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Abstract
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Alec Pawling

In this dissertation, we address two problems associatddthe development of
an emergency response system that utilizes a cell phonerneas a sensor network to
facilitate the initiation and online validation of predie simulations. Schoenharl [77]
describes the simulation component of the emergency resEystem; this dissertation
addresses two other significant components of the systenmigtorical data source and
the detection and alert system.

The historical data source is a data warehouse designedilitate the development
of additional simulation models for the predictive compainef the system and has
wider applications for scientific research on social neks@nd human mobility.

The detection and alert system provides an automatic meschdar initiating the
simulation system without intervention by emergency respananagers. This system
identifies potential emergency events in both time and s@dloeving the simulations
to begin shortly after an event as well as focus on the dfeatad by the event, reducing

the computational costs significantly.
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CHAPTER 1

INTRODUCTION

In this dissertation, we address two problems associatddthe development of
an emergency response system that utilizes a cell phonerneas a sensor network to
facilitate the initiation and online validation of predia simulations. Schoenharl [77]
describes the simulation component of the emergency resEystem; this dissertation
addresses two other significant components of the systenmigtorical data source and
the detection and alert system.

The historical data source is a data warehouse designeditivate the develop-
ment of additional simulation models for the predictive gament of the system and
has wider applications for scientific research on socialosts and human mobility. In
this dissertation, we consider two aspects of the data wasshin detail: 1) the design,
which, given the way in which the data is provided, is treaed data reduction and
partitioning problem to facilitatefécient access, and 2) a data cleaning problem which
addresses the necessary issues to permit us to assess tiiaghubaess of merging
multiple, noisy data sets that, in theory, describe the ssehef interactions. In prac-
tice, we discover that noise in the data introduces redunéanrds when merged.

The detection and alert system provides an automatic meschdar initiating the
simulation system without intervention by emergency respananagers. This system

identifies potential emergency events in both time and sdlogving the simulations to



begin shortly after an event and focus on the aféected by the event, significantly re-
ducing the computational costs. We present two clustetiggyighms implemented for
the detection and alert system. The first algorithm, a ons, pasremental algorithm,
is not able to detect events in the data; however, given threcioparameterization, it
produces a model of a data set of comparable quality taf@inealgorithm. The sec-
ond algorithm, a feature clustering algorithm over a stidivindow, allows us to detect
events that results in a spike in call activity, and, whekdohwith the information used

to generate the data set, gives a spatial location of the.even

1.1 Organization

The remainder of this chapter provides the context for teearech presented in this
document. We discuss the motivating application, the \Wg®IPhone Based Emer-
gency Response System, and it's underlying concept, DynBxaiia-Driven Applica-
tion Systems.

The remainder of the document is split into two parts: the pest describes the
historical data source. Chapter 2 provides a backgroundtabdae management sys-
tems and data warehousing relevant to the development dfisharical data source.
Chapter 3 discusses the significant aspects of the desige dfigtorical data source,
often motivated by the way the data has been used in reseaathk past. Chapter 4
describes an approach for matching redundant recorddutenl due to noise when
merging the various aspects of the cell phone usage data.

The second part describes the detection and alert systenpteCitagives a back-
ground in data clustering relevant to the development otl#tection and alert system.
Chapter 6 describes a novel one-pass incremental clust@gogthm. Chapter 7 de-

scribes an approach for event detection using featureecingtover a sliding window



of time series, each associated with a spatial locatiomdJsiis approach, we identify

anomalies in a subset of the time series, which indicateoibation of interest.

1.2 Background

1.2.1 The Wireless Phone Based Emergency Response System

The Wireless Phone-Based Emergency Response (WIPER) systeprasfeof-
concept prototype designed to utilize a cell-phone netvasrk set of sensors for gath-
ering and presenting data to emergency response managersy3tem would monitor
the network data in real time for anomalous activity, runidations to predict pop-
ulation movement during a crisis, and provide emergencyaese managers with a
current view of the fiected area using GIS tools [56, 57, 78, 9]

Existing software tools, such as EVResponse [88] and COMBIN&E) provide
mechanisms for manually gathering information relatinghecurrent status of a crisis
situation. There is a high cost associated with such systetasms of time and money.
Wireless devices and network infrastructure must be pwehéo facilitate data collec-
tion, personnel must be trained to use the technology, arsbpeel must be deployed
to the dfected area to collect the data. In contrast, WIPER providesnration about
the situation through a pre-existing network, requiringimeestment in infrastructure
or deployment; however, we gain these advantages at thefcdata flexibility.

To counteract the limitations of the data, the WIPER systedesgned to use ma-
chine learning methods to generate hypotheses about tsesatianomalies detected
in the data. These hypotheses are tested using a dynamurol@aapplication system
of simulations. Dynamic data driven application systemB[IAS) are characterized

by an ability to incorporate new data into running simulatioResearch in DDDAS is

Portions of this section were published in the Proceediftfsecsth International ISCRAM Confer-
ence [67]



motivated by a need for greater accuracy in complex simaratie.g. simulations for
predicting weather or wildfire propagation [22]. Once the BMRPsystem detects an
anomaly, it will start a suite of simulations based on thedilipses generated. These
simulations will be validated using new data as it becomedable, allowing simula-
tions that do not reflect the real world situation to be didedr

In addition to the prediction capabilities, WIPER will prdei the ability to view the
development of a crisis in real-time, the ability to propasd evaluate responses in near
real-time, and the ability to collect and analyze streanmirigrmation from a cellular
communication network. The WIPER system will analyze dyrtadaita from the cell
phone network in real-time, providing the functionalitydetect crises as they emerge.
Responding to events from the anomaly detection systemp@s8e simulations of the
region will be launched and results collated and presentpthtiners. Finally, the web-
based console will allow emergency response managerschlg@xamine the current
state of the environment, see predicted outcomes from thelaiions, and evaluate
possible courses of action.

The WIPER system consists of five components, each of whicassribed briefly

below.

e The Decision Support System (DSS) is a web-based front emdigh which

emergency response managers interact with the WIPER system.

e The Detection and Alert System (DAS) monitors streamingvodt data for
anomalous activity. There are various aspects of the telhp network data
that may be of interest, including overall usage levelstigpdistribution of the

call activity, and the underlying social network.

e The Simulation and Prediction System (SPS) receives aryoataits from the

DAS, produces hypotheses that describe the anomaly, asdsuselations in



conjunction with streaming activity data to validate oejhypotheses.

e The Historical Data Source (HIS) is a repository of cell phoetwork data that
resides in secondary storage. This data is used to detetingi@se-line behavior
of the network against which anomalies are detected anditodieally calibrate

and update the DAS.

e The Real-Time Data Source (RTDS) is designed to receivedctios data di-
rectly from a cellular service provider. The RTDS is respoiesfor handling
requests for streaming data from the DAS, SPS, and DDS agalsing incom-

ing data to these components in real-time.

Figure 1 shows an architectural overview of the WIPER syst&ime RTDS and
HIS will provide the bridge from the service provider and tWPER system. The
figure shows the flow of streaming data from the service peavidrough the RTDS,
possibly by way of the HIS for development and training, amthe remaining compo-
nents. Requests for streaming data from the RTDS occur viaFSi@éssages. SOAP
messages are also used by the DAS to inform the SPS of pdtantenalies in the
streaming data.

In this dissertation, we develop two components of the WIP¥Resn: the histori-

cal data source, in the form of a data warehouse, and thetidetend alert system.

1.2.2 Dynamic Data Driven Application Systems

Dynamic data driven application systems (DDDAS) simuladiand models make
use of new data (typically provided by a sensor network) be¢omes available. This
data validates and steers running simulations in order poawe their quality. Dynamic

data driven application systems typically consist of thceeponents: a simulation



Detection and Alert System Simulation and Prediction System

Detection, Simulation and Prediction

—_ Streaming data

-----3 SOAP Requests

Figure 1.1. WIPER system architecture.

system, a sensor network, and a software system that peodiata from the sensor
network to the simulation system as requested [20].
Darema [20] identifies four areas of research that are naeks the development

of DDDAS applications:
e Application simulations must be able to utilize new dataatyically at runtime.

e Mathematical algorithms that ensure stability and robessnvhen subjected to

dynamic inputs.

e Systems software provide fault tolerance and a certain tdwpuality of service
to ensure that the applications are makingdfisient progress (several DDDAS
applications must run faster than real time), and that tipdicagions can receive

the streaming data required to improve accuracy.



e Interfaces to measurement infrastructure, such as wiakessor networks, for

management of data collection.

There are several DDDAS applications related to the probd¢mmmergency re-
sponse under development. We briefly describe two of thgd&capons below.

The Vehicle-Infrastructure Integration initiative usesedof roadside and in-vehicle
sensors to monitor tfac flow and evaluate the highway system. The system also pro-
vides emergency detection and response support by dejetiamges in flow of tiféic,
even in cases where part of the sensor network is lost, amingialistributed simula-
tions in support of a dynamic emergency response plan [30].

The iRevive system is intended to help emergency responaléns triage phase of
mass casualty emergencies. The system uses data recemeglthvireless hand-held
computers carried by emergency responders and sensordh#@bnpatient vital signs
to help the responders determine the order in which pataettreated [31].

Additionally, DDDAS application systems have been appt@groblems such as
agent based simulation [80], wildfire forecasting [58], siation of fire spreading in a

building [14], hurricane forecasting [4], and weather f@sting [71].



CHAPTER 2

BACKGROUND ON DATABASE MANAGEMENT SYSTEMS AND DATA
WAREHOUSING

In this chapter, we provide background information on dasgomanagement sys-
tems and data warehousing. Database management systditigrtedly provide trans-
action processing in a manner that protects data consystena particular operation,
a business for instance. In the first section of this chapterdiscuss the elements of
database management systems that are relevant to the iemghgion of the historical
data source. More recently, database management systemprioaided a foundation
for data analysis associated with decision support in lesses. The long term data
required for this type of analysis is stored in a data warehpwhich is discussed in

the second part of this chapter.

2.1 Database Management Systems

Database management systems provide a number of advawotzgessing tradi-
tional file storage, including concurrency control, datatection via transaction log-
ging, and dicient data extraction and manipulation in a manner thagissprarent to

the user or application developer.



2.1.1 Introduction to the Relational Model

The relational data models used in database today is firstided by Codd in a
seminal paper [18]. The model was introduced as a found&bioaddressing a num-
ber of existing problems in information systems at the tieveral of these problems
related to data dependencies that have the potential ttequezblems when the under-
lying data storage format changes. These dependencieslnttiose that arise when
information systems rely on a particular data ordering pifesence of indexes on par-
ticular elements of the data, and the underlying orgaromatif the files storing the
data.

The model describes data in terms of relations. Rel&ita set oh-tuples where
each element of the tuples are drawn from a set ofSgtS,, ..., S, which define the
domains of each column, or field. Lete R be a row of the relation. A row can be
expressed as = (S, S,...,S) Wheres, € S1, 9 € S,,... 8, € S, or, equivalently,
reS;xS;x---x S, Along with this definition of a relation, certain propediare
specified: each row in the relation must be distinct and naraptions can be made
about the order in which the rows are stored [18].

With the requirement that each row is distinct, a mechanismdentifying each
row is specified. Aprimary key defined as a set of fields serves as a unique identifier
for the records in a relation, serves this purpose. The pyirkay can be referenced
by other relations to link the two relations. Suppases a primary key in relatiofRy,
andR; is a relation that contains some fiedgdthat has the same domain gsand is
used to refer to records R;. In this case we calf; aforeign key{18]. The definition
of primary and foreign keys provide a mechanism for the dgmusition of tables with
compound attributes. The compound attributes can be maxedhew relations after

adding a foreign key that maps the new to the correspondaagaden the original table



[18].

2.1.2 Key Constraints

The uniqueness of records, as described by Codd [18], iseaddry akey con-
straint, which is a minimal subset of fields that uniquely identifigs@le in a relation.
More generally, the set afandidate keysonsists of all key constraints of a relation,
and asuperkeys a set of fields that is a super set of a candidate key [72].

More formally, a keys can be defined as a functional depend&uppose we have
a relationR and thatX andY are two disjoint subsets of the fieldsk Y is func-
tionally dependentn X if for two instances ofX, X; andX, and two instances Q¥,
Y, andY,, X; = X, implies thaty, = V,. If X andY are a partition of the fields in
R, thenX is a superkey. Functional dependenciestawal in the case wherg is a
superset o/. Suppose that for a functional relatidh— Y we remove one attribute in
X. If the functional dependency no longer holdéjs said to beully functionally de-
pendenbn X; otherwise, it is gartial functional dependencyurthermore, functional
dependencies have the property of transitivity:Xet> Z andZ — Y be functional

dependencies, theXi — Y is atransitive functional dependengg5].

2.1.3 Normalization

Database normalization provides a mechanism for elimmgatiata redundancy,

which, if not eliminated, can lead to several problems:

e Update anomalies: This type of anomaly occurs when an upgdaedata item
stored in multiple locations is not applied to all instanoéthat data item in the

database. In this case, the database becomes inconsistent.

10



¢ Insert anomalies: This type of anomaly occurs when an igstarfi redundant

data containing an error is added to the database.

e Delete anomalies: This type of anomaly occurs when the hasamnce of redun-
dant data is removed from the database because the instatiee entity it is

associated with is removed, even though it is beneficialtairrehis data [25].

Normal forms enforce particular relationships betweerptimaary key of a relation
and the remaining attributes. First through third normaii® provide a progression of
increasingly strict constraints on the nature of functiatependencies present in the
relation: each form must conform to the requirements of ml/us normal forms as
well as its own particular constraint. First normal formynéquires that each field
of a relation consist of a single item. Second normal formunes that fields that
are not part of the primary key be fully functionally dependen the primary key.
Third normal form forbids any field not in the primary key frobeing transitively
functionally dependent on the primary key. Boyce-Codd noffiorah forbids elements

of the primary key from being functionally dependent on atheo set of fields [25].

2.1.4 Relational Algebra

Relational algebra is a formal query language on the relakiorodel. It consists
of two types of operations: set-theoretic operations atatiom-theoretic operations.
The set-theoretic operations are used to combine relatising the standard set opera-
tions: union Q), difference {), intersection ), and Cartesian produck). The union,
difference, and intersection operations requm@sn compatibilityof the two relations,
I.e. the two relations have the same number of fields and the gamegng fields are
of the same type. The relation-theoretic operations camsthe set and fields that are

returned by the query. The select operatar,returns the set af--tuples for which a

11



conditioni holds, and the project;, operator constrains the members of each tuple

returned to the set C {Ry, Ry, ..., R} [72, 84].

2.1.4.1 Relational Join Operations

The join operations extend the set operations to pairs afiogls that are not union
compatible, assuming that there is some subset of the tatbaes that are union com-
patible. There are two types of join operations: inner joinkich are analogous to
set intersection; and outer joins, which are analogousttarsen. Each join has an
associated boolean conditiah that gives the selection criteria for inner joins [25, 72].

LetR = (R, Ry, ..., Ry) andS = (51, S,, . . ., Sy be two relations. The inner join
of R and S gives a relationRy, Ry, ..., Ry, S1,S,, . .., Spe) such that some boolean
conditiond on a union compatible subset of attributesRoand S holds, e.g. let 8 be
R, = S1 AR, = S, where R, R;) and S;, S,) are union compatible attributes. The

inner join, <y, is, therefore, defined as a selection on a Cartesian product:

R  S= O'Rlzsl(R X S) (21)

Ri1=S1

[25, 72].

The outer join,xy, is a super set of the inner join where all of the recordfin
andSthat are not in the inner join are added to the resultingigigtadded with null
values as necessary. Here we derive the relational alggprassion for an outer join

following the description from [25]:

¢ We already know how to express the inner join:

RS (2.2)

12



e We compute set flierence to find the elementsiRandS that are not in the inner
join:

R- 7TR1,R2,~-.RnR (Rli: S) (23)

S — TRyR. ..., Sns (RDH<1 S) (24)

¢ We need to take the union of the two expressions above; hoyweeanust first
make them union compatible with the inner join by paddingdbediferences

with ns-tuples andhr-tuples populated with null values, representeddby

(R—an,Rz ,,,,, - (R»; s)) X [w, w,...,w] (2.5)
Ns
{w, w,..., w] X (S — 7S, S,...Sn (RM S)) (2.6)
2 e s\ g
NR

e The outer join is the union of equations 2.2, 2.5, and 2.6:

(2.7)

There are two commonly used subsets of the outer join: theulgér join and right

outer join. The left outer join is the union of the inner joiftloe two tables and the null
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padded rows of the left table that are not in the inner join:
RxS= (R»«s)u (R o (RMS))X (@, ..., ) (2.8)
7] e

The right outer join is the union of the inner join and the mabdded rows of the right
table that are not in the inner join:

0

RxS:(RMS)U (w,a),...,w)x(S—ﬂsl,gzmsn (RMS)) (2.9)
0 — e »eoNg 9

Nng

[25, 72].

