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A SYSTEM FOR DETECTING ANOMALIES IN DATA STREAMS FOR
EMERGENCY RESPONSE APPLICATIONS

Abstract

by

Alec Pawling

This document proposes research for a Ph.D. dissertatiGonmputer Science and
Engineering. We intend to develop two components of an eemesgresponse system:
a Detection and Alert System and a Real-Time Data Source.

The Detection and Alert System will identify anomalies inttr@am of telecommu-
nication data that may indicate an emergency has occurrad orteresting situation
has arisen in a developing situation. We will consider tlm@aponents of the telecom-
munication data when looking for anomalies: the call volantkee geographical distri-
bution of calls, and the social networks formed by the cathsactions.

The Real-Time Data Source will receive a raw stream of telewomcation trans-
actions and provide temporal and spatially aggregated sumamof the data to the
Detection and Alert System, as well as other componentseoéthergency response
system. In addition to timely distribution of the summadziata to the clients, we also

require synchronization between all components of the WIBgERem.
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CHAPTER 1

INTRODUCTION

This document proposal research on two problems: (1) fasthaty detection in
streaming sensor data and (2) aggregating and streamirgnneadata to components
of a distributed system. We tackle these problems in theestrdf developing an
emergency response system.

In this chapter, we discuss the problem of emergency regponasagement and sur-
vey emergency response systems. We also present an overivieg/\Wireless Phone-

based Emergency Response (WIPER) project and related regpeabdéms.

1.1 EMERGENCY RESPONSE MANAGEMENT

Emergency response managers decide how to use availabilegaes to cope with
a crisis situation. Making good decisions is difficult, espfly when factors such as
stress, fatigue, and restrictive time constraints aregmted hese stressors are common
in emergency situations. Emergency response systemsdpreupport for gathering,
analyzing, and presenting data in such a way that it is usefdlmeaningful to the

manager [51].



1.2 EMERGENCY RESPONSE SYSTEMS

Emergency response systems provide communication, di¢&tcan, data analy-
sis, and decision making tools. The standard model for eemesgresponse systems
consists of four components that provide the following tiorality: data storage with
fast access, fast data analysis, solution evaluation, amgkrinterface that provides
access to all other components [51].

Belardoet al. [20] describe four early emergency response systems.

A system for the American Red Cross stores survey data call&éeore emer-
gencies in high risk areas, initial damage survey resutid \éctim claim infor-
mation. The goal of the system is to quickly verify claimsacifitate timely aid

distribution.

e A system for the United States Coast Guard predicts the pofia lost vessel
based on the last known position and drift forces such agotand wind. Based

on the result, the Coast Guard implements a search pattern.

e A system for a regional emergency medical organizationigdes/information on
available resources, modeling tools to aid in resourcecation, and reminders

of correct procedures.

e A system for the New York State Office of Disaster Preparesinestivated by
the Three Mile Island incident, includes tools for storimglaccessing informa-
tion on available resources, including equipment and perslp and modeling

the dispersion of radioactive material over time.

Current technology can provide emergency response managegss to abundant

data; however, studies have shown that abundant data dbesaessarily lead to good



decisions. In cases where there is more data than can bé\affedandled, a phe-
nomenon referred to daformation overloagdad hoc processes for reducing the data
volume for human processing may distort the data causingyeadation in decision
quality [84]. Emergency response systems attempt to coacttaenformation overload
by providing methods of organizing and presenting data shahmore data can be

effectively used by decision makers.

1.3 DYNAMIC DATA DRIVEN APPLICATION SYSTEMS

Dynamic data driven application systems (DDDAS) simuladiand models make
use of new data (typically provided by a sensor network) be¢omes available. This
data validates and steers running simulations in order poawe their quality. Dynamic
data driven application systems typically consist of thceeponents: a simulation
system, a sensor network, and a software system that psodiaka from the sensor
network to the simulation system as requested [34].

Darema [34] identifies four areas of research that are nagefs the development

of DDDAS applications:
e Application simulations must be able to utilize new dataaiyically at runtime.

e Mathematical algorithms must have robust convergencegptieg under dynamic

data inputs.

e Systems software must support dynamic computational, aomgation, and data

with fault tolerance and quality of service guarantees.

e Interfaces to measurement infrastructure, such as wiekessor networks, for

management of data collection.



There are several DDDAS applications related to the proldémmergency re-
sponse under development. We describe two of these applisdielow.

The Vehicle-Infrastructure Integration initiative usesstof roadside and in-vehicle
sensors to monitor traffic flow and evaluate the highway systehe system also pro-
vides emergency detection and response support by detetiamges in flow of traffic,
even in cases where part of the sensor network is lost, amingiaistributed simula-
tions in support of a dynamic emergency response plan [39].

The iRevive system is intended to help emergency responaléns triage phase of
mass casualty emergencies. The system uses data recemeglthvireless hand-held
computers carried by emergency responders and sensordh#&bnpatient vital signs

to help the responders determine the order in which pataetseated [40].

