row), the affected postal code is
near other clusters during the day of normal activity but is an outlier during

the day of the event.

level data. The left panel showszµ,σ and the right showszµ̃,Qn. At this level of granular-

ity, we are unable to detect the event. In both plots, we see anincrease approximately

two hours before the event; however, the ranges ofz-scores are very small indicating

that the increase is not substantial.

Figures 7.8 and 7.9 show thez-scores for the time around the second event at the

postal code and tower levels, respectively. At different levels of granularity, we detect

different aspects of this event. At the postal code level, we detect the activities toward

the end of the event, at time 2, after the crowd has gathered with the team. At the tower

levels, we detect activities toward the beginning of the event, around time 0 when the

sporting event ends.
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Figure 7.5. The clustering of the call volume time series forpostal codes
surrounding the second emergency event. The left column shows the

clustering of one day of normal activity and the right columnshows the
clustering of the day of the second emergency event. The leafrepresenting the

postal code in which the event occurs is marked with an X. In this case, the
call activity in one of the neighboring postal codes is also affected by this

event, resulting in an outlying cluster with to data items.

We also use the maximum cluster distance from complete link clustering. Since the

distance between two complete link clusters is the maximum intercluster distance, we

only need to compute the diameter of the set of points in the dataset. Figures 7.10 and

7.11 show thez-scores for the diameter of the data points at the postal codeand tower

levels, respectively. At the postal code level, we do see increases for both the standard

z-scores; however, they only appear a few hours after the event. This makes sense in

light of the fact that the maximum cluster distance for the complete link clusters are

larger than those for single link. This measure is, therefore, less sensitive to a small

number of anomalies in one of the features in the sliding window, so more anomalies

must accumulate before there is an impact on the measure. As with the single link

clustering, we do not detect the event at the postal code level.
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Figure 7.8. Thez-scores of the maximum distance between single link
clusters of the postal code time series over a 12 hour window surrounding the

second event. The standardz-score,zµ,σ appears on the left, and the robust
z-score,zµ̃,Qn, appears on the right.
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Figure 7.9. Thez-scores of the maximum distance between single link
clusters of the tower time series over a 12 hour window surrounding the

second event. The standardz-score,zµ,σ appears on the left, and the robust
z-score,zµ̃,Qn, appears on the right.
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Figure 7.10. Thez-scores of the maximum distance between complete link
clusters of the postal code time series over a 12 hour window surrounding the

first event. The standardz-score,zµ,σ appears on the left, and the robust
z-score,zµ̃,Qn, appears on the right.
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Figure 7.11. Thez-scores of the maximum distance between complete link
clusters of the tower time series over a 12 hour window surrounding the first
event. The standardz-score,zµ,σ appears on the left, and the robustz-score,

zµ̃,Qn, appears on the right.
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Figure 7.12. Thez-scores of the maximum distance between complete link
clusters of the postal code time series over a 12 hour window surrounding the

second event. The standardz-score,zµ,σ appears on the left, and the robust
z-score,zµ̃,Qn, appears on the right.

Figures 7.12 and 7.13 show thez-scores for the diameter of the data points for

the second event at the postal code and tower levels, respectively. As with the single

link clustering, the two levels of granularity detect different aspects of the event. The

z-scores jump at the end of the event when using postal code level data and at the

beginning of the event when using tower level data.

Next, we explore using a univariate model at each location. We use two different

models: the Holt-Winters model where we measure the difference between the value

we expect, based on the model, at each time step and the actualvalue, and a Gaussian

model where we measure thezµ̃,Qn-score.

One way we can use this model to detect events is to simply lookfor outliers at

each location, and when outliers are found, the location with the greatest deviation

from the expected value is assumed to be the location of the event. For each time step

surrounding the two events, we find the location with the greatest deviation from the

expected value and compute its distance from the event. When working with postal

code level data, we use the distance between the postal code centroids; otherwise, we

use the distance between the towers. Figure 7.14 shows thesedistances for the first
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Figure 7.13. Thez-scores of the maximum distance between complete link
clusters of the tower time series over a 12 hour window surrounding the

second event. The standardz-score,zµ,σ appears on the left, and the robust
z-score,zµ̃,Qn, appears on the right.

event (top panel) at the postal code (left) and tower (right)levels. In both cases, we find

the event, with the distance dropping to zero andeHW increasing suddenly shortly after

time 0.

The results are not as clear with the second event, shown in figure 7.15. There is

a spike ineHW around time 1, but there is no corresponding decrease in the distance.