2.1.5 Algorithms

In this section, we describe algorithms commonly used bglilete management
systems for binary operations within the database, settipas and joins in particular.
These operations require identifying whether two recordcimon some subset of the
field values, and there are two widely used approaches ofrgaching this: sorting
and hashing. Once it is determined whether the rows matcbtothre combined rows
are either added to the result set or discarded, dependitigegrarticular operation.

To sort relations too large to store in main memory, the datpaititioned into
subsets that will fit into memory, and each of these subseisried and stored. These
stored, sorted partitions of the data are then merged tiegun a fully sorted relation
[25, 72].

Database hashing algorithms utilize two steps: a partitgpistep and a probing
step. The partitioning step of the basic hash algorithmdisudl hash from the smaller

of the two relations using a hash functibnor partitions it. The second relation is
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then scanned, hashed, and the original hash is then prols&tdomine if there is a
matching record. In cases where the hash of the smaller wbl@ot fit in main
memory, a second hash functiam,, is used to partition both relations, ideally into
subsets of approximately uniform size. Using the same hasttibn to partition both
relations means that matching records in the two relatioesaund in corresponding
partitions, so the probing step consists of iterating thlothe partitions, probing for
matching hashes usirtg This requires two passes over the table, but maintains the

O(1) time complexity of the basic hashing algorithm [25, 72].

2.1.6 Concurrency Control

In many cases, it is desirable to permit concurrent updatesdatabase; however,
if not handled correctly, problems can arise. The main @wobis maintaining consis-
tency; and this problem is addressed using the conceptmdactions in conjunction
with table locking.

Conceptually, transactions can be thought of as a group abdae operations—
select, insert, update, delete—that perform a single &gperation. For example,
suppose we want to move a record from one table to a anothertrainsaction would
consist of inserting the record into the target table andokeng it from the source
table. If either of these operations fails, the goal is nbiecd.

Each transaction must maintain the consistency of the databSince database
consistency is, to a certain extent, application indepefyddae DBMS cannot be re-
sponsible for thisi.e. it is the responsibility of the application developer. If@hns-
actions maintain the consistency of the database, the DBM®msure consistency by
ensuring that each transaction is atomic: either everpadti the transaction is com-

pleted or no action is completed. After all components ofaagaction are executed,

15



the transaction is finalized with a “commit” operation. Orte transaction has been
committed, it must persist in storage: a property callecbiity. Finally, each trans-
action must execute in isolation; that is, it cannot fe@ed by any other transaction
that is running concurrently. [72]

Isolation of transactions is directly related to the isstisahedule serializability.
Suppose there is a set of transactions that are run contyrrénis set of transactions
is said to be serializable if the result of the concurrentcaken is guaranteed to be
equivalent to the result of one of the possible serial exenigchedules for the set of
transactions, without any guarantee of the result matcaipgrticular serial schedule.
[72].

There are three issues that can arise when concurrent execugllows without

ensuring serializability:
¢ Dirty read: uncommitted data from another transactionasire

e Non-repeatable read: a commit by another transactiontsegulconsecutive

reads of the same data item producinfjedient values.

e Phantom read: a commit by another transaction results itbmusecutive execu-

tions of the same query to producdfdrent set of rows [87].

Two phase locking can be used to guarantee serializablhityhis scheme, each
data item can be locked in one of two ways: 1) a shared locktamdd to read a value
and allows other transactions to also obtain shared loott2pan exclusive lock must
be acquired to write an object and can only be obtained wheeddta item is not locked
by any other transaction. Once an exclusive lock is held,dutianal locks, shared
or exclusive can be acquired on the data item. During thegdlrase of the two phase

locking protocol, all needed locks are obtained, no loclesrateased, and no lock is
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downgraded from exclusive to shared. In the second phddecks$ are released, no
locks are obtained, and no locks are upgraded from sharecthoseve [72].

An alternative approach, and the approach relevant to th& w@sented in this
dissertation, is multiversion concurrency control. Irstbase, some history of values
for each data item is maintained. Each transaction, upoiation, is labelled with a
timestamp that indicates when execution began. When a \alused, the most recent
value of the data item that was committed before the trafmsabegan is read. Write
operations are blocked if there is a shared lock on the data liteld by a transaction
started more recently [72].

Some database management systems use multiversion camguoontrol but do
not ensure serializability by default,g. PostgreSQL. Serializability is the highest of
four isolation levels, and for each increase in isolatismeleone additional anomaly of

concurrent access is prevented:

e Read Uncommitted: all anomalies are possible.
e Read Committed: prevents only dirty reads.
¢ Repeatable read: prevents dirty and unrepeatable reads.

e Serializable: prevents all anomalies.

By default, PostgreSQL uses the read committed isolatiogl,|ehich, in general, is
not a problem for our application; however, it does raise deit@ loading issue which

we describe in Chapter 3 [87].

2.2 Data Warehousing

Data warehouses serve a fundamentalffedgent function than databases. Databases

are typically used to store operational data that must nemyaito date; data warehouse
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store historical data.

2.2.1 Warehouse Design

In his canonical work on data warehousing, Inmon [45] déssiseveral important
elements of warehouse design, including granularityjtgarng, and normalization.

According to Inmon, the most important of these is the grarnityl of the data. The
granularity refers to the level of detail of the stored datag Inmon provides a very

concise explanation regarding the importance of choosiegorrect granularity:

Granularity is the single most critical design issue in théadvarehouse
environment because it profoundlffects the volume of data that resides
in the data warehouse and the type of query that can be arby4&ie
Data with higher granularity can be store in less space; tiexyéewer types of results
can be obtained from the data [45].

Another significant aspect of warehouse design is datatipartig. Without par-
titioning, certain tables in the warehouse may become ge lrat they are no longer
manageable with respect to indexing, sequential scangjaadeorganization. There
are two approaches to data partitioning: system level aptcapion level. In system
level partitioning, the partitioning of the data is handl®dthe database management
system. In application level partitioning, the partitiogiis handled by the applications
developed for manipulating the warehouse and in this casedirtitioning scheme is
not represented in the database management system in anyGgagrally, the latter
is preferred because it is the more flexible approach. Tha oh@wback of the sys-
tem level partitioning is that, often, only a single data wni@bn is permitted for the
partitions of a particular relation [45]. For example, insRpyeSQL table partitioning
is accomplished by creating a root table that will contairraws and creating a set of

tables that inherit the fields of this table. Querying thet table accesses the rows in
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the children. Since all tables in the partitioning for a $inlpgical table represented
by the parent, they must have the same set of fields. The eterokthe partition can,
however, be indexed independently. Additionally, eacimelet of the partition can be
defined with field constraints to ensure that each row is iadento the proper parti-
tion. These constraints can also be leveraged by the quampet to exclude scans of
partition elements that do not contain any relevant recf@ds

The final aspect of warehouse design that we will discussadhdata normal-
ization vs. denormalization. The tradé-¢o consider in this case is that of storage
requirements and® cost. The issues of update and delete anomalies are natmele
since, once populated, the warehouse is a read-only dataiteqy. Insertion anoma-
lies can be handled by the data loading applications. Dataal@ation reduces the
redundancy in the data and, therefore, reduces the volura®Ege required for the
data. The cost of the reduction in storage requirements savhen the data must be
retrieved: the records must be re-assembled from varitesszand accessing each ta-
ble incur JO costs. In some cases, two levels of normalization are useztitice both
storage and/O costs. Data that is accessed often remains in a less need&irm and

data that is rarely accessed is stored in a more normalized[#b].
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CHAPTER 3

DESIGNING A DATA WAREHOUSE FOR SOCIAL NETWORK AND HUMAN
MOBILITY RESEARCH

3.1 Introduction

In this chapter, we describe a data warehouse for complevonieand human mo-
bility research. The warehouse currently stores 14 moritlealbdata from a cellular
service provider and continues to grow.

Motivated by dificulties in dealing with the flat files provided by the serviceider
and the fact that researchers often perform the same setafinly steps before using
the data, we move the data into a database management systeyaneral cleaning
of the data, and organize the records using a star schemalaledp@artitioning. Our
goal is to provide a repository foffecient extraction of subsets for the data for specific
research projects through simple SQL queries.

This chapter is organized as follows: section 3.2 discussdated work in data or-
ganization, section 3.3 describes the design of the wassh@ection 3.4 describes the
implementation of the warehouse, including a descriptigh®flat files from which the
data is obtained (section 3.4.1), the data validation aadifg process (section 3.4.2,

and merging and partitioning of the usage table (sectioh® 3&nd 3.4.6, respectively).
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3.2 Related Work

Traditionally, researchers in the sciences have reliedtamdardized file formats
for organizing data and achieving data independence. Fongbe, the Flexible Image
Transport System (FITS) is a data format developed for sgamages from telescopes.
The format consists of a header that contains the informatimut the data, the meta-
data, required toféectively use the images along with the data itself [92]. Tle¢QDF
file format was developed for a similar purpose in the atmesplsciences community.
NetCDF is an extension of NASA's Common Data Format and usl@an’s eXternal
Data Representation to store the data in a machine indepemaaner [73]. The Hier-
archical Data Format (HDF) is a library for sharing techharad scientific data using
a “self-describing” file format [29].

A major drawback of these early file formats is the lack of a @dul search func-
tion. As the volume of available data increases, the exjdtimctionality to find the
data items of interest becomes prohibitively expensivé. [36

The lack of adequate search functionality also arises iimtniomatic databases; the
INTERACT database for the study of protein interactions wasldped in response
to this issue as well as the problem that protein interags@pread over a number of
distinct databases [24]. Development of the INTERACT datalass motivated by the
difficulty in extracting protein interaction data from the ygasitein database (YPD)
[43] and the yeast genome database of the Munich Inform&emnter for Protein Se-
quences (MIPS) [61]. The Yeast Protein Database (YPD) amtaanually curated
documents about each protein foundSaccharomyces cerevisiaand it is in these
documents that the interaction data is found [43]. The Mumhidormation Center for
Protein Sequences (MIPS) yeast genome database alsonsonfarmation about the

proteins found irSaccharomyces cerevisjdaut is organized by gene name [61]. The
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INTERACT database contains the data from the MIPS databasg alih data pro-
vided by scientists and data from the literature organimesich a way that researchers
studying protein interactions can readily obtain relevdeita. The design was devel-
oped in consultation with potential users.

In the bioinformatics community, the data has become spaesuks a large number
of databases. It is often desirable to access data disdladross multiple locations;
consequently, three techniques have arisen to accompish 1) link driven federa-
tion, 2) view integration, and 3) data warehousing. Linksen federation consist of
links in the results of one data source that direct usersddiadal information. View
integration provides a query system that, in turn, querigstaf remote sites, receives
and processes the results, and presents an integratetiteethe user. A data ware-
house stores the data from the remote sites at a centraidodat]. More recently,
several additional warehousing systems have been dewvklmmtuding EnsMart [48],
BioWarehouse [53], and the Biochemical Network Database (BNBB))

Additionally, very large databases are found in the areaswbnomy and high en-
ergy physics. As of 2005 the Sloan Digital Sky Survey (SDSR) approximately 50
TB of raw image data. From this data, 1.6 TB of catalog datéveérfrom the raw
images, organized, and stored in an database and madeb&vaitdine through Sky-
Server via a number of query mechanisms [1, 62]. The storeg@nements for high
energy physics research are even greater. As of 2005, the BaBdrase, developed at
CERN, contained approximately 10 billion data items and megui.3 PB of storage.
The data is accessed through the metadata, which is heasléyxed to improve access
efficiency [6].

The system we describe in this chapter merges data fromptaiburces in a single

company and organizes the data to alldticeent access.
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3.3 Warehouse Design

In this section, we describe the design of the warehouse. a&ferithe the data set
and the database schema used to organize the data in thastatahnagement system.
Additionally, we describe our data partitioning approalétt in many cases, prunes

irrelevant rows from the table scans.

3.3.1 Data Overview

Our warehouse consists of three major tables: the usage dasicribes service
usage on the network, the customer table which describesugtemers of the service
provider, and the antenna table which provides locatioarméation associated with
the towers owned by the service provider. Note that all usentifiers have been de-
identified by the service provider. Tables 3.1, 3.2, and &8cdbe the fields of the
usage, customer, and antenna tables, respectively.

Each record in the usage table can be uniquely identified &yite at which the
service is activated, the de-identified account initiatihg service, the de-identified
account receiving the service, and the type of service batcugssed; therefore, of
the fields in the usage tabletart time, call from, call to, service form the
primary key. Thecall from andcall to fields can be linked to additional data
when they contain values corresponding to current indaficwstomers of the com-
pany. Theantenna from andantenna to fields can be linked to geographical infor-

mation found in thentenna table.

For simplicity, we limit the discussion of the customer dedehe fields that are

relevant to the design; specifically, the fields that allowtauglentify active accounts
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TABLE 3.1

DESCRIPTION OF THE FIELDS IN THE USAGE TABLE

Field name Description

start time The time the service is activated

call from The account initiating the service

call to The account receiving the service

service The type of service being accessed. call, SMS

destination code A company generated code providing additional information
about the recipient

duration The length of time the service is in use

cost The amount charged to the account for the usage instance
antenna from The antenna the initiating device is connected to

antenna to The antenna the receiving device is connected to

of the service provider in the usage data: the activatios,dae day the account was
opened, the disconnect date, the day the account was cloeatl ibthe account is still
open, and the service type, which indicates whether theuat® prepaid or postpaid.
We use these fields to partition the usage data based on witethealler and recipient
have active accounts with the service provider.

Similarly, we link the antenna fields in the usage data to &et#iat gives loca-
tion information for the company’s towers. Each antennanigjuely identified by an
integer ID. For many of these antennas we have the locaticgheotower (latitude
and longitude). We also have GIS data describing variousifes of the geographical
area covered by the phone data that we include in tables tidggtee spatial queries.

The most prominent of these features is a set of shape filéesidsaribe the postal
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TABLE 3.2

DESCRIPTION OF THE FIELDS IN THE CUSTOMER TABLE

Field Name Description

effective date  The month in which the record for the account was last up-
dated.

phone id The de-identified phone number identifying the account.
activation date The date on which the account was connected.

disconnect date The date on which the account was terminated. This field is
NULL for accounts that are active on thi&estive date.

service type The type of payment plan for the account: prepaid or post-
paid.

codes. From these values, we add additional fields to thematable: theower field
uniquely identifies each distinct antenna location, theer point is a shape object
that contains the geographic point of the tower, thetal code andpostal code
points identify the postal code containing the tower, areldity identifies the city in
which the tower is located.

The customer and antenna tables are relatively small; henvine usage table con-
tains at least 1 billion records per month. In the next saectige describe how the data

is partitioned into subsets of manageable size.

3.3.2 Usage Table Partitioning

We partition the usage table for two reasons: 1) there arkkwelvn performance
benefits to partitioning the fact table of a data warehoudg phd 2) there are subsets

of the data that the researchers are likely to want that caneéspartitioned to eliminate
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TABLE 3.3

DESCRIPTION OF THE FIELDS IN THE ANTENNA TABLE

Field Name Description

antenna An integer uniquely identifying the antenna.

tower An integer identifying the tower on which the antenna
is mounted.

latitude The latitude of the tower.

longitude The longitude of the tower.

tower point

tower voronoi cell

postal code

postal code shape

city

A geometry field containing the point at which the
tower is located.

A geometry field containing the boundary of the cell of
a Voronoi diagram containing the tower.

The postal code containing the tower.

A geometry field containing the boundary of the postal
code containing the tower.

The name of the city in which the tower is located.

the need to perform sequential scans or joins over the esgtref usage records.