1.4 OVERVIEW OF THE WIPER PROJECT

The Wireless Phone-Based Emergency Response (WIPER) systesmtiyuun-
der development, utilizes a cell-phone network as a setmdas for gathering and
presenting information to emergency response manageessydtem monitors the net-
work data for anomalous activity, runs simulations to prcegiopulation movement
during a crisis, and provides the emergency response mangtpea current view of
the affected area using GIS tools [60, 61, 77, 78].

The WIPER system consists of five components, each of whickssribed briefly

below.

e The Decision Support Syste(®SS) is a web-based front end through which

emergency response managers interact with the WIPER system.

e The Detection and Alert SystefiDAS) monitors streaming network data and

detects anomalous activity. There are various aspectedfdh-phone network



data that may be of interest, include overall usage levpksja distribution of

users, and social network characteristics.

e The Simulation and Prediction Syste(8PS) receives anomaly alerts from the
DAS, produces hypotheses that describe the anomaly, asdsuselations in

conjunction with streaming activity data to validate oejhypotheses.

e The Historical Data SourcgHIS) is a repository of cellular network data that
resides in secondary storage. This data is used to detetingitbase-line behavior

of the network against which anomalies are detected.

e TheReal-Time Data SourdgRTDS) is a real-time system that will receive trans-
action data directly from a cellular service provider. THEDR is responsible
handling requests for streaming data from the DAS, SPS, & &nd stream-

ing incoming data to these components in a timely manner.

Figure 1.1 shows an architectural overview of the WIPER syst€éhe RTDS and
HIS provide the bridge from the service provider, about Wwhiee have very little ar-
chitectural knowledge, and the WIPER system. The figure sliogvBow of streaming
data from the service provider through the RTDS, possiblyvhy of the HIS for de-
velopment and training, and to the remaining componentsu&stg for streaming data
from the RTDS occur via SOAP messages. SOAP messages angsalddy the De-
tection and Alert System to inform the Simulation and Preadiicsystem of a potential

anomaly in the streaming data.

1.5 OVERVIEW OF PROPOSED RESEARCH

The research proposed in this document focuses on two camngaof the WIPER

system: the Detection and Alert System and the Real-Time Satiace. Our goal is to
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Figure 1.1. WIPER system architecture.

develop:

e fast, dynamic, stream mining algorithms for anomaly déd@dn both relational

and non-relational data

e a real-time system that distributes data from the serviogiger to the WIPER

components quickly and reliably.



CHAPTER 2

BACKGROUND

2.1 OVERVIEW

In this chapter, we present background information relet@development of the
Detection and Alert System and Real-Time Data Source for WIRE&Rsurvey sev-
eral topics, including outlier detection, anomaly detatiin time series data, complex

networks, link mining, data stream models, and real-tinstesy.

2.2 OUTLIER DETECTION

An outlier is an item in a data set that does not appear to bsigtent with the
rest of the set [17]. Outliers are of interest because theylmanoise that significantly
degrades the quality of data models. There is a great de#kddture on the prob-
lem of outlier detection as well as a number of applicatiomduding fraud detection,

intrusion detection, and time series monitoring [46].

2.2.1 Methods for Finding Outliers in Data

There are three fundamental approaches for outlier detetb]:

e Model normality and abnormality.This approach assumes that a training set

representative of both normal and abnormal data exists.



e Model one of normality or abnormality-his approach typically models normal-

ity and is well suited for dynamic data.

e Assume no a priori knowledge of the datduis approach is well suited for static

distributions and assumes that outliers are, in some stmdegm normal data.

There are several statistical methods for outlier detactiocluding parametric
methods, semi-parametric methods, non-parametric method proximity based meth-

ods [46].

2.2.1.1 Parametric Methods

Parametric outlier detection methods assume that the olédav$ a particular prob-
ability distribution. These methods tend to be fast but kiflie. They depend on a
correct assumption of the underlying data distribution arednot suitable for dynamic
data [46].

Statistical process control assumes that the variatioharotitput of a process fol-
lows a Gaussian distribution. In manufacturing, a certanoant of deviation in some
measure on the output of a process is expected due to vasatianaterial and other
factors; however, a significant deviation from the mean madjciate that the equipment
is not working properly either due to a mechanical failurevear on the system over
time. The boundary between random variation, the formet, assignable variation,
the latter, isu £+ ko, wherey is the meang is the standard deviation, ardis some

constant. [22].

2.2.1.2 Semi-parametric Methods

Semi-parametric models use mixture models or kernel deesiimators rather than

a single global model. Both mixture models and kernel modgisnate a probability



distribution as the combination of multiple probabilitysttibutions.

Mixture models consist of a weighted sum of probability dgnsinctions. Gaus-
sian mixture models, which consists of a set of Gaussiangtibty density functions,
are most common, though any combination of probability degrfanctions may be
used [87]. The expectation maximization clustering akponi discovers a Gaussian
mixture model for a data set where each Gaussian probabéigity function corre-
sponds to a cluster.