This is likely due to the fact this event involves a migrationof the population from the

stadium to the square (we are measuring the distances from the latter).

Figures 7.16 and 7.17 show the results for the Gaussian model. As with the Holt-

Winters model, the first event can easily be seen at time 0 where the distance drops to

0 and max(zµ̃,Qn) increases sharply. Additionally, this effect is sustained more so than

with the Holt-Winters approach, probably because this model, at each time step, doesn’t

depend on data smoothed at each previous time step. For the second event, we see a

decrease in the distance between times 1 and 2, which corresponds to the gathering of

the crowd. Note that in this case, the event takes place near aboundary between two

postal codes, which is why we see small changes in the distance in the top left after

time 1. The spikes in max(zµ̃,Qn) do not correspond to the decreases in distance, but we
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Figure 7.14. The normalized distance of the location with the maximumeHW

from the location of the event (postal codes on the left and towers on the
right) at each time step in the 12 hours surrounding the first event.

can attribute this to the fact that this data is produced by a large crowd migrating from

one location to another.

Another approach for detecting events using the univariatemodels is to find clusters

of anomalous regions using percolation tools as described in Candiaet al [10]. In this

approach, we build a graph that represents locations as nodes, with edges between two

nodes if they are neighbors,i.e. postal codes or Voronoi cells that share a boundary,

and both are anomalous, based on somez-score threshold at each time step. Once

we have this graph, we identify the largest component as the potential event location.

Figures 7.18 through 7.25 shows the largest component sizesand how this component

size compares to other largest component sizes for the same day of the week and time

of day using thez-score. At no point in these figures does a largest component size

deviate significantly from the expected value. These eventsare significantly smaller
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Figure 7.15. The normalized distance of the location with the maximumeHW

from the location of the event (postal codes on the left and towers on the
right) at each time step in the 12 hours surrounding the second event.

than the one analyzed in [10], and we are unable to detect thembecause they do not

affect a large enough area to generate a large connected component in the percolation

graph.

7.6 Discussion and Conclusions

In this chapter, we have examined the impact of two events on the call activity in

the areas surrounding the events. We have analyzed the relevant data using feature

clustering, a basic Gaussian univariate model, and Holt-Winters forecasting.

The feature clustering approach has the advantage of providing a singlez-score for

identifying whether the call activity is in an anomalous state or not; however there are

some costs associated with this. First, the clustering method does not detect the event as

quickly as the univariate methods due to the sliding window.The first anomalous data
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Figure 7.16. The top panel shows the normalized distance of the location with
the maximumzµ̃,Qn-score from the location of the event (postal codes on the

left and towers on the right) at each time step in the 12 hours surrounding the
first event. The bottom panel shows the maximumzµ̃,Qn-score at each time

step.
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Figure 7.17. The top panel shows the normalized distance of the location with
the maximumzµ̃,Qn-score from the location of the event (postal codes on the

left and towers on the right) at each time step in the 12 hours surrounding the
second event. The bottom panel shows the maximumzµ̃,Qn-score at each time

step.
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Figure 7.18. The fraction of nodes, representing postal codes, in the largest
component of the percolating graphs where the sites are activated when the
zµ,σ-score of the difference of the forecasted call activity from the actual call

activity is {0.5,1.0,1.5,2.0,2.5} (left) and thezµ,σ-score of the largest
component size, taking the day of the week and time of day effects into

account (right) for the first event for the 12 hours surrounding that event.
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Figure 7.19. The fraction of nodes, representing towers, inthe largest
component of the percolating graphs where the sites are activated when the
zµ,σ-score of the difference of the forecasted call activity from the actual call

activity is {0.5,1.0,1.5,2.0,2.5} (left) and thezµ,σ-score of the largest
component size, taking the day of the week and time of day effects into

account (right) for the first event for the 12 hours surrounding that event.
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Figure 7.20. The fraction of nodes, representing postal codes, in the largest
component of the percolating graphs where the sites are activated when the
zµ,σ-score of the difference of the forecasted call activity from the actual call

activity is {0.5,1.0,1.5,2.0,2.5} (left) and thezµ,σ-score of the largest
component size, taking the day of the week and time of day effects into

account (right) for the second event for the 12 hours surrounding that event.
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Figure 7.21. The fraction of nodes, representing towers, inthe largest
component of the percolating graphs where the sites are activated when the
zµ,σ-score of the difference of the forecasted call activity from the actual call