We look to past publications using the dataset and convensawith the researchers

to develop the partition hierarchy. In practice, the datafien filtered along two axes:

1) service type and 2) the relationship of the accounts wigservice provider.

In most cases, the only services of interest are voice catlsSMS: Onnelaet al.

[63] use only voice calls in their study of graph robustnegh wespect to the removal

of ties of varying strength. Goakezet al. [34] and Wanget al. [91] use only voice

calls SMS in their studies of human mobility and the spregdifiviruses to mobile

phones, respectively. We, therefore, partition the rezantb three tables based on
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<<table>>
Usage
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<<table>> <<table>> <<table>>
Voice SMS Other

Figure 3.1. The service hierarchy.

service: one table contains only voice call records, a stalle contains only SMS
records, and a third table contains the records of all omices. Figure 3.1 illustrates
this portion of the hierarchy.

Additionally, it is often desirable to partition the recerdased on whether the caller
and recipient are current customers of the company bechas#ata is most complete
for this set of accounts. Onne&t al. [63] use only records where both the caller
and recipient are current customers of the company so teatiave the complete call
activity for each node in the network. In human mobility sas] it may be sfiicient
to restrict only the caller to current customers of the conypEnd impose no constraint
on the recipient, depending on the role of the social netwotke study.

We partition the usage data into 4 groups based on whetheatle and recipient

are current customers of the company based on the dataldeaiidahe customer table:
¢ in-in: both the caller and recipient are current
¢ in-out only the caller is a current customer
e out-in: only the recipient is a current customer
e out-out neither the caller nor the recipient are current customers

We also partition the usage records based on whether “inemket users have pre-

paid or postpaid accounts. Figure 3.2 illustrates thisigordf the hierarchy for the
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voice call service. Identical hierarchies exist for the “SMind “other” branches of the

usage hierarchy.
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3.3.3 Schema

We use a variant of the star schema for the warehouse. Thecstama consists of
two components: the fact table, which contains a history esurements taken over a
period of time, and the dimensional tables, which contagtdptive information about
elements of the fact table. The elements in the fact tableedaged to records in the
dimensional table using foreign key constraints [50]. Inwarehouse, the usage table
is the fact table and the customer and antenna tables arasionel tables. Figure 3.3
shows the tables organized in a standard star schema.

Unfortunately, the dimensional model is problematic for warehouse because the
foreign key constraint requires that for each value in a fesdglociated with a dimen-
sional tableg.g. call_from, there must be a corresponding record in the dimensional
table. Our records include calls to and from phones ownedisiomers of other com-
panies, so we do not have customer records for most of thewvahat appear in the
call from andcall _to fields of the usage table due to the market share of the ser-
vice provider. One possible solution is to pad the customgletwith empty records;
however, this would more than double the size of the tabléout adding any new
data.

Alternatively, we can leverage the fact that the usage thbk been partitioned
based on whether theall from andcall to fields are in the customer table. For
each partition, we add only the appropriate foreign key traings. Figure 3.4 shows

the modified star schema.

3.4 Warehouse Implementation

To build the warehouse, we validate the fields of each rovg tha data into tem-

porary tables, and use the database management systemsfotna the data into its
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<<table>>

<<table>> Usage
Customer +start_time: timestamp PK

— +call_from: integer PK
+phone_id: integer PK e— ] :
X : +call_to: integer PK
+activation_date: date - .

X - +service: integer PK
+disconnect_date: date X : R
+service type: service enum +destination_code: integer

_type: = +call_time: integer <<table>>

+cost integer Antenna

+antenna_from: integer - -
+antenna_to: integer :_’:iz\zg'{?'i;:;ggir PK

+latitude: double precision
+longitude: double precision
+tower_point: geometry
+tower_voronoi_cell: geometry
+postal_code: integer
+postal_code_shape: geometry
+city: text

Figure 3.3. The standard star schema for the warehouse.sHgye table

records the facts of the warehouse and references the cerstoiprovide

further information about the subscribes and the anterbia ta provide
additional location information.

final form. In this section, we describe these processes.

3.4.1 Data Sources

A company provides the data using a variety of file types. @lufethese file types
contain the usage data: call, interconnect, and call redatd (CDR). The call and
interconnect files provide billing information, such as theation and cost, of each
use of a service. The CDR files contain location informationefach call and SMS.
The customer data arrives after each month in 4 files congiourrent prepaid ac-
counts, current postpaid accounts, prepaid accounts &vatlieen deactivated during
the month, and postpaid accounts that have been deactiatied) the month. In ad-
dition to these data sets, we have location data for the nagthat are not updated.

Figure 3.5 shows how the source files are merged into the asabeustomer tables.

Details of this process are provided in the next section.
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Usage

+start_time: timestamp PK
+call_from: integer PK
+call_to: integer PK
+service: integer PK
+call_time: integer
+cost: integer

+antenna_from: integer I T
+antenna_to: integer

<<table>>
Antenna

+ant_id: integer PK

+tower: integer

+latitude: double precision
+longitude: double precision
+tower_point: geometry
+tower_voronoi_cell: geometry
+postal_code: integer
+postal_code_shape: geometry
+city: text

Usage_in_in

Usage_in_out

Usage_out_in

Usage_out_out

+start_time: timestamp
+call_from: integer PK
+call_to: integer PK
+service: integer PK
+call_time: integer
+cost: integer
+antenna_from: integer
+antenna_to: integer

+start_time: timestamp
+call_from: integer PK
integer PK
integer PK
+call_time: integer
+cost: integer
+antenna_from: integer
+antenna_to: integer

+start_time: timestamp
+call_from: integer PK
+call_to: integer PK
+service: integer PK
+call_time: integer
+cost: integer
+antenna_from: integer
+antenna_to: integer

+start_time: timestamp
+call_from: integer PK
+call_to: integer PK
+service: integer PK
+call_time: integer
+cost: integer
+antenna_from: integer
+antenna_to: integer

Customer

ph _id: integer PK
+activation_date: date
+service_type: enum

+disconnect_date: date

Figure 3.4. The partitioned fact table schema. The facetaypartitioned
based on whether the caller and recipient are customerg @btimpany and
foreign keys are only applied in cases where there is a qoyrebng record

in the customer table.e. in cases where the caller or recipient is a current

customer.
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<<file>>

Call

<<file>> <<temporary table>>
Prepaid Past Billing

<<file>>
Interconnect

<<file>>

Postpaid Past

\ <<table>> <<table>>
/ Customer Usage
<<file>>

Prepaid Current

<<file>>
<<file>> CDR
Postpaid Current

Figure 3.5. Overview of the data source files

3.4.2 Data Loading

The data loading process consists of three steps: 1) re@bidhtion, 2) record
insertion, and 3) user string replacement.

Validating and transferring the data from the file serverhie database server is
very time consuming; however, we are able to acceleratertieeps via parallelization.
Each record is validated using a perl script which first sgéich record into an array
and then uses regular expressions to ensure that the fieldsthe required form. This
allows us to catch erroneous records that would cause tlkeldad to terminate and
set them aside for further cleaning. Using a single threadrgeable to validate and
transfer 4 GB/ hour of data from the file server to the database. The mactaimg b
used for validation has 8 cores, so rather than serial\dattig all of the files for a
month, we validate them concurrently, loading them intogerary tables, and finally
merging these tables. With this approach, we've achievédataon and transfer rates
of up to 27 GB/ hour using 7 threads.

Once the data is in the database, we replace the hash sthegie-identified user
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identifiers provided by the company, with integers, elineduplicate rows that appear

in the raw data, and separate rows with non-unique primayy ta@ further analysis.

3.4.2.1 Hash Replacement

Before releasing the data, the service provider de-idesitifie phone numbers us-
ing a hash function. To reduce storage requirements andhtleer¢quired for compar-
ison operations, we replace the 27 character strings withwyelintegers. We keep a
table, a hash map, that contains a (hash, integer) pair &br lesh value we encounter
in loading the data. For each file we load, we identify the nashies, update the hash
map, and replace each hash value with the correspondirgginte

In this section, we first define the relation that maps hashedd¢gers; we then de-
scribe our approaches for updating this map and replacmfakhes in the warehouse
tables, including proofs of correctness where necessary.

LetH = (H,I) be the hash map relation whelres the integer representing hash
H such thatH is a functionH : H ~ [|. By definition, eachH maps to a unique
I. This constraint ensures that the hashes will be replacacconsistent manner. We
leverage the DBMS to enforce this constraint using a tablerevtiee hash field is the
primary key, requiring each row to have a unique hash valod,the ID field is an

auto-incrementing integer. Table 3.4 shows the Postgre@fihition of this table.

For each file we process, we need to add previously unseeahtisthe hash map.
To accomplish this, we insert the items in the séftedence between the hashes in the

usage and hash map tables:

(07 (U)) = 7 (o (H)) (3.1)
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- Q_oad CDR r) Qoad IncomngD P Goad incomingD Goad Outgong e Load Qutgoing n

I_¢,

Load CDR 1

Lock hash map
Replace hashes
Release lock

Replace antenna numbers

Write outgoing records to billing

( Partition duplicate keys )
Remove billing duplicate keys
‘ Self Merge CDR

Write incoming records to billing

6

Figure 3.6. Activity diagram for validating the data contzd the flat files and
loading these into the DBMS. Most of the process can be paraite with
the exception of the hash replacement. The PostgreSQL oency
mechanism does not ficiently handle our case, so we must use explicit
table locks to insure that the constraints of the hash mapaireiolated.
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TABLE 3.4

THE HASH MAP TABLE

Column Type Modifiers

hash text PRIMARY KEY

id integer NOT NULL default nextval(’hash.map_id_seq’::regclass)

The PostgreSQL query evaluation mechanism computes thifBrence via sorting,
requiringO((JU] + |H|) log (JU| + |H])) time. Alternatively, we can obtain the setfer-

ence using a left join,

ﬂHu(O-I:w(O-Hu:H(U X H) U ((U — Y.« (O-HU:H(U X H))) X (w, (,4))))) (32)

Since PostgreSQL uses hash joins, this query computestttigfseence irO(JU| +|H|)
time.

We now show that the left join query in equation 3.2 is eq@mako the set dif-
ference query in equation 3.1. First, we establish thatlatiomal algebra selection is

distributive over set unions. We then use this result to sti@iequivalence.

Lemma 1. Selectiono) is distributive over unioru), i.e.
09(R1 UR2) = 0p(R1) U y(R2) (3.3)

Proof. To prove this equivalence, we show that for an element
1.re O'Q(R]_ U Rz) = I e O'Q(R]_) U O'Q(Rz),

2.r¢ O'Q(R]_ U Rz) = I ¢ O'Q(Rl) U O'g(Rz),
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3.re O'(Rl U Rz) — I e O—Q(Rl) U 0'9(R2), and

4.1 ¢ O'(Rl U Rz) = I ¢ O'Q(Rl) U O'Q(Rz).
Suppose a row € 0y(R1 U Ry). Thenr satisfieg) andr € R; orr € R,. Therefore,
r € op(R1) U 04(R2). Now suppose that a row¢ o»(R; U R,). There are two cases to
consider: 1)y does not satisfy, in which case ¢ o4(Ry) andr ¢ o, and 2)r ¢ R{URy,

in which case ¢ Ry andr ¢ R,. In either casey, ¢ 04(R1) U 04(R>). Thus,

re O'(R]_ U Rz) — I e O—H(Rl) U 0'9(R2) (34)

and
r¢ c(RLURy) = 1 ¢ 0y(R1) U og(Ry). (3.5)

Now suppose row € o4(R1) U 0y(R2). Thenr satisfiesd andr € Ry orr € R,.
Thus,r € 04(R1 U Ry). Now suppose that ¢ 04(R1) U 04(R2). There are two cases
to consider: 1y does not satisfy, in which case ¢ 04(R;: U R,) and 2)r ¢ R, and

r ¢ Ry, which case ¢ R; UR,. In either case, ¢ 04(R1 UR3). Thus

I e O'Q(Rl) U O'Q(Rz) — I € O'g(Rl U Rz) (36)

and
r¢ og(R)Uoy(R) = r ¢ (RiURy). (3.7)

Since expressions 3.4, 3.5, 3.6, and 3.7 are true, we knanwsifiR; U Ry)

9(R1) U op(R2).
Theorem 1. LetU = (H,) andH = (H, I) be relations. The set gierence

i, (U) = 7w (H) (3.8)
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is equivalent to the left join
nm@EJmFAUXHnww-ww@mﬁﬂuXme@mmD) (3.9)

Proof. To prove this equivalence, we start with the expression Herleft join and

derive the set dierence expression. First, we distribute the selectioheim:
mm@mﬁwaﬂww—mexH»xwﬂw) (3.10)

Since none ofKd,1) € H andH, € U can beNULL (H andH, are at least part of
the primary key and there is an explicit constraint that eneésl from beingNULL),

O1=o(0h,=n(U x H)) = 0. Thus, we can drop the left hand side of the union to get

nHu(m:w((U — 1y, (0ux(U x H))) X (w, w))) (3.11)

This expression gives the sefférence between the valuestdf € U and the values
of H, that are also in the fieltl € H. Therefore, if ah is in the result set of the above
query, therh € 7y, (U) andh ¢ 7y, (U) N 7w (H), thush € mry, (U) — (7, (U) Ny (H)) =
71, (U) = 7 (H). 0

PostgreSQL uses, by default, the read committed isolagieel,| so there is nothing
to prevent phantom reads, the case where a commit by onadttéorschanges the set
of rows that would be produced by a select statement in antresaction. A problem
arises when a new hash value appears in two concurrentiorserthe second insertion
of the value, which is based on the result of a select statethanis no longer valid,
will violate a uniqueness constraint on the hash field reglio ensure that the hashes

map consistently to a single integer. Since PostgreSQL woigslock the second hash
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map update query, we must explicitly obtain an exclusivé lmc the entire hash map
table when updating it. Figure 3.6 shows the activity diagfar validating and loading
the data in parallel, including the hash map table locks.

To replace the hashes with integers, we use an inner joirce&iach unique hash
maps to a unique integer, we replace the hashes using anammer

. (u v H), (3.12)

Hy=H

without introducing duplicate records.

Once the hashes are replaced, we proceed with merging thenttatnified tables.

3.4.3 The Customer Table

Each month of customer data is loaded from four files. Two (figepaid and
postpaid, identify accounts that have been closed duriagrtnth. Two similar files
identify active accounts. There is significant overlap agitie fields in these files, so
we merge them into a single table.

Only a small number of the records for the current users ahdrggn month to
month; therefore, we considered using a single customés with an additional field
indicating the &ective date of the record. In this case, we only add recordedo
customer data when at least one field for a customer has cthamgéuding account
termination or activation. To retrieve the churn data foraeg month,m, we select
the record for each customemith the latest #ective datee such thate < m. Let
C = (E,I,...) be our customer relation. The query for selecting the custalata for
monthmis

T ENermae em(©) (C) (3.13)
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This organization results in a trad&owe reduce the storage requirements; however,
queries on this data are more computationally expensivetaltiee join required to
extract a particular month of data.

Beyond the issue of the time-storage tradig-this organization only works if the
data is clean, which it is not in this case. The problem is #&mgt missing or spurious
records propagate to later months. We discovered that, alti@g propagation, the
data yielded several million additional users for the latenths than there should have

been.

3.4.4 The Antenna Table

The antenna data was compiled, cleaned, and loaded intdgr®8QL database by
Schoenharl [77]. The antenna data initially consisted ddrenna ID, the latitude and
longitude of the tower on which the antenna is mounted, aagdstal code in which
the tower is located.

We use PostGIS, an extension of PostgreSQL that implemleat®penGIS stan-
dard, to represent spatial objects in the warehouse. P8gifdlides a geometry field
type that stores spatial objects, such as points and patygbrlso provides fécient
spatial functions that can be included in SQL queries sucboasains, a boolean
function that returns true if one spatial object is completeithin the bounds of an-
other, andtouches, a boolean function that returns true if two spatial objeéatgyen-
tially intersect.

We added some additional fields to this table from other ssyiacluding a geom-
etry object giving the borders of the postal codes (also fadable built by Schoenharl
[77]), a geometry field containing a point giving the locataf the tower, and the shape

of the Voronoi cell in which the tower is located (this Voromiiagram has been used

The spurious users were discovered by Dr. Jim Bagrow andubaélang.
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for a variety of purposes in [34, 77]).