A kernel density estimator models the data set by assumingl@apility density
function is centered at each point in the dataset. The pilityadiensity function for
the entire data set is the sum of all the kernel estimatois fgZung and Chow [95] use
a kernel density estimation, with Gaussian kernels, asia tshypothesis testing for

intrusion detection.

2.2.1.3 Non-parametric and Proximity Based Methods

Non-parametric methods make no assumptions about the Iyimgedistribution
of the data and tend to be computationally expensive. Mamypayametric methods
define outliers in terms of their distance from other poimghe data set. Specific
definitions vary from application to application. Two defions that appear in the

literature are stated below.

Definition 1 (from [54]). An objectO in a datasef is aDB(p, D) outlier if at least

fractionp of the objects iri’ lie greater than distande from O

Definition 2 (from [75]). The DF outliers are the: points with the largest distance from

their kth nearest neighbor.

Both DB and D* outliers can, niely, be discovered by computing the distances

between all points in the data set and finding the points tlesgtine criteria specified



in above definitions; however, this approach is slow, esfgdior large data sets. The
detection of these outliers may be accelerated with the tispatial data structures.
Knorr and Ng [54] present a cell-based method that dividespace into hypercubes
of equal size. The properties of this structure, with a ediethosen cell size, allow
all points in certain cells to be identified as outliers or twarliers at once, in many
cases. Multiresolutionatd-trees [66] may also be used to speed up the search for
outliers. Mikd-trees form a hierarchical representation of the poinésdata set,ethe
root of the tree “owns” all nodes and a node’s points are fi@am®d among its two
children. Each node stores basic statistics on the poitawits”: the number of points,
the centroid, the covariance, and the bounding hypermgt#a Chaudharet al[27]
present a method of outlier detection that computes/alfnee such that the points in
each node are divided evenly among its children and refimasdtie boundaries so that
each node has a uniform density distribution of points. Pnexluces a set of nodes in

which all points in a node have the same amount of “outliesshe

2.2.2 Methods for Finding Anomalies in Time Series Data

Keoghet al. [52] discuss the problem of finding surprising patterns inetiseries

data. They provide the following formal definition of a susgong pattern:

Definition 3 (from [52]). A time series patter®, extracted from databasg is sur-
prising relative to a databageif the frequency of its occurrence is greatly different to
that expected by chance, assuming thiand X are generated by the same underlying

process.

The approach discretizes the time series into a symboiiegs{the specific dis-
cretization method depends on the application) and usksreat Markov model or a

suffix tree to characterize the probability of each subgtrin

10



Lin et al. [58] describe a discretization and dimensionality reductinethod for
time series data called SAX. They also define a measure thatloounds the distance
between two time series that have been discretized via SAX fEsult makes SAX
feasible for use with various machine learning techniqueh ss clustering, nearest
neighbor classification, and decision tree classification.

Weietal. [91] use SAX in conjunction with a pair of sliding windows fassumption-
free anomaly detection. They use a “lag” window as a basalwdecompute its distance
from the “lead” window. This distance provides a measureanidmalousness” for the
“lead” window at each time step.

Scott [80] presents a method for network intrusion deteatising a Markov mod-
ulated nonhomogeneous Poisson process. The approacktsarfsiwo Poisson pro-
cesses, one modeling normal behavior and another modddmymal behavior, and a
Markov process modeling the probability of moving from natrinehavior to abnormal
behavior and vice versa. Scott and Symth [81] use a simildhodefor modeling web
traffic, and [47] use a Markov modulated Poisson process fmating foot traffic at

the entrance of a building and freeway traffic near a majortsmue.

2.2.3 Application: Fraud Detection

Outlier detection is often used in fraud detection appiwes. Identifying fraud
quickly is important in order to minimize the loss due to theud. Fraud is pervasive
and takes many forms, including money laundering, credd &aud, telecommunica-
tions fraud, computer intrusion, medical fraud, and sdierftaud [24].

We discuss two approaches to fraud detection. The supdraigeroach requires
data describing non-fraudulent behavior and all classésatiulent behavior that are

to be detected. The unsupervised approach identifies eutlie potential fraud and

11



flags these for further investigation [24].

Fawcett and Provost [36] present a supervised frameworldébecting cloning
fraud, a form of telecommunication fraud in which identifgi account information
is stolen and used to gain access to a legitimate user’s accoheir approach uses a
rule based system to identify fraudulent calls and a set d@filprmonitors that model

normal behavior and variation for each user.

2.2.3.1 Intrusion Detection

Intrusion detection is a form of fraud detection which seekguickly identify any
security compromise of a computer system in order to mirentiee damage inflicted
by a malicious user. A security compromise occurs when aivigheal obtains per-
missions on a machine to which he is not entitled. There amymays in which a
compromise can occur, including a stolen password and gapém of vulnerable pro-
grams. There are two major approaches to intrusion detectignature detection and
anomaly detection [13].