activity is {0.5,1.0,1.5,2.0,2.5} (left) and thezµ,σ-score of the largest
component size, taking the day of the week and time of day effects into

account (right) for the second event for the 12 hours surrounding that event.
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Figure 7.22. The fractions of node, representing postal codes, in the largest
component of the percolating graph where sites are activated at

zµ̃,Qn = {0.5,1.0,1.5,2.0,2.5} (left) and thezµ,σ-score of the largest component
size, taking the day of the week and time of day effects into account (right)

for the first event in the 12 hours surrounding that event.
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Figure 7.23. The fractions of nodes, representing towers, in the largest
component of the percolating graph where sites are activated at

zµ̃,Qn = {0.5,1.0,1.5,2.0,2.5} (left) and thezµ,σ-score of the largest component
size, taking the day of the week and time of day effects into account (right)

for the first event in the 12 hours surrounding that event.
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Figure 7.24. The fractions of node, representing postal codes, in the largest
component of the percolating graph where sites are activated at

zµ̃,Qn = {0.5,1.0,1.5,2.0,2.5} (left) and thezµ,σ-score of the largest component
size, taking the day of the week and time of day effects into account (right)

for the second event in the 12 hours surrounding that event.
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Figure 7.25. The fractions of nodes, representing towers, in the largest
component of the percolating graph where sites are activated at

zµ̃,Qn = {0.5,1.0,1.5,2.0,2.5} (left) and thezµ,σ-score of the largest component
size, taking the day of the week and time of day effects into account (right)

for the first event in the 12 hours surrounding that event.

point will likely not have a major impact on the clustering because the affected time

series will be dominated by normal values; it may take several anomalous data points

before the clustering is affected. As a result, this approach will not be able to detect

short events that do not generate enough anomalous data points to affect the clustering.

Similarly, once an event is detected, it will take time for the anomalous data points to

work their way out of the sliding window, meaning that thez-score will indicate an

anomaly after the event has subsided. This can also cause issues in the case where the

cause of the increase in call activity is moving. It is likelythat only the initial location

of the event would be detected by the feature clustering approach.

While the feature clustering approach has several disadvantages in general, it seems

to be a good option for our application: automatically starting predictive simulations.

The types of events that we are interested in simulating willpersist over longer periods

of time, so it is not desirable to detect short events. In fact, we may consider the

detection of such events to be false positives, since starting simulations for them serves

no purpose and there is a cost associated with starting a simulation suite. Additionally,
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for the same reason, this approach is resistant to isolated (spatially and temporally)

noise that would be identified as events using a simple threshold with the univariate

models. Since the purpose of the system is only to start the simulations, this is not

an issue. Once the simulations are started, they are responsible for gathering more

information as needed. The main drawback that remains is theinability to detect a

second event while the first remains in the sliding window. Itmay be possible to address

this issue by ignoring the time series in the most outlying cluster until the data has been

evicted from the window.
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CHAPTER 8

SUMMARY

In this dissertation, we have described research performedas part of the develop-

ment of the Wireless Phone-Based Emergency Response System. We have described

a data warehouse that serves as a historical data source for the system as well as for

more general research in the topics of complex networks and human mobility. We have

also described a clustering algorithm for the detection andalert system that identifies

potential emergency events in space and time.

The warehouse is designed to facilitate efficient data extract for researchers with

little experience in using relational database systems, allowing them to devote most of

their attention to their research rather than making sense of the organization of the data.

We also identify and discuss an issue associated with the merge of the call records: the

introduction of duplicate records due to clock skew in the CDRdata.

We describe two clustering algorithms, an online algorithmthat, given the correct

parameters, produces a model of the data comparable to offline methods, and a feature

clustering algorithm that detects events causing a significant and localized increase in

call activity. The feature clustering algorithm is suitable for triggering the simulation

and prediction component of the WIPER system as well as givingthe system guidance

on which spatial area is of greatest interest, fulfilling thedata steering aspect of the

dynamic data driven application system paradigm.
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8.1 Contributions

This dissertation makes three notable contributions: first, we present an extension

of the dimensional model for the case where there is a great deal of missing dimensional

data. This model follows naturally from a partitioning of the fact table and allows us

to include foreign key constraints where necessary withoutadding a large number of

empty records to the dimensional tables. In our case, we partition the data based on

whether caller or recipients of voice calls or SMS has an account with a particular

service provider, but this approach could also be applied toareas such as biological net-

works where data is, at this point, still incomplete and being collected experimentally.