3.4.5 The Usage Table

The call, interconnect, and CDR tables are combined to foeruiage table. The
call and the interconnect call files contain the duration ewet of each call; therefore,
we refer to these as billing data. The CDR files contain therawaig that each call is
routed through and provide coarse location data. The pyirkey of the usage files
consists of the start time of the call, the ID of source phdhe,ID of the receiving
phone, and the service used. Since the start time of thescaléasured to the second,
we assume that these fields form a unique identifier for eazrde We, therefore, use

this primary key to match the call records among the threayfges.

3.4.5.1 The Billing Table

The billing data consists of two data sets that are, in thesjoint. The call data
consists of records of service usage by customers of the @oyrgnd the interconnect
data contains calls and SMS received by customers of the @ayrfpom people who
are not customers.

We find a small number of cases where calls are recorded inthettall and inter-
connect data. This appears to be an artifact of the way intwthie customer’s status is
determined during the generation of these files, and we itbesicow we deal with this
situation in the next section. For the time being we includerecord from the call file

in the billing table and put the record from the interconrfgetinto a separate location.
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<<table>>

Billing

+start_time: timestamp PK
+call_from: integer PK
+call_to: integer PK
+service: integer PK
+destination_code: integer
+call_time: integer

+cost: double precision

<<table>> <<table>>
Outgoing Interconnect

+start_time: timestamp PK +start_time: timestamp PK
+call_from: integer PK +call_from: integer PK
+service: integer PK +call_to: integer PK
+call_to: integer PK +cost: double precision
+destination_code: integer +call_time: integer
+call_time: integer +service: integer PK
+cost: double precision

Figure 3.7. Merging the call and interconnect tables to peedhe billing
table.

3.4.5.2 The CDR Table

The CDR data contains the antennas through which each voliceanthSMS is
routed. There are four types of records in the CDR data: aigig and terminating
records for voice calls and SMS messages. The MOC and MTCdggive the tower
information for the caller and the recipient, respectiyéty a voice call. Similarly,
the SOM and STM records give the tower information for thedeerand recipient,
respectively, of an SMS message.

The MOC and MTC records are merged using a full outer joinchiaty records on
start time, call from, andcall to (all these records describe usage of the voice
service).

The SOM records are generated at the time the SMS is senta®d 1 records are
generated at the time the SMS is downloaded by the recipidéwetrefore, the SOM and
STM records cannot be merged into a single record. The SOMdsa@re inserted into

the CDR table with the antenna number in tiecenna from field and aNULL value
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in theantenna to field. The STM records are inserted into the CDR table withL

value in theantenna from field and the antenna number in thetenna to field.

3.4.6 Data Partitioning

We leverage the table inheritance functionality of PosS@E to implement the
partitioning of the usage table. Only the leaf tables in tieedrchy contain records; the
tables at higher levels are formed by concatenating a sobied leaves. The tables at
the service level of the hierarchy are constrained by ser¥id¢ith these constraints, the
guery planner can prune irrelevant service subtrees (VBI&S, and other) based on the
service values specified in tREERE clause of a SQL statement. Similarly, theart
time field in each leaf table is constrained to only allow recondsnf a particular
month, allowing the query mechanism to omit tables outdidestart time range
specified in the query from the database search.

Separating the records based on service is straightforavad@an be accomplished
by examining the service field; however, partitioning theorels based on whether the
caller or recipient is a customer of the company is more carafdd. We merge the
usage and customer tables using a left join ondikl from field and again on the
call tofield:

U x C) x C (3.14)

Uc;=Cc ~ Ug=Cc

This produces a table that gives the activation and disctirdses for the caller and
recipient in each row of the usage table. We then processreaadh the resulting table
and place it into the correct partition based on #hevice field and the following

rules for determining whether the account is part of the camgjs network or another

network:

e If the start time is after theactivation date and it is either before the
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disconnect date orthere is nalisconnect date, the field corresponds to a
current customer. We use tkervice type field to determine if it is a prepaid

or a postpaid account.

o Ifthestart timeisbeforethactivation date, afterthedisconnect date,

orif there is ncactivation date, the field corresponds to a non-customer.

We also implement views to provide data in a format compatitath applications
written for the original data files. There are simple rulest thve can use to determine
which file types—call, interconnect, and CDR—a record, or p&# record, appears

in:
e Records from the call files have values in the destination eodeecost fields.

e Records from the interconnect files have values in the cosgtdietl areNULL in

the destination code field.

e Records from the CDR files have a value in at least onenafnna from or

antenna to.

Queries performed on these views will, like the usage tdtgg &re generated from,

utilize the table constraints to prune unnecessary leafs the set of table scans.

3.5 Summary and Conclusion

In this chapter, we have described the design of a large datahouse for social
network and human mobility research. We have leveraged dlsggReSQL database
management system to facilitate data cleaning and orgsmzaWe sped the data

loading process by showing we can use a left join to computédiffierence in linear
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time rather than using the SQL set operations which reddfrdg n) time. Addition-
ally, we parallelized the process where possible and usediah#able locks where the
PostgreSQL concurrency mechanisms wereftigant.

The design of the warehouse is based on actual use cases fiatthand provides
a substantial improvement over the use of flat files. Thetparing scheme, in many
cases, allows many records irrelevant to particular rebganojects to be ignored alto-
gether and yields a straightforward variant of the star sehthat can handle the case
where there are no dimensional records for most values indadi¢he fact table.

It should be noted that only minimal data cleaning is perfxiras part of the data
loading process, and the warehouse described only progatastorage. At this point,
no analysis tools are provided. In the next chapter, we paréaditional data cleaning

to eliminate redundancy introduced when merging the elésrrthe usage table.
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CHAPTER 4

AN APPROACH FOR MERGING NOISY DATA IN A SCIENTIFIC DATA
WAREHOUSE

4.1 Abstract

In this chapter, we examine the consequences of naivelyingetbe CDR and
billing records as described in the previous chapter. Wevdhat there is a time syn-
chronization issue between the MOC and MTC records in the C&iR ahd, to a lesser
extent, between the call and CDR data that introduces rediggdato the data set
when merged. We describe and evaluate an approach for mgehgirdata that corrects

for the redundancy.

4.2 Introduction

When first merging the CDR data, we discovered that the numhsiisffor which
we have both the MOC and the MTC records was significantly lemtilan we expected
(around 20%). There are several reasons why only one of th€ Bf®ITC record may
be present. Suppose the caller or the recipient is eithaguwslandline or outside the
coverage area of the service provider. In this case, oneeofdtords for that call is
missing. We can account for some of this by including onlyords where the caller
and the recipient are customers of the service provides dliminates all landlines and

calls to customers of other service providers, who areyiksing towers owned by that
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company but does not eliminate all cases where only one akttwds is present (data
will be missing for roaming users), we expect it to signifitmmprove the fraction of
transaction for which we have both records. Unfortunateé/discover that the rate of
matching is still fairly low (around 40%).

In this chapter, we show that the low matching rate is due tsenio the timestamp
of the records and that merging the tables naively resultedandant records in the
tables. We also present an approach for reducing fileeteof this noise by merging
MOC and MTC records that likely describe the same call. Irtisec3, we consider
related work in the areas of record linkage, redundancyiedition, and event correla-
tion. Section 4 describes our approach for merging the ¢ahléhe presence of noise.

We conclude with the results of the merge in Section 5 andudgon in Section 6.

4.3 Related Work

Redundancy in data can arise in severéiedent ways. It can be the result of merg-
ing databases from fierent sources into a single warehouse, or it can arise from mu
tiple observations of the same event in a sensor networler8eapproaches have been
developed to address this problem, including record liekagdundancy elimination,
and event correlation.

Record linkage is an approach used in building data wareldahaematches records
from different sources, which may have small errors in the key fiellagwnly evi-
dence in the records themselves to determine whether tveodgcepresent the same
entity.

Fellegi and Sunter [27] formalize a theory of record linkadesre they assume that
two sets of records are generated by two distinct processesome cases, there is a

record in both sets that correspond to the same entity, anthar cases an entity is
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only represented in one set. Formally, let the two sets badR. The cross product of
the two sets,

LxR={(,r);leL,r eR}, (4.1)

can be partitioned into two sets: the entities that exisbithlsets, the matched records,
are

M=A{(,r);l=rlelL,reR}, (4.2)

and the unmatched records are

U={(,r);l#rlelL,ReR} (4.3)

The field values of the records provide the evidence requiratatch a pair of records,
or not, using a linkage rule that assigns a probability farhedecision based on the
value of some vector function on a pair of records.

Hernandez and Stolfo [42] describe a sorted-neighborhood rdefibio merging
records from multiple databases. The approach operates tinel assumption that
keys can be identified for each record such that errors in ¢ Values do not signif-
icantly afect the order of the records when sorted by the key. Once askdgmtified,
the records are merged into a single list and sorted by the Aesfiding window of
w records is moved over the list and each record that is add#tetsliding window
is compared with all other items in the window according taneodomain specific
equational theory to identify matches.

In sensor networks, redundancy elimination is often usethd¢cease the life of
the network, which typically consists of cheap disposal@mponents with limited
resources that are discarded when their batteries are stelsauTypically, these ap-

proaches rely on knowing the location of each sensor relativthe others as well as
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their coverage areas.

Carbunaret al. [11] describe an approach for identifying nodes who contglno
additional area to the coverage of the sensor network sdtieaé nodes can be shut
down and reactivated later after the batteries of other siIgdasing the same area are
exhausted to extend the life of the network. The approaatsreh knowing the position
and sensing range of each node.

Even if the sensors do not have overlapping coverage ateagnay detect the
effects of the same phenomenangan increase in temperature due to a fire. This re-
dundancy may be detected by computing the correlation ahttesurements collected
by neighboring sensors. Vuraet al. [90] describe an approach for leveraging this
redundancy to reduce the bandwidth required to transmét flain the sensors to the
base station which in turn reduces the power used to tramiat extending the life of
the network. In cases where the data collected by a sensgorkeis not continuously
sent to a base station, but is instead collected periogicéilak et al [89] describe
an approach for using correlation among sensor measursineinicrease the storage
capacity of the sensor network.

In networked systems, event correlation is used for faghliaation. Events refer
to conditions that arise when a problem is present in the ov&twnd, often, a sin-
gle problem with the system, a fault, produces a number oftevas it propagates
through the network. The goal of event correlation is to tedaults by identifying
sets of events with a common cause. A number of approaches/émt correlation
have been proposed, including expert systems, machineingarechniques such as
decision trees, and fault propagation models such as ¢gusadependency graphs.
Expert systems tend to be less flexible with respect to cleimghe network, where

graph based models tend to be more robust since they disrutlyde the relationships
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among components of the network [83].

Gruschhke [37] describes a dependency graph approach b @meelation. The
graph consists of nodes representing the physical compordrthe network,e.g.
routers, and the edges represent functional dependereiesdn the physical com-
ponents. When events are generated by the network, the eyglated in the graph at
the appropriate node and traverses the graph along the txlgexiel the propagation
of the event through the network. The locations of poteriéialts in the network are
the components represented by the nodes in the graph wieepatihs of propagating
events merge.

We have only originating and terminating records that matclthe caller and re-
cipient fields and nearly match on the timestamp field. Themddncy elimination
techniques in the sensor network literature rely on thatghid correlate time series
data, which is not applicable to our problem. Event corietain networked systems
relies on knowledge of the relationship between componientise system to under-
stand how events propagate through the system. In our pnoloée do not have this
propagation; each transaction over the network is indeg@naf the others. For these
reasons, we turn to the record linkage literature for guséaon matching the originat-

ing and terminating records in presence of noise in the tianeg field.

4.4 Merging the Data Set

The data set used in this chapter is one month of voice calfa fiieaned billing
and CDR data. The data contains only records of calls madesaed/ed by customers
that maintain active accounts for a particular year. By ramgpall non-customers of
the service provider, we eliminate most of the cases wheravawdd expect to find

incomplete records (one party is using a landline or the odtwf another provider),
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particularly for the CDR data. Additionally, only MOC recarth the CDR data con-
taining antennas with known locations are included.

We assume that there is only noise in #ftart time component of the key (this is
the only field in which perturbations may be detected sinpeavides an ordering for
the records). Our approach iteratively accounts for irgirpamounts of clock skew
by adjusting the value of thetart time field during a join operation.

Conceptually, we start by merging the CDR data. ILet (T, Cs, C;, A¢) represent
the MOC table an® = (T, Cs, C;, Ay represent the MTC table, whefes the time the
call is madeCs is the caller, and; is the recipientA; is the originating antenna and
A is the terminating antenna. We start with an initial matgtsetM where the records
of L andR have identical primary keyse.L.T = R.T AL.C{ = R.C; AL.C;=R.C,.
We ignore the service field because all records are voics. CEtlusM is the inner join
of the two tables on the primary key:

M=L b R (4.4)

L.T=R.TAL.Ct=R.CtAL.Ct=R.C¢

We can decomposkl into two subtables andMg that give the matched records

from the original table& andR:

M = mrccon (M) (4.5)

and

Mg = T .Ct.C. A (M) . (4-6)

Using these tables, we can extract the sets of unmatchedisgtlh andUg from the
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original tables by taking the setftirences:

U =L-M, (4.7)

and

Ug =R - Mg. (4.8)

Computing the outer join o), andUr gives us a new table&) consisting of only the
unmatched records:

U=U, < Ur (4.9)

UL . T=Ur.TAUL.C{=Ur.C; AU .Ci=URr.C;

Note that

MuUU=L < R (4.10)
L.T=R.TAL.C{=R.C;AL.C;=R.C;

Now that we have identified the matched and unmatched recoddsandR, we
attempt to match records id by incrementally searching for records with matching
caller and recipient IDs that fiier in start time by someAt € [1, 120]. To accomplish
this, we joinU_ andUgr using a condition that adjusts tleart time of the right

table,U, .T = Ur.T + At. So, the join operation is

UL > UR (411)

UL . T=Ur. T+AtAU .C;=UR.Ct AUL.Ci=UR.C;

Each record in this join is moved frotd, andUr to M| andMg, respectively. By
repeating this process over the sequeftite- +1,-1,+2,-2,..., we ensure that we
match records i to a record irR with the minimum possiblg\t|, and by updating the
setsU, andUg, we ensure that each record is only matched up to one timard-ig1

provides an illustrative example of this process.
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L

T GG A
19:00:00| 7| 8|2
19:00:00| 9/10]1
19:00:00|11|12|1
19:00:01] 1| 2|1

R

TG G A
18:59:59| 1| 2|0
19:00:00| 9/10]0
19:00:01| 7| 8]0
19:00:01]13|14]0

l inner join

M

T GG AA

19:00:00| 9/10]1]0

M,
19:00:00| 9]10]1

lML-L

Up
19:00:00] 7| 82
19:00:00(11]12]1
19:00:01] 1| 2|1

decompose into
matched sets

Mg
19:00:00| 9]10]0

lmk- R

Ur
18:59:59] 1| 2[0
19:00:01| 7| 8]0
19:00:01|13]14]0

19:00:00| 9[101]1
19:00:00| 7| 8|2|1

Up Ur

T Ci Cp A T G C A
19:00:00| 7| 8|2 18:50:59| 1| 2|0
19:00:00(11]12]1 19:00:01| 7| 8]0
19:00:01] 1| 2|1 19:00:01|13]14]0

inner join
U, .T=Ug.T-1 sec

19:00:00| 7| 8]2|0

M u,
19:00:00]11[12|1
19:00:01] 1] 2|1

Ur
18:59:59| 1| 20
19:00:01|13|14]0

l full outer join

u
18:59:59| 1| 2| |0
19:00:01| 1| 2|1]
19:00:01|11|12|1]
19:00:01|13|14| |0

l full outer join

u
18:59:59] 1| 2| |0
19:00:00| 7| 8|2]
19:00:00|11|12|1]
19:00:01] 1| 2|1]
19:00:01] 7| 8| |0
19:00:01|13|14| |0

Figure 4.1. An illustration of the the merging process. Téfedolumn shows
the process of decomposing the MOC talhleand the MTC tableR into the
matchedM, and unmatched), sets. The right column shows one step of the
process where we account for clock skew in the MTC table amplate the
newly match records to the matched bkt
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In practice, we build a working tabMy. This table is the full outer join df andR,

(4.12)

>
L. T=R.TAL.Ct=R.CtAL.Ci=R.C;

with an additional fieldS, that indicates the skew of the record.\8o= (T, Cs, C;, At, A, S).
Initially, the skew field is O for complete records. the records in the inner join, and

null for the remaining records:

0 O'Af;ew/\At;&w(W)
S (4.13)

w O-Af:wVAt:w(W)'

Records with a null skew field are in the unmatched 9etll other records are iM.