The signature detection approach requires each type afsiotr to be specified.
The major drawback of this method is that it can only detectkmintrusions and must
be updated as new types of intrusions are discovered. Theaapaletection method
for intrusion detection tend to be semi-supervised and asedon the assumption that
“abnormal behavior is probably suspicious” [13].

Denning [35] suggests the idea of viewing abnormal behasosuspicious based
on the observation that many security compromises have thseavered by system
administrators and users who observe strange behavioougaapproaches of anomaly
detection have been applied to this problem.

Some approaches utilize standard methods for detectingalies, such as hidden

12



Markov models [96] and clustering [74]. Other approacheskased on hypothesis
testing and entropy. Yeung and Ding [96] use cross entroyrasasure of the differ-

ence between the distributions of two data sets as the lmadigpothesis testing.

2.3 COMPLEX NETWORKS

A wide range of phenomena may be modeled as grapfssocial interaction, bio-
logical systems, the world wide web, research collabonapower grids, transportation
systems, food webs, and ecosystems. [9, 15, 23]. In thigsest introduce standard
graph metrics and major graph models. We also discuss agmsdor data mining

complex networks.

2.3.1 Graph Metrics
2.3.1.1 Diameter

Thediameterof a graph is the longest shortest path in a graph and givesaxe
mum distance required to travel between any two verticdsdrgtaph. The diameter of
an unconnected graphds; however, the maximum component diameter may be used

in this situation [94].

2.3.1.2 Degree Distribution

One of the most commonly measured graph characteristit® gegree distribu-
tion, which is the probability distribution of the degrees of Wlegtices. Several network
models produce graphs with a Poisson degree distributityding the Erds-Renyi
and Watts-Strogatz models discussed below, and many rekl metworks are known

to have power-law degree distributions [9]. Under a power-dlistribution, the proba-
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bility a vertex has degrekis
P(k) oc k7 (2.1)

wherevy > 1[16].

2.3.1.3 Characteristic Path Length

Thecharacteristic path lengtbf a graph is the average shortest path length between
a pair of vertices [90]. A graph is characterized asrall-worldnetwork if its charac-
teristic path length is no greater than logarithmic withpess to the number of vertices

in the graph [23].

2.3.1.4 Clustering Coefficient

The clustering coefficientharacterizes the connectivity of the neighborhoods of a
graph. Two methods of computing the clustering coefficigmtesr in the literature.

The first method, by Watts and Strogatz [90], is the averagbatility that two
neighbors of a vertex are connected. kgbe the number of edges connecting neigh-
bors of vertex» andd(v) be the number of neighbors for vertexthe degree of). The

clustering coefficient is

(2.2)

1 €y
€= V] 2 d(w) (d(w) 1) /2

The second method, by Newmann [68], computes the probathibit two neighbors of

any vertex are connected.

— ZUEV €y
“= Zvev d(v) (d(v) — 1) /2 (2.3)

Readers should be aware that both methods are used in tla¢uieeand may pro-
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duce different values. The definition by Watts and Strogatesgggreater weight to

vertices with smaller degrees [70].

2.3.2 Graph Models
2.3.2.1 Erds-Renyi Model

Erdds and Rnyi study the properties of evolving random graph$igfvertices as
the probability,p, of a an edge existing between any pair of vertices increabesy
find that a number of properties appear suddenly, with higbaibility, at some critical
probability,p., asp — 1. One of their most famous discoveries is the critical praligb
for the formation of a giant componerite. a component of siz&(|V]), is 1/|V].
Whenp > 1/|V| a component witl)(|V|) vertices is likely present. When< 1/|V/|,
a random graph likely haS|E| components, none of which have more tt&in |V|)
vertices. Wherp = 1/|V|, the largest component of the graph is probablyl’|*/?)
vertices. Erds-Renyi graphs typically have small characteristic path leregtd small

clustering coefficients [9, 23, 70].

2.3.2.2 Watts-Strogatz Model

Watts and Strogatz [90] observe that naturally occurringvaeks are neither com-
pletely random, like the Efis-Renyi model, nor completely ordered. The Watts-
Strogatz generative model starts with a regular latticee \értices are organized in
a circle and each vertex in the graph is connected to soméasdmaimber of its near-
est neighbors, resulting in a regular graph in which eacltexdras the same degree.
Each edge in the lattice is randomly rewired with a constewtbg@bility. Watts and Stro-
gatz evaluate their model using two metrics: charactersih length and clustering

coefficient. They show that while both random graphs andlgggenerated using their
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model both exhibit the small-world characteristic, theodel produces graphs with the

larger clustering coefficients that are found in naturatlgwring graphs.

2.3.2.3 Barahsi-Albert Scale-Free Graphs

Albert, Jeong, and Baralsi [10] show that, like social and biological networks, the
world wide web is a small world network and has an estimatedaatieristic path length
of 19. Additionally, they discovered that the world wide weds a power law distribu-
tion, a distribution that is significantly different tharetexpected Poisson distribution.
Further investigation reveals power law distributions @oa collaboration and power
grid graphs. Graphs with a power law degree distributionreferred to ascale free

graphs because their properties are independent of theerwhtertices [10, 15, 16].