Next, we describe an approach for merging noisy, redundant data with very little

supplementary data available to aid in record matching. There are often a number of

identifying fields available for comparison when merging two databases; however, in

our case, we only have the primary key: a timestamp, the caller ID, and the recipient

ID. The problem is further complicated by the fact that theremay be two records with

the same caller ID and recipient ID in quick succession, so looking for small deviations

in the timestamp is not sufficient. We use an approach that merges records that match

in caller ID and recipient ID in increasing order of deviation in timestamp, and we use

a feature of the data, the intercall time distribution, to determine the stopping point.

Finally, we present a feature clustering approach for detecting events and their lo-

cation in real world phone data. We compare this approach to simple univariate models

at each location and find that while this approach takes longer to identify the event, it is

less susceptible to false negatives, which incur a cost in our application.

As evidence of these contributions, we list the presentations and publications that

have come out of this work.
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8.1.1 Presentations

The work in this dissertation has yielded a several of scholarly presentations:

• “Anomaly Detection in a Mobile Communication Network.” North American

Association for Computational Social and Organization Sciences. 2006. Notre

Dame, IN.

• “WIPER: An Emergency Response System.” International Community on Infor-

mation Systems for Crisis Response and Management. 2008. Washington, D.C.

• “Feature Clustering for Data Steering in Dynamic Data DrivenApplication Sys-

tems.” Dynamic Data Driven Application Systems Workshop. International Con-

ference on Computational Science. 2009. Baton Rouge, LA.

8.1.2 Publications

The work has also yielded a number of scholarly publications:

• Alec Pawling, Ping Yan, Julián Candia, Tim Schoenharl, and Greg Madey. “Anomaly

Detection in Streaming Sensor Data,” In:Intelligent Techniques for Warehousing

and Mining Sensor Network Data.Alfredo Cuzzocrea, Ed. IGI Global. Forth-

coming.

• Alec Pawling and Greg Madey. “Feature Clustering for Data Steering in Dy-

namic Data Driven Application Systems.” Computational Science - ICCS 2009:

9th International Conference, Baton Rouge, USA, Proceedings,Part II, Gabrielle

Allen, Jaroslaw Nabrinsky, Edward Seidel, Geert Dick van Albada, Jack J. Don-

garra, and Peter M. A. Sloot (eds), Lecture Notes in Computer Science series, vol

5545, Springer-Verlag, Heidelberg, 2009.
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• Alec Pawling, Tim Schoenharl, Ping Yan, and Greg Madey. “WIPER: An Emer-

gency Response System.” In F. Fiedrich and B. V. de Walle, ed. Proceedings of

the 5th International ISCRAM Conference, 2008.

• Alec Pawling, Nitesh Chawla, and Greg Madey. “Anomaly Detection in a Mo-

bile Communication Network.” Computational & Mathematical Organization

Theory. 13:4, December, 2007.

• Alec Pawling, Nitesh Chawla, and Greg Madey. “Anomaly Detection in a Mo-

bile Communication Network.” In: Proceedings of the Annual Conference of

the North American Association for Computational Social andOrganization Sci-

ences. 2006. (Received Best Student Paper Award).

8.2 Limitations and Future Work

The work we have presented here with respect to the historical data source pro-

vides the foundation for a more comprehensive system in the future. Currently, the

warehouse is an extract machine that allows the researchersto easily and efficiently re-

trieve relevant call records; however, no analysis tools are provided. In describing the

data cleaning process, we present a method for eliminating redundancy resulting from

merging call records from different sources; however, we do not identify the stopping

point of this process. It should also be noted that only a highlevel of data cleaning has

been applied, and additional cleaning specific to a particular type of analysis may be

required before that analysis can be effectively performed.

The stream clustering algorithm we present can produce goodclusterings of the

data, but is highly sensitive to the threshold values. We also do not address the issue

of retiring stale clusters due to the fact our datasets used in the development of this

algorithm cover a relatively short period of time.
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The feature clustering algorithm is limited by the fact thatonce an event occurs, it

will be present in the sliding window for its duration. This makes discovering smaller

events that happen after a large event difficult to detect. This problem may be mitigated

by the simulation and prediction system. Once the initial event has been detected and

the simulations have been started, the changes in call activity that are due to secondary

events, assuming that they are in the area over which the simulations are being run, will

be incorporated into the simulations as they are validated and updated.
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