ForeachAt =1,-1,2,-2,...120 -120, we compute the inner join &f, andUg:

M’ = U U 4.14
Poseumeuu)(UL) UL.T:UR.T+At/\U|_.C[>f<]:UR.Cf/\UL.C[:UR.Ctp osmesW)(Ur) - ( )

For each element iM’, we update the skew8 « At.

For each subsequent step in the merge, we update the skeviofidddth of the
matched records. Once we have updated the skew field for riipestat, we add an
additional field that gives the corrected time. The cormdime field is set for all

records in the table according to the following rules:

o If the skew field is O, null, or the record is from the left talhe corrected time

is equal to the start time.

e The remaining recordd,e. the records from the right table with a non-null,
nonzero skew, the corrected time field is the start time fikld fhe interval given

by the skew field.
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Formally, for each record iV after the correction,

T Os=0vS=wvArzw(W)
Te (4.15)

T+ At oazwrszorsze(W).

The resulting table allows us to extract both the correctetiencorrected data. The
uncorrected data is straightforward to extract as all meations have been made to the
newly added field, leaving all of the original field valuesaunthed; therefore, a simple
SELECT statement obtains the data. The corrected data can be ettayrperforming
the full outer join using the corrected time, caller, andpEmnt. We can determine the
left and right tables for the join by looking for the presemfenon-key field values.
Consider the merged CDR data: the MOC records must have a novaiue in As
and the MTC records must have a non-null valué&inso we obtain the corrected table
with the following query:

p TTe.Cr.Cr.Af ((’Af*w(W)) (L) L‘TC:R.TC/\L.Cf>:<R.Cf/\L.CtzR.Ct p et CrAt (”At*w(w)) (R) (4.16)

45 Evaluation Method

We use the Kullback-Leibler divergence to measure the mistdetween the inter-
call time distribution of the merged CDR data and the call datee Kullback-Leibler
divergence, or relative entropy, is a result from informattheory [51]. Suppose we
have an alphabet = {x3, %, ..., X,} where each elemenx; occurs with probability
pi. The information provided by each elementin bits, is Ig(;). Intuitively, elements
that are more likely contain less information (and can beesgnted with fewer bits)

than elements that appears rarely. The entropy,afhich can be viewed as a random
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M
T C C AFA S T,

18:59:59| 1| 2| |6] |18:59:59

19:00:00| 7| 8|2| |-1|19:00:00 — corrected time in MOC record is the start time
19:00:00| 9/10|1]|0| 0]19:00:00

19:00:00|11]12|1| | |19:00:00

19:00:01] 1| 2|1| | ]19:00:01

19:00:01] 7| 8| |0]-1]19:00:00 — corrected time in MTC record is start time + skew
19:00:01|13[14| |0], |19:00:01

|

corrected time

skew

full join on
(corrected_time, caller, recipient)

T, G G AA

(4
18:59:59| 1| 2| |0
19:00:00| 7| 8]2]0
19:00:00| 9]10]1]0
19:00:00]11]12]1]
19:00:01] 1| 2|1]
19:00:01]|13|14| [0

Figure 4.2. An illustration of the process of extractingrected data from a
table with supplementarykew andcorrected time fields.

variable, is the expected information over the entire dhelta

H = Z —pi log p; (4.17)

X €X

[19, 60, 81].

Suppose we have the same alphabas before; however, we assume each element
X now occurs with a probabilitg; while the true probability is stillp;,. For eachx;,
the diference in information isl;og%, and the relative entropy, or Kullback-Leibler

divergence is the averagdidirence in information over the skt

D= ) P Iog% (4.18)

XieX

Intuitively, this gives the average number of addition#s bequired to encode a symbol

using the assumed probabilitigsrather than the actual probabilitips[19, 51].
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We considered using the Kolmogorov-Smirnov test (KS-témt)vever, this proved
problematic. Suppose we have two cumulative distributiomcfionsP and Q. The

KS-test statisticd, is the maximum distance between these two distributions:
d = max|P(x) - Q(x)| (4.19)
Xe

The critical values ofl for a given confidence interval depend on the sample size (the
larger the data size, the smaller the critical value) [59]. eWhve examined results
generated using the KS-test statistic, we found that thé diepping point was, in
reality, too small. When looking at plots of the distributiclosest to the distribution
for the call data, that there was obvious noise in the tail. ddecluded that the KS-
test is not expressive enough, since it only considers théman distance between the
cumulative distributions and a method using a pairwise @mapns of the points in the
distribution would be more appropriate. For this reason s the Kullback-Leibler
divergence.

To determine the need for clock skew correction, we exantiedritercall proba-
bility distribution over a two minute interval. Consider tdeected call multi-graph
where the vertices represent phones and the calls areatiredges from the caller to
the recipient and each edge is labeled with the time the cadl made. For the set
of directed edges from a particular vertex to another palgicvertex, we find the in-
tervening time between each pair of consecutive calls. rEigu3 illustrates how we
compute this distribution.

We use the intercall time distribution to evaluate our applobecause it is a mea-
sure that is sensitive to potential redundancy introdugeddise in the timestamps. In
the cases where noise prevents two records from being mettgedesulting data set

will have the two records with a small time interval betwelean, skewing the intercall
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1 S€Comun . 07:00:12

Figure 4.3. Example showing how the intercall time disttid is generated.
There are three pairs of consecutive calls in this graphirlgbadges from 1
to 2, separated by 1 second and 2 pairs of edges from 3 to 91(G3,
07:03:17) and (07:03:17, 07:03:20), separated by 79 secamdl 3 seconds,
respectively. The other two edges are unique in their scamdedestination,
so there is no consecutive call in either case; therefoithereof these edges
contributes to the intercall time distribution. Dividing the number of data
points gives the empirical probability density functioma¢a of 1, 3, and 79
seconds occurs with probabilify).

time distribution to the left. In theory, the call and CDR data&th describe the same
set of events. We therefore expect that there is significzeriap and the properties of
the data are similar. Our experience with the data has shoatrite call data is signif-
icantly cleaner than the CDR data, and because we do not hgesftom a merge to
obtain it, as we would with the CDR data, we use the intercaletdistribution from

this data set as our baseline.

4.6 Results

In this section, we describe the behavior of the KL-divergeas we increagat|
when performing the two merges and its use for determiniegstbpping point of the
merge process. We also examine tlfie& of the merging process on the fraction of

matched and unmatched records in the data sets.
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The graph at the top of figure 4.4 shows the KL-divergence efrtterged CDR
intercall time distribution from the call data intercaftie distribution foffAt| € [1, 120],
and the inset shows the same value over the réxigje [60, 120] to expose detail near
the minimum. We seledirt| = 81 seconds, the minimum, as our stopping point and
continue our analysis with the data correction applied upispoint.

The center row of figure 4.4 shows the intercall time distitou of the merged
data set corrected up tat| = 81 in the center with the distribution for the uncorrected
merged data on the left and the baseline call data distoibatn the right. The similarity
between the corrected distribution and the baseline isrstyi

The bottom row of figure 4.4 show the intercall time distribatfor the merged
CDR data at various points in the correction process: twotpdiefore the stopping
point (up to|At] = 20,45) and one point after (up {at| = 120). In the former cases,
there is visible noise in the distributions fgkt| < 81; however, the distribution of
the latter case looks quite similar to the base line. In fégstKL-divergence from the
baseline is only slightly larger gAt| = 120 than the stopping point @5 x 102 and
7.23x 1073, respectively).

The graph at the top of figure 4.5 shows the KL-divergence eitlerged call and
CDR intercall time distribution from that of the call time alfor|At| € [1, 120], and
the inset shows the same value over the rdnges [45, 120] to expose detail near the
minimum. There is consistent decrease in the rantje- [1, 55], however, in [5581],
the behavior of the function is sporadic. This sporadic bemahowever, occurs over a
small range of values of the KL-divergence.§340x 1072, 1.5385x 107?], a difference
of 45x 107).

The center row of figure 4.5 shows the intercall distributbdthe merged call and

CDR data corrected up {at| = 62 in the center with the uncorrected merged data on
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Figure 4.4. The top figure shows Kullback-Leibler divergebetween the

merged CDR intercall time and call data intercall time dttions as the

correction procedure progresses. The middle right figuogvstihe
KL-divergence for the larger half of the range to show dedeslund the

minimum at 81 seconds. The middle left and center show theruected
merged CDR intercall time distribution and the call datarcad time

distribution that is used for the baseline, respectivehe Bottom row shows

snhapshots of corrected merged CDR intercall time as theat@mneprocess
proceeds, at 20, 45, 81, and 120 seconds.
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the left and the baseline call distribution on the right. kg#he similarity between the
corrected distribution and the baseline is compelling.

The bottom row of figure 4.5 shows the intercall time disttid for the merged
call and CDR data at various points in the correction procass: points before the
stopping point (up tdAt| = 20,40) and one point after (up tat| = 90). Again,
when we stop the process before reaching the minimum KLrglarece values, there is
visible noise in the distribution after the stopping pointidahe distribution shown that
Is beyond the stopping point appears very similar to thellmesdistribution.

We are also interested in how many records are merged inribi®gs, SO we mea-
sure the fraction of records in the séfs U, , andUg before and after each merge.
When merging the CDR daté), consists of records only in the MOC tabldg con-
sists of records only in the MTC table, aiMl consists of records that appear in both
tables. Figure 4.6 shows the fraction of records belongingach set before and af-
ter the correction (of up tpAt| = 81). Applying the correction reduces the number of
records in the CDR table 15%, from 115,778,284 records to2835B2, increases the
number of records iM 35%, from 50,477,486 to 68,127,208, and reduces the num-
ber of records inJ, andUg 62%, from 28,518,775 to 10,869,033, and 48%, from
36,782,013 to 19,132,291, respectively.

Figure 4.7 shows the fraction of records in eachMet)_, andUr when merging
the call and CDR data before and after the correction is aghpfpplying the correction
reduces the number of records in the table 3%, from 102,30X&ords to 99,878,208,
increases the number of recordMn5%, from 54,173,052 to 56,996,701, and reduces
the number of records 0, andUg 62%, from 4,872,325 to 1,749,676, and 4%, from
43,955,480 to 41,131,831, respectively. We see right ahatythe clock skew isn't as

significant in this case becausk is very small (only about 4% of the records), and we
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Figure 4.5. The top figure shows Kullback-Leibler divergebetween the
merged usage intercall time and call data intercall tim&ibigtions as the
correction procedure progresses. The middle right figuogvstihe
KL-divergence for the larger half of the range to show dedeslund the
minimum at 81 seconds. The middle left and center show theruected
merged usage intercall time distribution and the call datiercall time
distribution that is used for the baseline, respectivehe Bottom row shows
snhapshots of corrected merged CDR intercall time as theat@mneprocess

proceeds, at 20, 40, 62, and 120 seconds.
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MOC an& MTC ——
MOC only
MTC only
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04 E

Uncorrected Corrected

Figure 4.6. The fraction of records in the matched and unheaksets before
and after the merge correction of the MOC and MTC tables. “M&D@
MTC” records correspond thl, “MOC only” corresponds t&J, , and “MTC
only” corresponds tdJg.
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Figure 4.7. The fraction of records in the matched and unnegksets before
and after the correction of the billing and CDR tables. “Bjiand CDR”
corresponds ti, “Billing only” corresponds tdJ,, and “CDR only”
corresponds ttJg.

are able to merge more than half of these records by appligagdrrection.

4.7 Discussion and Conclusion

In this chapter, we have shown that there is some noise imti@stamps associated
with the usage records that introduces redundancy if thepooents of the data are
merged naively, and we have described an approach for remntvis redundancy.

Whether this noise has an impact on the results of work useggtdata depends on
the particulars of the study. Many of the major studies usirege data are noffacted
by this problem. In these cases, no merge is performed. @ehal [63] use only the
billing data to build a weighted network. Gaalezet al [33] and Wanget al [91] use
only the originating (MOC) records of the CDR data.
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In cases where the tables are merged, unweighted graphsiinid) the data will
not be dfected since the redundancy does riteéct whether a particular edge is present
or not. Similarly, graph with weighted edges based on soitndatie only present in
one tableg.g. cost or duration, will not beféected because the redundant records do
not provide information to be added to the weights. Problestis this redundancy do,
however, arise when weighting the edges of a graph by the auofliimes that edge

appears in the data or when counting the overall number t. cal
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CHAPTER 5

BACKGROUND ON DATA CLUSTERING

The goal of data clustering is to identify meaningful groupdata in which similar
data items belong to the same group and dissimilar itemsgeio diferent groups.
Traditionally, groups were identified subjectively, by glgewever, this is only feasible
for data with only 2 or 3 dimensions, due to the limits of hunpanception, and tends
to yield inconsistent results. As datasets have grown imthmber of features, many
clustering algorithms have been implemented in a numbeifigrdnt areas of research.
Data clustering is an approach for exploratory data anatysit is widely applicable to
a number of fields [46, 49]

The clustering problem is defined as follows: let a dataDsebnsist of a set of
data items di, &b, . . ., dn) such that each data item is a vector of measuremdnts,
(di1,dio,...,dm). Using some measure of dissimilari@(d?, (T,-), group the data into
setsCy, Cy, ..., Cx based on some criteria [35].

At the highest level, clustering algorithms can be divid&d two types: partitional
and hierarchical. Partitional algorithms divide the daii isome number of disjoint
sets. Hierarchical algorithms divide the data into a nesetf partitions. They may
either take a top-down approach, in which the hierarchy megged by splitting clus-

ters, or a bottom-up approach, in which the hierarchy is ggad by merging clusters

!Portions of this chapter are to appeatritelligent Techniques for Warehousing and Mining Sensor
Network Dataed. A. Cuzzocrea, 2009 [68]
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[47]. Incremental and stream clustering algorithms hase aken developed. In this

section, we present a brief overview of clustering algongh

5.1 Partitional Clustering

Partitional clustering divides the data set into some nupadeen a predefined num-
ber, of disjoint subsets. Some of the most widely know partél clustering algorithms
are iterative relocation algorithms. Such algorithms amestructed by defining 1) a
method for selecting the initial partitions, and 2) a metfmdupdating the partitions
[35]. K-means and expectation maximization use this approaclk-nieans k data
points are randomly selected as centroids, each data [goagsigned to the nearest
centroid, and the centroids are recomputed. This procespésted until no data items
move to a diferent cluster. The expectation maximization algorithmnslar, the ini-
tial clusters are random Gaussians, each data item is aslsigrthe Gaussian with the
highest probability of generating the point, and the Gaussare iteratively recomputed
[94].

A partitional clustering can also be computed using a mimmgpanning tree ap-
proach. Let the data set be represented as a complete gragh thle data items are
represented as vertices and the edges weights are theceidiatween the two con-
nected data items. From this graph, compute the minimumnspguree. To obtairk

clusters, remove thie— 1 edges with the largest weights [35].

5.2 Hierarchical Clustering

Hierarchical clustering algorithms generate a nestedfg®rtitions. There are two
common types of hierarchical algorithms: agglomerative dimisive [49].

Most hierarchical algorithms are agglomerative, meartiagjthey take a bottom-up
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approach in which the data set is initially partition innt@lusters, each of which con-
tain one data item. The algorithm then iteratively mergesttvo nearest clusters until
all of the data belongs to a single cluster. The various aggtative algorithms vary
in the definition of the dference between two clusters [49]. Well known agglomera-
tive algorithms include the single and complete link alons. For these algorithms,
the distance between clusters is the minimum (equationgmd)maximum distance

(equation 5.2) between data items of the two clusters, otispéy [47].