2.3.3 Link Mining

Link mining learns on a collection of related objects ratifi@n assuming each item
in a data set is independent—an assumption of traditiortal m@ing methods. Link

mining tasks can be divided into three types [41]:

e Object related tasksclude link based ranking, link based classification, grou

detection, and object identification.
e Link related taskénclude link prediction and anomalous link detection.

e Graph related tasksclude subgraph discovery, graph classification, andrgene

ative models for graphs

Generative models for graphs include the &dRenyi, Watts-Strogatz, and Bassi

Albert models discussed above. The link prediction and adons link detection prob-
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lems are directly related to the research presented in tbfgogal, and we briefly dis-

cuss them below.

2.3.3.1 Link Prediction Problem
Liben-Newell and Klienberg [57] define the link predictioroplem:

Given a snapshot of a social network, can we infer which négractions

among its members are likely to occur in the near future?
They evaluate various approaches for assigning a connesgayht rank for each pair
of nodes in the graph. The ranks may be a function of proximitgimilarity and are
determined by examining either the neighborhoods withen ribtwork or the paths
through the network. Neighborhood based ranks may be thébauwof neighbors
shared by two nodes, the probability that two nodes shareemgieighbor (Jaccard’s
coefficient), or the product of the number of neighbors of tveales (preferential at-
tachment). Path based ranks may be a weighted sum of the naipaths between
two nodes such that shorter paths are assigned higher weightz method) or the

expected number of links between two nodes (hitting timé).[5

2.3.3.2 Anomalous Link Detection

The anomalous link detection problem consists of identdyiinks that are not
likely to occur. Rattigan and Jensen [76] applied the KatZwetused for link predic-

tion by Liben-Nowell and Kleinberg [57], to detect anomaddinks.

2.4 DATA STREAMS

Data stream model deals with data sets that may only be reesl amd only in

the order in which they are generated. These limitationglaecto the volume of the
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data; the data sets are so large that it is not feasible dtereritire data set in main
memory, read the data multiple times, or perform randomsssseon the data. A data
stream may be the product of reading a large file from disk pe,téhe result of a
database query, or the output of an ongoing process. Giveno$idata streams and
the memory restrictions, streaming algorithms are requioeuse sublinear space. In
general, algorithms using polylogarithmic space with egspo the number of items in

the data stream are considered good solutions [14, 45].

2.4.1 Measuring the Evolution of Streaming Data

A characteristic of a data stream we may wish to considerasaay in which it
evolves over time. Arggarwal [5] suggests two metrics foamging the evolution of
a stream: (1) velocity density estimation, which estim#tesrate at which the density
of data at a given location is changing and (2) spatial vegtofiles which provides
insight into the manner in which the data is shifting. Kigtral[53] use a “two win-
dow paradigm” in which aeference windows used as a baseline with which future
data is compared and tloairrent window This method uses a generalization of the
Kolmogorov-Smirnov statistic to estimate the distanceneen the distributions that

produced the values in the two windows.

2.5 REAL-TIME SYSTEMS

Real-time systems behave according to explicit timing cairgs and are generally

divided into two categories.
e Hard real-time systenmfil if any time constraint is violated.

e Soft real-time systentslerate some number or rate of time constraint violations.
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A real-time system consists of a settaks each of which is a process or thread.

Each task consists of a sequencgobis There are three types of tasks.

¢ Periodic taskgelease jobs at regular intervals.

e Aperiodic taskselease jobs at irregular intervals.

e Sporadic taskare aperiodic tasks in which the release of two consecudb®is

constrained by a minimum time interval.

The tasks in a real-time system are assigned a priority, wtetermines the order
in which tasks are executed. Tasks with higher priorities lvafore tasks with lower

priorities.

2.5.1 The Periodic Task Model

Liu and Layland [59] define the canonical real-time modelgderiodic tasks. The
model is highly constrained; they assume that all tasks armgic with a deadline
equal to the period, all tasks are independent, all tasks &dixed or bounded compu-
tation time, all tasks may be preempted so that a task witlglaghipriority may run,
and all tasks run on a single processor [59, 82].

In the periodic task model, the jobs of a task are defined bygatameters.

e Therelease timas the earliest time a job may begin execution

e Theexecution timee, is worst case CPU time required to execute the job.
e Thedeadline d, is the time by which the job execution must be completed.

e Theperiod p, is the rate at which the task releases jobs. The deadlingobfia

equal to the period of its task.
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In their paper Liu and Layland [59] define two fundamentalesitiiing algorithms
and derive feasibility conditions, the conditions underchifa task set meets all tempo-
ral requirements. Their analyses are based on the concatitital instantwhich is
a time at which a job will require maximum time to complete. Kical instant occurs
when a job is released at the same time that all higher pritagks release a job. If all
jobs meet their timing constraints at their critical indtdhe task set is feasible.

The feasibility analyses are based on #system utilizationfraction of available
processing time required by a task. For taskith execution time:; and periodp;, the

utilization ise; /p;. The total utilization[/, of a system withn tasks is

m e
U= —.
izl pi
Rate monotonischeduling is a fixed priority algorithm in which the prigriof a
task is inversely related to its period. Liu and Layland [88}ive a sufficient feasibility

condition for rate monotonic scheduling; a sehoperiodic tasks is feasible if
U<m((2/m"-1). (2.4)

Earliest deadline firsscheduling is a dynamic priority scheduling algorithm. in
which the priority of a task is inversely related to the timwilits next deadline. Liu
and Layland [59] show that with earliest deadline first schied, there can be no idle
processor timei,e. the processor is fully utilized, prior to any missed deagllifihey,
therefore, derive a necessary and sufficient feasibilityddmn for earliest deadline

first scheduling; a set of periodic tasks is feasible if and only if

™

m
i=1

L<. (2.5)
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2.5.1.1 Extensions of the Liu and Layland Model

The work of Liu and Layland [59] provides an important foutida in real-time
scheduling research, and much work has been done to extsndddel.

Deadline monotonic scheduling is a generalization the madaotonic scheduling
algorithm in which the deadline of a periodic task is lesstba equal to its period.
This generalization improves the schedulability analjsidask sets where the worst
case execution times are less than the periods [12].

Several methods have been developed for improving the mssgone of aperiodic
tasks, which do not typically have hard deadlines but ma lemality of service, av-
erage response time, or average throughput requirementgreb solutions utilize a
polling server, a periodic task that provides time in whigle@odic tasks execute. The
more sophisticated server methods are able to use moresgaydeme when the total

system utilization is low [82].

2.5.2 The Sporadic Task Model

The sporadic task model [65] assumes that all tasks aredipora sufficient fea-
sibility test for a sporadic task system assumes that ea&htaeleased as frequently
as allowed by the system, in which case the analysis degesento the periodic case;
however, this approach does not permit a large number obleassk sets. Baruaét
al. [19] derive a necessary and sufficient feasibility test fooradic task sets. While
their algorithm for determining feasibility takes expotiahtime in the worst cases,
it requires pseudo-polynomial time in most cases. BaruahFRasiger [18] derive a
polynomial time feasibility test for sporadic real-timeskasets on single and multiple

processor systems when there are a constant number ottlisisk types.
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2.5.3 Rate-Based Execution

Jeffay and Goddard [50] note that in practice, distribugad-time systems are often
neither periodic nor sporadic and that in many cases thecégheate at which jobs
are released in known. To handle this situation, they devalmodel for rate-based
execution.

Tasks in the rate-based execution model are defined by foam@ders:
e atime intervaly

¢ the maximum expected number of times the task releasesijpimsa time inter-

val y
e the maximum desired response timeof the jobs
e the maximum execution time,

The deadline of each job depends on either the start timeeodéladline of therth
prior job. When jobs are released at a rate less than the maxiexpected rate, the
deadline of a job is the sum of its release time and its desgggbnse time. When jobs
are released at a rate greater than the maximum expectedmétehe firstz jobs in
a time interval of lengthy are expected to complete withiltime, the remaining tasks
are allowedy time beyond the deadline of théh previous task. Formally, lef; be the

release time of thgth job or theith task. The deadline for jopof taski is

Di(j) = (2.6)

Jeffay and Goddard [50] derive necessary and sufficientfiéis conditions for

rate based execution under preemptive scheduling, withwathdut shared resources,

22



and non-preemptive scheduling.
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CHAPTER 3

ANOMALY DETECTION IN A MOBILE COMMUNICATION NETWORK

3.1 ABSTRACT

Mobile communication networks produce massive amountsatd @hich may be
useful in identifying the location of an emergency situatand the area it affects. We
propose a one pass clustering algorithm for quickly idgimg anomalous data points.
We evaluate this algorithm’s ability to detect outliers inl@a set and describe how
such an algorithm may be used as a component of an emergeponse management

system.! ?

3.2 INTRODUCTION

Cellular networks have recently received attention as eigire-existing sensor net-
works. City officials in Baltimore use cell phone location datanonitor traffic flow,
and the state of Missouri is considering a similar state wiegram that would make
traffic information available to the public [11]. Intelli@pa company based in Atlanta,

GA, recently released a system that displays anonymouploatlie location data onto a

1This paper won the best student paper award at the North AareAissociation for Computational
Social and Organizational Science (NAACSOS) Conferend@s2Wniversity of Notre Dame, Notre
Dame, Indiana, USA. [72]

2This work has been accepted for publication in Computati@Mdathematical Organization Theory.
[71]
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map so that users can identify congested areas [67]. Thegen®r response commu-
nity has also gained interest in using existing cell phorterokks as a way to distribute
warnings to citizens [83, 93].