D(C,C)) = min (d(d,d))) (5.1)
i€Ci,djeC;

D(Ci,C)) = max (d(d,d))) (5.2)
i€Ci.djeC;

The agglomerative nesting algorithm described by KaufrmahRousseeuw [49] uses
a distance measure weighted by the inverse of the produbedizes of the clusters:
1 -
D(C..C)) = D, dd.d) (5.3)

IGilIC)l

dieC; ,CTJ' €C;j

Divisive algorithms proceed from the top-down, startinghnall data items in a
single cluster and repeatedly split clusters until eachkteluhas only a single member.
These algorithms are less common and, when implementeélypaare much more
computationally expensive. Consider the first step of ancaggtative clustering algo-
rithm: the distance between each pair of data items must lm@eted. This requires
O(n?) calls to the distance function. Now consider the task oh@ring all possible
ways of splitting a cluster into two: there a0¥2") possible partitions to consider. The
divisive analysis (DIANA) algorithm uses the data item inaster that is most dissim-

ilar from the other members of the cluster to seed a new clasig eliminate the need
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for exhaustive evaluation of the possible partitions. Attestep, the largest cluster, the
cluster with the largest distance between two of its membersplit. The data item
in this cluster with the largest average dissimilarity frdm other items in the cluster
is used to seed the new cluster, and each data point for wiécaverage dissimilarity
from the items in the new cluster is less than the averagerdlasity from the items re-
maining in the original cluster is moved to the new clustdre process is repeated until
no data points remain in the original cluster with a smaliesrage dissimilarity from
the data in the new cluster [49]. Another divisive approasisusome criteria to select
a cluster to splite.g. the cluster with the highest variance, and applies a pamtti

algorithm, such ak-means to split the cluster in two [76].

5.3 Hybrid Algorithms

Hybrid clustering combines two clustering algorithms. Cle¢wal [15] examine
the use of iterative, partitional algorithms suchkasieans, which tend to be fast, as
a method of reducing a data set for hierarchical, agglonveraigorithms, such as
complete-link, that tend to have high computational coxipte Chipman and Tibshi-
ran [17] combine agglomerative algorithms, which tend taved at discovering small
clusters, with top-down methods, which tend to do well atoégring large clusters.
Surdeantet al [85] propose a hybrid clustering algorithm for documenssification
that uses hierarchical clustering as a method for detengimitial parameters for ex-

pectation maximization.

5.4 Incremental Clustering

Incremental algorithms consider each example once, imategideciding either to

place it in an existing cluster or to create a new clustersélagorithms tend to be fast,
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but are also often order dependent [47]. The leader algorigha simple incremental
clustering algorithm in which each cluster is defined by @leirdata item—the first
item assigned to the cluster. For each data example, if tampbe is within a user
specified distance of the defining item of the closest clusher example is assigned
to that cluster; otherwise, the example becomes the defexagiple of a new cluster
[41].

Charikaret al. [12] describes incremental clustering algorithms thatnizan a
fixed number of clusters with certain properties as new datatp arrive. Two algo-
rithms are described; each usetstareshold graph in which each pair of points in the
data set is connected with an edge if and only if the distaet@den the two points is
less than some threshald The algorithms are a two step processes in which: 1) the
existing clusters are merged as necessary to ensure thattieeno more thakclusters
and 2) new data items are processed until there are mor& thasters. The updates
are constrained by invariants, and in cases where a poinbtde added to any ex-
isting cluster without violating an invariant, it is addexa new cluster. The doubling
algorithm constrains the maximum radius (the minimum splo@ntaining all points
in the cluster) and the minimum inter-cluster distance. Wiennumber of clusters
exceedg, arbitrarily selected clusters are merged with their neagh until the number
of clusters is less thak The clique partition algorithm enforces a maximum radiug a
diameter (maximum distance between two points in a clusigihg the update phase
and merges are performed by computing a clique partitiomethreshold graph and

combining the clusters in each partition.
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5.5 Clustering Algorithms for Streaming Data

Some methods have been developed for clustering data stre@ohaet al [38]
present a method based kimediods—an algorithm similar to-means. The clusters
are computed periodically as the stream arrives, using d@tion of the streaming
data and cluster centers from previous iterations to keepongeusage low. Aggarwal
et al[3] present a method that takes into account the evoluti@redming data, giving
more importance to more recent data items rather thandetttie clustering results be
dominated by a significant amount of outdated data. The i#hgomaintains a fixed
number ofmicro-clusters which are statistical summaries of the data throughout the
stream. These micro-clusters serve as the data points foddiedk-means clustering

algorithm.

5.6 Cluster Evaluation

Since clustering is an unsupervised learning method, fténaot feasible to use a
training and test set for evaluation. There are three majpraaches for evaluating the
results of clustering algorithms: external, internal, agldtive methods [39].

External measures require that a labelled training setsstasompare the results of
the algorithm with the grouping determined by the trainiaglabels. Internal measures
use aspects of the data to evaluate the results. These sigpeatde compactness,
which can be evaluated using sum of squared error or averaggeige intra-cluster
distance, connectedness, which can be measured by cogplaeirtiustering results
with the result ok nearest neighbors, and separation, which can be measungdhes
average weighted inter-cluster distance [40]. Relativesmess compare the results of

a set clustering schemes [39].
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5.7 Summary

In the next two chapters, we use the concepts describedsiohhpter to build tools
for detecting anomalies in multivariate streaming datacHapter 6, we use a hybrid
algorithm consisting of a hierarchical algorithm, comeldéhk, and an incremental
algorithm, leader, to detect events. In chapter 7, we useraichical feature clustering

algorithm over a sliding window to detect events and theiatmns.
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CHAPTER 6

ONLINE CLUSTER ANALYSIS OF SPATIALLY PARTITIONED PHONE USAG
DATA

6.1 Introduction

In this chaptef, we describe an online clustering algorithm that combimesplete
link clustering and a variant of the leader algorithm. Ougoaithm difers from a
number of other online clustering algorithms in that we dbfixahe number of clusters
throughout; rather, we use heuristics, similar to thosexiatieg algorithms, to allow
the cluster set to grow and contract as more data arrives.

It was our intention to use this algorithm as an approach &ecting events in
phone data for the Wireless Phone Based Emergency ResportemSyswever, at the
time of the initial development we did not have a suitableadst containing known
emergency events. Now that we are in possession of such efstavwe realize that
this type of clustering is problematic for this applicatiand that a feature clustering
approach, which we present in the next chapter, is bettegdstor our goals. Despite
this, the development of this algorithm has yielded somerésting insights, and we

present the work here to share these insights.

1An earlier version of this work was presented and received#st student paper awards at the 2006
Conference of the North American Association for Compotel Social and Organization Sciences [64]
and was subsequently published in the joud@inputationat- Mathematical Organization Theof§5].
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6.2 Related Work

Traditional clustering algorithms require random acce&s the full data set; how-
ever, this may not be feasible due to the nature of the dataades where the data set is
too large for main memory or arrives as a fast data streame advranced, incremental
algorithms are required. Typically these algorithms take/larid approach. The data
items are initially clustering into a large number of smélisters and these clusters are
used as a reduction of the data set to improve the performainte main clustering
algorithm, which may be one of the traditional algorithmsyated to group clusters
rather than points.

Zhanget al. [95] describe the Balanced Iterative Reducing and Clustersiiggu
Hierarchies (BIRCH) algorithm. In this work, they define thestkring feature which
is later used in a number of other algorithms. Suppose we dalgsterC containing
data points{dl d} e (Tn}. The clustering feature for this clusteris §,, S;) wheres; is
vector of feature sums for the data poirds, = ZT:l d;j ands; is the vector of squared
sums of the features;; = Z?zl dfj. BIRCH uses a tree structure tfiieiently build the
clustering features that reduce the data set and finalizesltistering by applying an
agglomerative clustering algorithm to the clustering dieas.

Bradleyet al. [8] describe an approach for scalikgneans to very large data sets
by using two types of data compression. The algorithm engpéolpufer that, at each
step, reads and processes a sample from the data set, upgatdsster model, and
then applies the compression techniques to eliminate tad twestore points that are
unlikely to move to a dferent cluster and sets of points that are likely to move from
one cluster to another as a group. In the latter case, théspaia collapsed into a sub-
cluster described by a clustering feature. Farnsteoal [26] simplified this algorithm

to repeatedly apply the clustering algorithm to the curpaints in the béfer and the
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existing set of clusters, clearing the datdfbuat each step.

Aggarwal et al. [3] describes a hybrid approach for stream clustering tisasu
an extension of clustering features which are updated \Wwehatrival of each point to
provide a manageable sized data set for the applicationexfansl clustering algorithm.
The algorithm for updating the “microclusters” is similaetleader algorithm; however,
in this case, a fixed number of clusters in maintained andniresshold for accepting a
data point into an existing cluster is based on the root mgaared deviation of the data
items in the cluster. The microclusters are stored usinggmsion of feature clusters.
Two time components are adddg,andt,, which give the sum and squared sum of
the timestamps for the data items belonging to the micreetusespectively. When a
new data item does not fit into any cluster, based on the roahrequared deviation,
it is placed in a new cluster, and either an existing clusteleieted or two clusters are
merged. Using the two time values in the extended featustanis, the cluster with the
least “relevance” is identified where relevance is a measiusnether the cluster is still
acquiring data items. If the minimum relevance is below stmeshold, the cluster is

removed, otherwise, the two nearest clusters are merged.

6.3 Hybrid Clustering Algorithm

We use a hybrid clustering algorithm designed to expand anttact the number
of clusters in the model based on the data rather than asgigm fixed number of
clusters specifie@ priori. The basic idea behind the algorithm is to use complete
link to establish a set of clusters and then use the leaderitidg in conjunction with
statistical process control to update the clusters as neegaves.

Statistical process control [7] aims to distinguish betwé&gssignable” and “ran-

dom” variation. Assignable variations are assumed to haweprobability and indicate
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some anomaly in the underlying process. Random variatiarentrast, are assumed
to be quite common and to have littl&ect on the measurable qualities of the process.
These two types of variation may be distinguished basededifierence in some mea-
sure on the process output from the megrof that measure. The threshold is typically
some multiple], of the standard deviatiow;. Therefore, if the measured output falls
in the rangeu + lo, the variance is considered random; otherwise, it is aabign

We use the clustering feature described by Zhetraj[95] to maintain the sficient
statistics of the clusters: for each cluster, we store tine @id sum of squares of field
values for each example in the cluster and the number of elsnie the cluster. We
use the same approach for identifying the cluster memheisha new example as in
[3]; however, we handle cluster retiremenfidrently.

For each new data item, we locate the nearest cluster. Ifetvedata item is within
some multiple of the root mean squared deviation of the s¢ataster, the item is
added to that cluster; otherwise a new cluster is created.cANehis threshold the
membership threshold,,. In cases, where the nearest cluster has only 1 data item we
add the item if it is closer to the nearest cluster than theast&luster is to its nearest
neighbor. If a new cluster is created, we search for oventepplusters and merge
them. We consider two clusters to be overlapping if the distebetween the centroid
of each cluster is within some multiple of the root mean segdaleviation of the other

cluster. We call this theverlap thresholdt,.

6.4 Experimental Setup

We apply the above clustering algorithm to two data setsvedrirom call record
data of a cellular service provider. The raw data consistsefime at which the call is

made and the tower through which the call originates. Usit§ data associated with
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the towers, we partition the data into a set of features tivatthe number of calls per
10 minute interval over each postal code for a particular. diwe use 2 distinct one
month data sets.

We compute the initial clusters for each month using the diest of data, varying
the number of sets in this partition and then proceed witlotiime portion of the algo-
rithm. We evaluate the clusterings using sum squared ermegsure the compactness
of the clusters and average distance between centroidsasuresthe separation. Since
the hybrid algorithm does not keep track of the cluster mastbp of each data item,
we assign each data item to the cluster with the nearestrcaritee end of the run. We
compare these results with those of thilme complete link using the same approach
of assigning data items to clusters described by the ceistamputed using the data

items and their cluster assignments.

6.5 Results

Table 6.1 shows the results of our algorithm on the first @éatdsor each trial, the
first day of data is partitioned into the initial set of clusteC; € [2,20] in number
using membership and overlap thresholds of 6 times the reainnsquared deviation
(RMSD). For this data set, the algorithm tends to find a smattlmer of clusters, 3-4.
As C; increases, the results of the clustering algorithm stadslsuch that the resulting
set of clusters is identical faC; € [9,20]. This set of clusterings also gives the best
result for our trials on the first dataset, in terms of compass$ and separation; however,
the results are not as good as those for tffiene complete link algorithm with 3 and 4

clusters (corresponding to the final number of clustersrgijethe hybrid algorithm).

Table 6.2 shows clustering quality using sum squared endrawerage distance

between centroids for the second datasets. In this caseseeviess sensitivity to the
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TABLE 6.1

CLUSTER SUM SQUARED DEVIATION FOR DATASET 1

Ci Cs SSQ Avg Dist| Offline SSQ @Xine Avg Dist
2 3 167x10 121
3 3 169x 10 111 1.29x 10’ 202
4 4 189x10° 866 1.13x 10’ 154
5 4 189x10° 869
6 3 193x10 102
7 4 191x10 86.0
8 3 197x 10 101
[9,20] | 3 151x10° 143

initial number of clusters than we did with the previous ds¢d C; € [3,4] yield
identical clusterings, as dg € [5, 7] andC; € [8, 20]. The best clustering results from
Ci € [3,4], in terms of compactnes<; = 2 outperformsC; € [3, 4] with respect to
separation, but in this case, the compactness is much wasseith the other dataset,
the hybrid algorithm is outperformed by complete link, parfarly with respect to

separation.

The fact that the above results show such a small range inutméer of final clus-
ters raises concerns that a few large clusters are formirkg @ad dominating the re-
sults. To determine whether this is the case, we examine hemumber of clusters
change over time. Figures 6.1 and 6.2 show the call activitg series and the number
of clusters over time for varyin@; for the two months of data. In the first month of

data (figure 6.1), the number of clusters collapses to 3 ortHdinvihe first 3 days after
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TABLE 6.2

CLUSTER SUM SQUARED DEVIATION FOR DATASET 2

Ci Cs SSQ Avg Dist| Offline SSQ @Xine Avg Dist
2 2 527x10 140
3 3 246x 10 106 2.69x 10’ 346
4 3 246x 10 106 2.84x 10’ 300
5 4 285x10° 823
6 4 285x10° 823
7 4 285x 10 823
[8,20] | 3 297x10° 948

the incremental component begins. In the cases wBeigesmall &« 9), the number of
clusters remains small for the remainder of the stream. htrast, cases whefg > 9
the number of clusters eventually settles at around 8 afieuta2 weeks. It is only
within the last day and a half of the time series that the nunobbelusters drops to
around 3. In the second month of data, we do not see such a afi@ion in the num-
ber of clusters; however, except for the cas€pt= 2, the cluster structure changes
throughout the duration of the dataset.

To investigate further, we examine the root mean squareidiilmv (RMSD) of the
clusters once the hybrid clustering algorithm has finisHadboth cases, we find that
there is in fact a cluster with a significantly larger RMSD thha others. Next, we
look at the evolution of the RMSD over time for each of the austand we find that, in
both cases, the large clusters appear relatively earlyeirexiecution of the algorithm.

In the case of the first data set, 15% of the data items have reerssed when the
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Figure 6.1. The call activity time series for the first montldata and the
number of clusters over time with (from top to bottom) 7, 819, and 20

Time (10 minute intervals)

initial clusters.

80



Number of calls

Number of clusters

4000
3500
3000
2500
2000

S hoch it oMM 1

[N
N
LI B I

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 13

[N
N
LI B I

0 Iil 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Iil J

[N
N
LI B I

0 Iil 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Iil J

[N
N
LI B I

0 1 1 1 1 Iil 1 I7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Ii Iil

8 _ —
a o _

0 1 1 1 Iil 1 I7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Ii Iil

Time (10 minute intervals)

Figure 6.2. The call activity time series for the second rharftdata and the
number of clusters over time with (from top to bottom) 2, 68,7and 20
initial clusters.
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TABLE 6.3

CLUSTER EVALUATION FOR DATASET 2 WITH MEMBERSHIP AND
OVERLAP THRESHOLDS OF 3.0 AND AN INITIAL PARTITION WITH
3 CLUSTERS

SSQ Avg Dist

Complete Link| 2.84x 10’ 300

Hybrid 1.75x 10 341

large cluster appears and 37% of the data items in the seaiadad. We also find,
however, that this cluster does not collect all of the pgiasscan be seen in figures 6.1
and 6.2, which both show cluster creation and merges fafiguilhe point at which the
large cluster appears. The fact that these large clustpesaapipon a merge indicates
that the large threshold we are using to determine wheneskisire overlapping may
be resulting in a merge of well separated clusters.

While, in general, using smaller thresholds causes theitiigoto produce a very
large number of clusters, we do find one case, where both thebership and overlap
thresholds are.8 andC; = 3, that gives good results for the second dataset: the hybrid
algorithm outperforms complete link with respect to botinpactness and separation.
In this case, the hybrid algorithm still has one cluster t@hinates all others in size,
and, as in the other cases, it appears early in the execuatitem {9% of the data items

have been processed). The quality measures for this dhugte show in table 6.3.
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6.6 Conclusion

In this chapter, we described an online hybrid clusterimgathm for event detec-
tion that uses complete link to create initial clusters andaglification of the leader
algorithm to update clusters as new data arrives. We hav@a@d this algorithm to
complete link clusterings on the full dataset using sum sggliarror, root mean squared
deviation, and average distance between centroids witedmasults.

In the results we show, the algorithm maintains a small nurabeusters relative to
the number of data items in the stream; however, this reshkavily dependent on the
membership threshold used to accept data items into exislursters. If this threshold
is too low, then number of clusters explodes and, in the waase, can grow linearly
with respect to the number of data items. Similarly, if thenmbership threshold or the
merging threshold is too high, the number of clusters calapsé into a small set of
large, non-descriptive clusters which give little infortoa about the underlying data.
This shortcoming is diicult to overcome since, due to the nature of the clusteriag fe
tures used to store thefigient statistics of the clusters, they cannot be split. Wesha
shown, however, that, given the proper parameterizatiom,atgorithm can produce
results better than those produced by complete link.

In the next chapter, we describe a feature clustering apprta event detection

that indicates the location of the event as well as its oetue.
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CHAPTER 7

FEATURE CLUSTERING FOR DATA STEERING IN DYNAMIC DATA DRIVEN
APPLICATION SYSTEMS

7.1 Abstract

In this chapter, we describe an approach for determininfpttaion of an event that
causes a dramatic increase in call activity using featursteting on real-world data.
We first examine thefiect of two emergency events on the call activity in the areas
surrounding the events and show how the anomalous calitgdbiecomes dominated
by normal call activity as larger areas around the event ansidered. We find that,
in general, the univariate models can detect the event aadiém more quickly, but is
more prone to detecting false positives. The purpose ofysiem is to trigger a suite
of simulations, so false positives incur a cost; therefore,believe that the feature

clustering approach we describe is better suited for ouliGgijon

7.2 Introduction

The Wireless Phone-based Emergency Response (WIPER) systeiproef-of-
concept Dynamic Data Driven Application System (DDDAS)ideed to leverage real-

time streaming cell phone data to provide high-level infation about an emergency

LAn earlier version of this work was published in the 2009 Reatings of the International Confer-
ence on Computational Science [66].
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situation to emergency response managers. WIPER consistedifles for automati-
cally detecting emergency events and for running and viahiggredictive simulations
of potential outcomes [55, 56, 67, 68]. Schoenharl and M488y describe an ap-
proach for on-line simulation validation for WIPER usingestming cell phone data as
it becomes available. In this paper we address the probledeatifying the area for
which the simulations should be run.

In an emergency situation, it is likely that the area of iagtris small relative to
the total coverage area of the cell phone network. Runnindigiiree simulations for
the entire coverage area is problematic in terms of comipu@trequirements and the
amount of data produced that must in turn be validated ansepted to emergency
response managers. In this chapter we describe an appractentifying the area
affected by an emergency using feature clustering. We illiestiee éfectiveness of
this approach using two case studies of emergency eventsgpaar in real-world cell

phone data.

7.3 Related Work

Dynamic Data Driven Application Systems (DDDAS) are ch&edzed by their
ability to incorporate new data into running models and $ations as they become
available and to steer data collection, enabling the sitimnla to receive and utilize the
most relevant data [20, 23]. Plad¢ al. [69] use the amount of variance in an ensemble
of weather forecast simulations to collect additional datd direct additional compu-
tational resources to the areas where additional simualatios are needed. Flikkema
et al. [28] uses data models to filter observations at the sensotkid case, the inter-
esting observations are those that do not match the datal naodeit is these that are

transmitted for further processing.
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For the approach described in this chapter, the input is a staéam consisting
of the time at which each call is made and the tower with whigh d¢aller's phone
communicates. We transform this data into a standard madéarning data set. Let
the data seD be ann x m matrix with n data items anan features. At regular time
intervals, we construct a data item consisting of the nunabealls made from each
tower.

In this case, we are interested in analyzing how the timeséor the towers, which
correspond to the features of our data set, relate to eaeln gt accomplish this, we
cluster the features, rather than the observations. Thesragghtforward to do, as it
only requires taking the transpose of the data matrix pooagplying the clustering
algorithm.

Data clustering is an unsupervised machine learning metragtouping the items
of a data seD based on some distance measure. Hierarchical algorithemsifid a
nested set of partitions in the data. Most hierarchical oaghake an agglomerative
approach, meaning that there are initiailglusters, each containing one data item in
D. These clusters are iteratively merged until all of the d@as belong to the same
cluster. Popular agglomerative clustering algorithmsuide single-link and complete-
link. To illustrate these two clustering methods, consalgraph where the data items
are represented as vertices and edges are added betweantia@svn increasing order
of distance between the two corresponding data items. At si@p, the clusters in the
single-link approach are the connected components andubters in the complete-
link approach are the completely connected components [47]

Rodrigueset al. [74] describe an algorithm for clustering the features ofatad
stream. The algorithm is a divisive-agglomerative aldponitthat uses a dissimilarity

measure based on correlation along with a ffttieg bound to determine when clusters
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are split. The algorithm relies on the fact that the pairvasgelation of the time se-
ries, corr(&, b), can be computed using a small number dfisient statistics. For each
time series it is necessary to keep trackuf, &, >.i, b, XL, @2, andy,lL, b?, and for
each pair of time serie¥,., ab; must be updated with the arrival of each data item.
Additionally, the number of data items that have arrivedagorf, must be known. Ro-
drigueset al. [74] use correlation distancdisga, 5) = 1-corr(a, 5), as a dissimilarity
measure.

An alternative approach, described by [10], applies a ui@t@model at each loca-
tion and uses methods from percolation theory to deterrhi@étpact of an event. We
examine two univariate models: one is simply thgcores for the time series and the
other uses Holt-Winters forecasting.

Thezscore gives the deviation of a point from the mean in unitstahdard devia-
tion:

2 = (7.1)

Thez-score is commonly used in statistical process controlgatifly mechanical prob-
lems [7].

There are two aspects of distributions relevant toziseore: location and disper-
sion. Most commonly, meamn, and standard deviatiow;, are used; however, both
are sensitive to noise which, unfortunately, is presentundatasets. In our particu-
lar case, we have missing records which, when aggregatedatitcounts, skews the
distribution to the left.

As the number of outliers in a dataset increases, detectitigis tends to become
more dificult because the outliers begin tfiext the data model. There are a few ap-
proaches to dealing with this problem, and we briefly exarnivee cleaning the data

and using robust outlier detection techniques. é&iwal [54] describe an on-line ap-
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proach for cleaning outliers in time series data using Kalrfiléers. This approach
replaces outlying points according to the filter. Altermaly, Chainget al [16] de-
scribes several robust outlier detection that can toleratse in some fraction of the
data points (up to 50% in some cases). We opt for the lattenoaph.

The medianyuprovides a robust measure of location. Assuming that theilalis
tion is symmetric, and by using tieescore we arey = i [9]. Rousseeuw and Croux
[75] describe a scale estimat@py, that is robust when up to 50% of the data points
are random noise andfeiently estimates the standard deviation for Gaussianilalist
tions. The scale estimator is tl®/4 order statistic of the interpoint distances in the
population:

%zdmrmw<ﬂ@w) (7.2)

whered = 2.2219 is a constant that scales the value®pfo correspond with those of
ag.

Using the robust location estimator medignaind scale estimat@p,, we define a
robustz-scorez; o

X_

L 7.3
Z;;,Qn o (7.3)

=

We denote the standarescorez, ..

The second univariate model, Holt-Winters forecastingimedes the value at a
particular time step as the weighted average of previousreasons. Let; be the
observed value, or level, at tinie The expected level,, is the weighted sum of the
current observed valué; and the forecasted value at the previous time Etep Let

a € [0, 1] be the weight, or smoothing cfieient. Then

Lo = ali + (1 - @)Ly (7.4)
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This model can be expanded to account for seasonality lydunting a seasonality
factor, I; to the estimate of ;. Let p be the frequency of the seasonaligyg. if the
period is one year and data is collected montlply= 12. The estimate of; with

multiplicative seasonality becomes

~ L ~
L = al—t +(1-a)les (7.5)
t-p

The seasonality factor is a weighted sum of the current &timbserved level to the
forecast level and the past ratios for the particular tinteriral, wheres € [0, 1] is the

smoothing coficient for the seasonality:

. L
It 6I:—t+(l—6)lt_p (7.6)

t

[13, 93].
Alternatively, the seasonality can be additive, in whickecthe estimate of the level
becomes:

Lo =a(ly—lip) + (1 - )iy (7.7)

and the seasonality index is updated by
[t = 6(L— L) + (1 - 6)lep. (7.8)
Finally, we add an additional component for the trend fortiplitative seasonality

~ L ~
[, = ozl—t +(1-a)(Lis + Tew). (7.9)
t-p
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and additive seasonality

Lo=a(li—lip) + (L -a)liy (7.10)

The trend component is the weighed sum of the change in eegbémtel from the last

time step and the previous trend value:

To=y(l - L)+ (1-9) T (7.11)

In our analysis, we use the additive model because our timesseontain inter-
vals where no calls are made, meaning the value at that tifde As a consequence,
the multiplicative seasonality is undefined. Therefore,compute the level, seasonal

index, and trend as follows:

Lo = Ly = lip) + (L — a)Le g, (7.12)
i =o(L— L)+ (1- 0)lt-p, (7.13)

and
Te=y(Li - L) + (1 -9)Tew (7.14)

We use the R implementation of Holt-Winters forecastingjclvtdetermines the
initial starting points for the level and trend using lineaegression. The initial values
of the seasonal index are obtained by finding the averageedéﬂels,f over the first
period and settingg = L; — L for i € [1, p] [70].

We use basic percolation theory to combine the resultsmdddrom the univariate
models, following the approach described by Caretial [10]. Percolation theory is

concerned with the connected components that arise oni@lathere sites, vertices,

90



or bonds, edges, are activated at random, creating a seb@faqahs [32, 82]. Candit
al [10] showed the properties of percolating graphs generfated normal data dier
from those generated from data containing a large, anors&eent.

We use an underlying graph built from the locations in theskets rather than using
a lattice. The locations are represented as vertices ancbareected with an edge if
they are neighbors. For the postal codes, we extract thesadgeg a PostGIS query
that returns pairs of postal codes that are “touching.” Theerage area of the towers
Is typically approximated using a Voronoi lattice [10, 38, B1], so we compute the
Delaunay triangulation, where an edge is present betweerndwers if their Voronoi

cells share a common edge, to obtain the edges for the toaph ¢f5].

7.4 Experimental Setup

We examine the expression of two events in real-world cadinghusage data. The
first event is an explosion, and the second is a large gathemtated to a sporting
event. We identify the approximate time and location (lak& and longitude) of the
events using news reports and maps of the?city

Our data set consists of call records that give the time atlwéicall is made and the
originating tower of each phone call. We aggregate this ttatgenerate a time series
for each tower that gives the number of calls made in suog36i minute intervals. In
some cases, we spatially aggregate these time series to tit@dotal call activity over
10 minute intervals for all towers in a particular area.a postal code.

To explore the ffect of events on the call activity in the surrounding areause
PostGIS functions to identify the towers within a particulisstance of the estimated

location for the relevant time frame and aggregate the ttwer series described above

2The events are drawn from real-world data from a particlitsr Due to a non-disclosure agreement,
we can not name the city or give specifics of the events.
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to produce a single time series for the area.

We make heavy use @fscores throughout this chapter. In computing theseore,
we take into account the fact that the values of interestwaitly based on the day of
the week and the time of day. Since we are using 10 minutevaitera week consists
of 1008 intervals. We compute the measures of location aald $or each of these
intervals and use these to compute the relexastore at each time step. We also use
the error in Holt-Winters forecasting,w, which is the deviation of the predicted value

from the actual value.

7.5 Results

We first look at how the eventdfact the call volume in the surrounding areas. The
columns in figure 7.1 show the time series of call activit@sthe five days leading up
to each event. Each row, from the top of the figure to the battooludes data from a
larger area surrounding the location of the events. Thedimsht (left column) occurs
in the morning on the fifth day, and we see a correspondingase in call activity
at this time. The severity of this spike in activity decresaas the radius of the area
increases from 1 km to 5 km. The second event (right columa)iscvery early in the
morning the fifth day, though we see elevated call activitgrelsefore midnight. As
with the first scenario, the spike in call activity becomessldramatic as a larger area,
up to 2 km in radius, surrounding the event is included.

Next we look at the pairwise distances between the timesefithe dfected postal
code and its neighbors. Figures 7.2 and 7.3 each show th&atoon (both cumulative
and over a sliding window) and Euclidean distances betweepastal codes in which
the events occur and the neighboring postal codes for twksviading up to the

events. The left columns show the cumulative correlati@tatice used by Rodrigues
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Figure 7.1. The fect of the event situations on the call activity through the
surrounding cell towers. The left column shows the timeesefor the first
situation, which occurs at during the morning of the fifth dayhe time
series. The right column shows the time series for the sesibuation, which
occurs very early in the morning on the fifth day. In both catesseverity of
the activity spike decreases as a greater area is considered

et al. [74]. The center and right columns show the correlationagisé and Euclidean
distance, respectively, over a one day sliding window.

In figure 7.2, we see an increase in each distance measure endhof each time
series. The cumulative correlation distance has only atirgrease at the end of the
time series when the event happens. These increases aredraoratic in the cases
where a sliding window is used. In the time series in figuretfi€2e are two days of
missing data, from 576 to 864 minutes. These missing dataaraoticeable in the
cumulative correlation distance; however, they lead toefinéd correlation distances

and Euclidean distances of O for 144 time steps when theeestidiing window contains
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0 for all features. In figure 7.3 we see similar increases stadice in most cases. The
fact that the cumulative correlation distance shows onlgnalkincrease compared to
the case where only a portion of the history of the time sesiesnsidered may indicate
that this distance measure is dominated by older obsengtinaking this cumulative

measure insensitive to anomalies. The detrimerfattof old, stale data is discussed

by Aggarwal in [2].
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In figures 7.4 and 7.5, we compare single link clustering degrms for a day of
normal activity and the day of the event. We cluster each dajata with the single
link agglomerative algorithm using two fiierent dissimilarity measures: correlation
distance and Euclidean distance. Figure 7.4 shows theectufstr the first emergency
situation. In both the correlation and Euclidean distariusterings, the distance, the
postal code in which the emergency occurred is significdatiyer than the distance
between any two clusters on the day of normal activity. InregiL5, we see a similar
separation of the postal code in which the emergency oatatoag with one neighbor
from the remaining clusters, though the increase in digt@éoot as dramatic as in the
previous case. It is not surprising that the outlying clustethe day of the emergency
contains two postal codes since there is one postal codendipthe time series in the
top row of figure 7.3, that does not exhibit an the same iner@adistance seen in the
others, indicating that the call activity in that area iafected by the event.

Applying what we see in these figures, we compute the maxinmtendluster dis-
tance for single link clusterings over a sliding window. Tisawe run single link until
there are two clusters and compute the distance between ffeput these values in
perspective with respect to the larger dataset, we compatedcore at each time step.

Figure 7.6 shows thescores for the time around the first event (the bombing)gusin
the postal code level data. The left panel shows the starzesodre z, ., and the right
shows the robustscore z; o,. In both cases, the call activity increases in the hour after
the event. This dataset is particularlfected by noise, and by using the more robust
measures of locatiom, and scaleQ,, the inactive time leading up to the event, while
still high, is closer to O without fecting the increase im-score associated with the
event.