The Wireless Phone Emergency Response (WIPER) system, anesrogrgsponse
management tool currently under development, monitorsistireg cellular phone net-
work. Operating under the assumptions that the behavidnehetwork models the
behavior of a population and that anomalous behavior magaitel an emergency sit-
uation has developed, the system attempts to quickly datexhalies in the network.
When anomalies occur, WIPER uses a suite of simulations tagbriedw the situa-
tion will unfold. This paper focuses on the problem of id&nitig anomalous events in
streaming cell phone data as part of the WIPER system. Se&{618] for a complete
overview of the WIPER system.

Our goal is to mine the cellular phone network data for evanid anomalies to
enable a more efficient emergency response system. Emgrgsponse systems are
tools that aid emergency response managers in the decisikimgnprocess. The diffi-
culty of making good decisions is increased by several fastwluding stress, fatigue,
restrictive time constraints.

Another major issue for emergency response managers isroidem of “infor-
mation overload”. Studies have shown a correlation betvamdant available data
and bad decision making in crisis situations [84]. Good gmecy response systems
provide access to the large amount of available data in sugyahat the emergency
response manager can use the data effectively to reach goiamhs [20, 51]

We believe that an anomaly detection system that monitasniing streaming
cellular network data and posts alerts for the emergengyorese manager will be a

useful addition to an emergency response system. It wilkdre managers attention
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to information that may be easily missed in a fast movingesstful situation. The
manager can use or ignore that information based on theerexre. The goal is to
provide valuable information without being too intrusivethe case of false positives.

The nature of the data poses some difficulties in developingremaly detection
system. First, a large amount of data arrives at a rapid fte.sheer volume of the
data makes it difficult to store it in its entirety, much legemte on it using repeated
accesses, which is a typical algorithmic requirement. &loee, we aim to develop a
method that follows the data stream model [14]. Intuitiyalglata stream is a sequence
of data items that arrive at such a rapid rate that it is onfsitde to operate on a
small portion of the data. As each data item is seen, it musither incorporated into
a summary that requires a small amount of memory or it musidmadied, in which
case it cannot be retrieved. The data stream model imposesdarithmic limitations:
each item in the dataset may only be read once in a predefided and memory usage
must be sub-linear—typically polylogarithmic with respaxthe number of data items
seen. Our main focus in this paper is the one pass requiremergresent a one pass
hybrid clustering algorithm for anomaly detection.

Another difficulty is the fact that the system is dynamic;way in which people use
the services provided by a cellular network changes oveg.tiiilne anomaly detection
approach should be sensitive enough to detect anomaliefibuld not be so sensitive
that it flags changes in the underlying system as anomaltest Sgid, the cost of false
positives is far less than the cost of false negatives. Teesycan handle the detection
of a few non-emergency situations, as long it does not hapgmeaften.

In this paper, we present a one-pass hybrid clusteringighgofor detecting anoma-
lies in streaming data. We evaluate clusters produced bgltfueithm and its ability to

detect outliers. Finally, we discuss how such an algoritamlze used in an emergency
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response system like the one described above.

3.3 RELATED WORK

There is abundant literature on the anomaly detection probhich describes a
variety approaches, including statistical, neural nekwand machine learning meth-
ods. In this paper, we focus on the statistical approachk&wecan be divided into
two categories: parametric and non-parametric. Paratragiproaches tend to be more
efficient, but assume the data conforms to a particulariligion. Non-parametric
methods do not assume any particular data distributionghiewythey are often less of
efficient. [46, 62, 63].

Clustering is an appealing non-parametric method becawsk\ts us to capture
various classes of “normal” and “abnormal” behavior. Thigsynbe quite useful since,
in addition to detecting anomalies caused by events that haver been seen before,
knowing various types of “abnormality” would allow us to méy interesting events
that have already been seen.

The goal of clustering is to group similar data items togetfiee concept of simi-
larity is often defined by a distance metric; we use Eucliddiatance. Good clustering
algorithms form clusters such that the distance betweea-gitster points are min-
imized and the distance between inter-cluster points ardmized. Anomalies are,
intuitively, the data items that are far from all other da&ams. There are three major

types of clustering algorithms: partitional, hierarchi@and incremental [48].

3.3.1 Partitional Clustering

Partitional clustering divides the data set into some nundéten a predefined num-

ber, of disjoint subsets/K-means is a classical and simple clustering algorithm that
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iteratively refines a set of clusters. The initial clustenteeids for thek-means algo-
rithm arek randomly selected data items from the data set. Each examfile data
set is assigned to the closest cluster, and the new clusteopms are computed. This
process is repeated until the clusters stabiliea)o point in the data set receives a new
cluster assignment [92].

Expectation maximization (EM) clustering is another dieals partitional algo-
rithm. EM is a probability based algorithm that seeks to alisc a set of clusters
corresponding to a Gaussian mixture model, a set of Gauds#ibutions, that de-
scribes the data set. The algorithm is initialized wittandom Gaussian distributions
and iteratively refines these distributions using a two ptepess. The expectation step
computes the probability that the data set is drawn from tineeat Gaussian mixture—
the likelihood. The maximization step reassigns the datastto the cluster which they
most likely belong and recomputes the Gaussian mixture algwithm halts when the
likelihood that the dataset is drawn from the Gaussian mexiacreases by less than a
user defined threshold.