Figure 7.7 shows the-scores for the time around the first emergency using tower
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Figure 7.4. The clustering of the call volume time seriegfostal codes
surrounding the first emergency event. The left column shbe€lustering
of one day of normal activity and the right column shows thestgring of the
day of the first emergency event. The leaf representing te@pcode in
which the event occurs is marked with an X. For both the cati@h distance
(top row) and Euclidean distance (bottom row), tifieeted postal code is
near other clusters during the day of normal activity bunigatlier during
the day of the event.

level data. The left panel shovs, and the right shows; o,. At this level of granular-
ity, we are unable to detect the event. In both plots, we seacease approximately
two hours before the event; however, the rangessfores are very small indicating
that the increase is not substantial.

Figures 7.8 and 7.9 show tlzescores for the time around the second event at the
postal code and tower levels, respectively. Atatient levels of granularity, we detect
different aspects of this event. At the postal code level, wectihie activities toward
the end of the event, at time 2, after the crowd has gatherédie team. At the tower
levels, we detect activities toward the beginning of thengévaround time 0 when the

sporting event ends.
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Figure 7.5. The clustering of the call volume time seriegfostal codes
surrounding the second emergency event. The left columnsstie
clustering of one day of normal activity and the right colusfows the
clustering of the day of the second emergency event. Thedpagsenting the
postal code in which the event occurs is marked with an X. imdhse, the
call activity in one of the neighboring postal codes is alfecied by this
event, resulting in an outlying cluster with to data items.

We also use the maximum cluster distance from complete ludtering. Since the
distance between two complete link clusters is the maximterc¢luster distance, we
only need to compute the diameter of the set of points in theseéa Figures 7.10 and
7.11 show the-scores for the diameter of the data points at the postal anddgower
levels, respectively. At the postal code level, we do seeeames for both the standard
z-scores; however, they only appear a few hours after thet.evdns makes sense in
light of the fact that the maximum cluster distance for thenptete link clusters are
larger than those for single link. This measure is, theesftass sensitive to a small
number of anomalies in one of the features in the sliding wivdo more anomalies
must accumulate before there is an impact on the measure. itAshe single link

clustering, we do not detect the event at the postal codé leve
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Figures 7.12 and 7.13 show tlzescores for the diameter of the data points for
the second event at the postal code and tower levels, resggectAs with the single
link clustering, the two levels of granularity detecffdrent aspects of the event. The
z-scores jump at the end of the event when using postal codt data and at the
beginning of the event when using tower level data.

Next, we explore using a univariate model at each locatioe. udé two diterent
models: the Holt-Winters model where we measure tlfieidince between the value
we expect, based on the model, at each time step and the galua) and a Gaussian
model where we measure thg,, -score.

One way we can use this model to detect events is to simply flookutliers at
each location, and when outliers are found, the locatiom Wie greatest deviation
from the expected value is assumed to be the location of thetefFor each time step
surrounding the two events, we find the location with the gstadeviation from the
expected value and compute its distance from the event. Wioeking with postal
code level data, we use the distance between the postal eott®ids; otherwise, we

use the distance between the towers. Figure 7.14 shows distaaces for the first
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event (top panel) at the postal code (left) and tower (rilghv@ls. In both cases, we find
the event, with the distance dropping to zero ang increasing suddenly shortly after
time 0.

The results are not as clear with the second event, shownurefigg15. There is
a spike ineyW around time 1, but there is no corresponding decrease iniskende.
This is likely due to the fact this event involves a migratafrthe population from the
stadium to the square (we are measuring the distances fifatthr).

Figures 7.16 and 7.17 show the results for the Gaussian médekith the Holt-
Winters model, the first event can easily be seen at time Oawher distance drops to
0 and maxt; o,) increases sharply. Additionally, thisfect is sustained more so than
with the Holt-Winters approach, probably because this hedeach time step, doesn’t
depend on data smoothed at each previous time step. Fordbedsevent, we see a
decrease in the distance between times 1 and 2, which corméspo the gathering of
the crowd. Note that in this case, the event takes place neau@dary between two
postal codes, which is why we see small changes in the distanthe top left after

time 1. The spikes in maz{,) do not correspond to the decreases in distance, but we
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Figure 7.14. The normalized distance of the location withrtraximumeyy
from the location of the event (postal codes on the left ametts on the
right) at each time step in the 12 hours surrounding the fuestie

can attribute this to the fact that this data is produced kargel crowd migrating from
one location to another.

Another approach for detecting events using the univanmeéels is to find clusters
of anomalous regions using percolation tools as describ€hndiaet al [10]. In this
approach, we build a graph that represents locations asnattb edges between two
nodes if they are neighborse. postal codes or Voronoi cells that share a boundary,
and both are anomalous, based on sarseore threshold at each time step. Once
we have this graph, we identify the largest component as akengial event location.
Figures 7.18 through 7.25 shows the largest component ammbiow this component
size compares to other largest component sizes for the saynef the week and time
of day using thez-score. At no point in these figures does a largest compornzsat s

deviate significantly from the expected value. These evergssignificantly smaller
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Figure 7.15. The normalized distance of the location withrtraximumeyy
from the location of the event (postal codes on the left ametts on the
right) at each time step in the 12 hours surrounding the skevent.

than the one analyzed in [10], and we are unable to detect bemause they do not
affect a large enough area to generate a large connected compotiee percolation

graph.

7.6 Discussion and Conclusions

In this chapter, we have examined the impact of two eventdhercall activity in
the areas surrounding the events. We have analyzed thameldata using feature
clustering, a basic Gaussian univariate model, and Hoitt& forecasting.

The feature clustering approach has the advantage of pngvédsinglez-score for
identifying whether the call activity is in an anomalouststar not; however there are
some costs associated with this. First, the clustering odadloes not detect the event as

quickly as the univariate methods due to the sliding winddte first anomalous data
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Figure 7.16. The top panel shows the normalized distandsedbtation with
the maximung; ,-score from the location of the event (postal codes on the
left and towers on the right) at each time step in the 12 hawr®snding the
first event. The bottom panel shows the maximzjig,-score at each time
step.
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Figure 7.17. The top panel shows the normalized distandeedbtation with
the maximung; ,-score from the location of the event (postal codes on the
left and towers on the right) at each time step in the 12 hauresnding the
second event. The bottom panel shows the maximaugrscore at each time

step.
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Figure 7.18. The fraction of nodes, representing postagsoid the largest
component of the percolating graphs where the sites aneagadi when the
z, -~-score of the dterence of the forecasted call activity from the actual call
activity is{0.5, 1.0, 1.5, 2.0, 2.5} (left) and thez, ,-score of the largest
component size, taking the day of the week and time of di&@cts into
account (right) for the first event for the 12 hours surrongdhat event.
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Figure 7.19. The fraction of nodes, representing towertharargest
component of the percolating graphs where the sites aneasati when the
z, -~-score of the dference of the forecasted call activity from the actual call
activity is{0.5, 1.0, 1.5, 2.0, 2.5} (left) and thez, ,-score of the largest
component size, taking the day of the week and time of di@cts into
account (right) for the first event for the 12 hours surrongdhat event.
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Figure 7.20. The fraction of nodes, representing postatésod the largest
component of the percolating graphs where the sites aneasati when the
z, -~-score of the dference of the forecasted call activity from the actual call
activity is{0.5, 1.0, 1.5, 2.0, 2.5} (left) and thez, ,-score of the largest
component size, taking the day of the week and time of di&@cts into
account (right) for the second event for the 12 hours sudimgnthat event.
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Figure 7.21. The fraction of nodes, representing towertharargest
component of the percolating graphs where the sites aneasadi when the
z, -~-score of the dference of the forecasted call activity from the actual call
activity is{0.5, 1.0, 1.5, 2.0, 2.5} (left) and thez, ,-score of the largest
component size, taking the day of the week and time of dig@cts into
account (right) for the second event for the 12 hours sudimgnthat event.
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Figure 7.22. The fractions of node, representing postatésod the largest
component of the percolating graph where sites are activate
Z; 0, = 10.5,1.0,1.5,2.0, 2.5} (left) and thez, ,-score of the largest component
size, taking the day of the week and time of déigets into account (right)
for the first event in the 12 hours surrounding that event.
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Figure 7.23. The fractions of nodes, representing towertha largest
component of the percolating graph where sites are activate
Z; 0, =10.5,1.0,1.5,2.0, 2.5} (left) and thez, ,-score of the largest component
size, taking the day of the week and time of déiigets into account (right)
for the first event in the 12 hours surrounding that event.
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Figure 7.24. The fractions of node, representing postatésod the largest
component of the percolating graph where sites are acthaite
Z; 0, = 10.5,1.0,1.5,2.0, 2.5} (left) and thez, ,-score of the largest component
size, taking the day of the week and time of déigets into account (right)
for the second event in the 12 hours surrounding that event.
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Figure 7.25. The fractions of nodes, representing towerthe largest
component of the percolating graph where sites are actiaite
Z; 0, = 10.5,1.0,1.5,2.0, 2.5} (left) and thez, ,-score of the largest component
size, taking the day of the week and time of déigets into account (right)
for the first event in the 12 hours surrounding that event.

point will likely not have a major impact on the clusteringcbase the féected time
series will be dominated by normal values; it may take sé\wramalous data points
before the clustering isfiected. As a result, this approach will not be able to detect
short events that do not generate enough anomalous data pméfect the clustering.
Similarly, once an event is detected, it will take time foe #linomalous data points to
work their way out of the sliding window, meaning that thscore will indicate an
anomaly after the event has subsided. This can also caussigsthe case where the
cause of the increase in call activity is moving. It is likéhat only the initial location

of the event would be detected by the feature clusteringoambr.

While the feature clustering approach has several disadgastn general, it seems
to be a good option for our application: automatically staytredictive simulations.
The types of events that we are interested in simulatingpeilsist over longer periods
of time, so it is not desirable to detect short events. In,fae may consider the
detection of such events to be false positives, since sgestmulations for them serves

no purpose and there is a cost associated with starting dagiorusuite. Additionally,
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for the same reason, this approach is resistant to isolafeatiélly and temporally)
noise that would be identified as events using a simple tbtéskith the univariate
models. Since the purpose of the system is only to start thelations, this is not
an issue. Once the simulations are started, they are rabjmifsr gathering more
information as needed. The main drawback that remains isntdality to detect a
second event while the first remains in the sliding windowndty be possible to address
this issue by ignoring the time series in the most outlyingt@r until the data has been

evicted from the window.
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CHAPTER 8

SUMMARY

In this dissertation, we have described research perfoasquhrt of the develop-
ment of the Wireless Phone-Based Emergency Response Systernaw/ described
a data warehouse that serves as a historical data sourdeefgystem as well as for
more general research in the topics of complex networks anthh mobility. We have
also described a clustering algorithm for the detectionaed system that identifies
potential emergency events in space and time.

The warehouse is designed to facilitaté@ent data extract for researchers with
little experience in using relational database systen®yalg them to devote most of
their attention to their research rather than making sefise@rganization of the data.
We also identify and discuss an issue associated with thgenwérthe call records: the
introduction of duplicate records due to clock skew in the GiaiRa.

We describe two clustering algorithms, an online algorithiat, given the correct
parameters, produces a model of the data comparabl@itteanethods, and a feature
clustering algorithm that detects events causing a sigmfiand localized increase in
call activity. The feature clustering algorithm is suitlibr triggering the simulation
and prediction component of the WIPER system as well as giviagystem guidance
on which spatial area is of greatest interest, fulfilling tega steering aspect of the

dynamic data driven application system paradigm.
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8.1 Contributions

This dissertation makes three notable contributions:, fivetpresent an extension
of the dimensional model for the case where there is a greabflmissing dimensional
data. This model follows naturally from a partitioning oktfact table and allows us
to include foreign key constraints where necessary witlaolging a large number of
empty records to the dimensional tables. In our case, wdiparthe data based on
whether caller or recipients of voice calls or SMS has an actwith a particular
service provider, but this approach could also be applieddas such as biological net-
works where data is, at this point, still incomplete and gaiallected experimentally.

Next, we describe an approach for merging noisy, redundaiat @ith very little
supplementary data available to aid in record matching.ré aee often a number of
identifying fields available for comparison when mergingtdatabases; however, in
our case, we only have the primary key: a timestamp, therd&leand the recipient
ID. The problem is further complicated by the fact that theay be two records with
the same caller ID and recipient ID in quick succession, skitagy for small deviations
in the timestamp is not $iicient. We use an approach that merges records that match
in caller ID and recipient ID in increasing order of deviatim timestamp, and we use
a feature of the data, the intercall time distribution, tted@ine the stopping point.

Finally, we present a feature clustering approach for dietg@vents and their lo-
cation in real world phone data. We compare this approacimtple univariate models
at each location and find that while this approach takes loimgeentify the event, it is
less susceptible to false negatives, which incur a costrimpplication.

As evidence of these contributions, we list the presemntatand publications that

have come out of this work.
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8.1.1 Presentations

The work in this dissertation has yielded a several of schopaesentations:

e “Anomaly Detection in a Mobile Communication Network.” NbrAmerican
Association for Computational Social and Organization &oés. 2006. Notre

Dame, IN.

¢ “WIPER: An Emergency Response System.” International Commamtinfor-

mation Systems for Crisis Response and Management. 2008inytsh D.C.

e “Feature Clustering for Data Steering in Dynamic Data Drivgplication Sys-
tems.” Dynamic Data Driven Application Systems Workshayetnational Con-

ference on Computational Science. 2009. Baton Rouge, LA.

8.1.2 Publications

The work has also yielded a number of scholarly publications

e Alec Pawling, Ping Yan, Juin Candia, Tim Schoenharl, and Greg Madey. “Anomaly
Detection in Streaming Sensor Data,” Intelligent Techniques for Warehousing
and Mining Sensor Network Datalfredo Cuzzocrea, Ed. IGI Global. Forth-

coming.

e Alec Pawling and Greg Madey. “Feature Clustering for Dateefstg in Dy-
namic Data Driven Application Systems.” Computational Sces- ICCS 2009:
9th International Conference, Baton Rouge, USA, Proceedirays]l, Gabrielle
Allen, Jaroslaw Nabrinsky, Edward Seidel, Geert Dick vaha®la, Jack J. Don-
garra, and Peter M. A. Sloot (eds), Lecture Notes in ComputienSe series, vol

5545, Springer-Verlag, Heidelberg, 2009.
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e Alec Pawling, Tim Schoenharl, Ping Yan, and Greg Madey. “\RPEn Emer-
gency Response System.” In F. Fiedrich and B. V. de Walle, eacdedings of
the 5th International ISCRAM Conference, 2008.

e Alec Pawling, Nitesh Chawla, and Greg Madey. “Anomaly Detetin a Mo-
bile Communication Network.” Computational & Mathematicalg@nization

Theory. 13:4, December, 2007.

e Alec Pawling, Nitesh Chawla, and Greg Madey. “Anomaly Detetin a Mo-
bile Communication Network.” In: Proceedings of the Annuain€@pence of
the North American Association for Computational Social @mdanization Sci-

ences. 2006. (Received Best Student Paper Award).

8.2 Limitations and Future Work

The work we have presented here with respect to the histatata source pro-
vides the foundation for a more comprehensive system inuhed. Currently, the
warehouse is an extract machine that allows the researichessily and ficiently re-
trieve relevant call records; however, no analysis toatspaiovided. In describing the
data cleaning process, we present a method for eliminagicigndancy resulting from
merging call records from fferent sources; however, we do not identify the stopping
point of this process. It should also be noted that only a hegél of data cleaning has
been applied, and additional cleaning specific to a pagridype of analysis may be
required before that analysis can ldgeetively performed.

The stream clustering algorithm we present can produce ghmderings of the
data, but is highly sensitive to the threshold values. We dtsnot address the issue
of retiring stale clusters due to the fact our datasets usdbe development of this

algorithm cover a relatively short period of time.
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The feature clustering algorithm is limited by the fact thate an event occurs, it
will be present in the sliding window for its duration. Thisakes discovering smaller
events that happen after a large evefiiclilt to detect. This problem may be mitigated
by the simulation and prediction system. Once the initi@né\has been detected and
the simulations have been started, the changes in calltgdtiat are due to secondary
events, assuming that they are in the area over which thdations are being run, will

be incorporated into the simulations as they are validateidupdated.
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