There are a couple of drawbacks with these approaches. kTheans and EM
algorithms are not guaranteed to find an optimal set of alsisend both algorithms
requirea priori knowledge of the number of clusters in the data. These issuebe
mitigated by running the algorithms multiple times usinffedient initial conditions
and varying numbers of clusters. The best set of clustersad to describe the data
[92]. Another issue is scalability. These algorithms asdfinient for very large data
sets. Spatial data structures may reduce the time requrdtebe algorithmskid-trees
[21] have been used reduce the number of distance calawatemuired by:-means.
Often, akd-tree can be used to determine cluster memberships forsetsabpoints

with only £ distance computations (rather tharcomputations for each point in the
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subset) [73]. Multiresolutionatd-trees have been used to improve the performance of
EM clustering. A multiresolutionakd-tree stores hierarchical summary statistics on
the data “owned” by the node: the number of points, centrmgariance matrix, and
bounding hyperrectangle. With these summaries storediéoafthical subsets of the

data set, the computation of EM parameters can be accealesigtaficantly [66].

3.3.2 Hierarchical Clustering

Hierarchical clustering divides data into a nested set ditgmns and may be use-
ful for discovering taxonomies in data. Agglomerative aitfons produce hierarchical
clusters via a bottom-up approach in which each examplatialip a unique cluster
and the clusters are iteratively merged with their neighb@wo common agglomera-
tive clustering algorithms are single link and complet& liihese algorithms are graph
based: each example becomes a vertex, and edges are addddbabe distance
between pairs of vertices. A level of the hierarchical @us$ defined by a distance
threshold: an edge is added to the graph if and only if two gtesnare separated by a
distance less than the threshold. The connected compaaehtsompletely connected
components are the clusters for the single link and com/lilgtealgorithms, respec-
tively. The hierarchy of clusters is formed by iterativehcieasing the threshold to
produce larger clusters [48, 49]. Since single and comfilgteclustering compute the
distances between all pairs of examples in the dataset theydreater time complexity

than partitional algorithms, however, they produce optisatutions.

3.3.3 Incremental Clustering

Incremental algorithms consider each example once, imatedglideciding either to

place it in a existing cluster or to create a new cluster. &lagorithms tend to be fast,
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but are also often order dependent [48]. The leader algorigha simple incremental
clustering algorithm in which each cluster is defined by @leirdata item—the first
item assigned to the cluster. For each data example, if taepbe is within a user
specified distance of the defining item of the closest clusher example is assigned
to that cluster; otherwise, the example becomes the defexagiple of a new cluster
[44].
Portnoyet al. use the leader algorithm for intrusion detection (anotlpgdieation

of anomaly detection. In order to handle arbitrary disttidms, they normalize the data

usingz-score, in which the feature values are transformed by

o= (3.1)

Unfortunately, this requires two passes over the datahEurtore, the distance thresh-

old is fixed over all clusters, and cannot change as the da&anstevolves.

3.3.4 Clustering Algorithms for Streaming Data

A few methods have been developed for clustering data ste&nhaet al]43]
present a method based bfimediods—an algorithm similar tb-means. The clusters
are computed periodically as the stream arrives, using di@tion of the streaming
data and cluster centers from previous iterations to keeponeusage low. Aggar-
wal et al[7] present a method that takes into account the evolutisgireiming data,
giving more importance to more recent data items rather lgizing the clustering re-
sults be dominated by a significant amount of outdated daia.algorithm computes
micro-clusters which are statistical summaries of the data periodicaltpighout the
stream. These micro-clusters serve as the data points foddied £-means clustering

algorithm.
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3.3.5 Hybrid Clustering

Hybrid clustering combines two clustering algorithms. Cle¢wal[28] examine
the use of iterative, partitional algorithms suchkameans, which tend to be fast, as
a method of reducing a data set for hierarchical, agglonveraigorithms, such as
complete-link, that tend to have high computational coxiple Chipman and Tibshi-
ran [29] combine agglomerative algorithms, which tend taved at discovering small
clusters, with top-down methods, which tend to do well ato®ring large clusters.
Surdeantet al[86] propose a hybrid clustering algorithm for documensslfcation
that uses hierarchical clustering as a method for detengimitial parameters for ex-

pectation maximization.

3.4 THE DATASET

We use a data set generated from a database of real worltaceletwork infor-
mation. The database provides the following informatianefach transaction (use of a
service by a customer): the initiation time, the durationriinutes), and the name of
the service. From the database, we generated a data setZ@B0lexamples. Each
example indicates how many instances of each service argeifiou each minute of a
12 day period. We prune the year, month, and day from the @atdue to the small
time frame covered and we remove 11 services that are rasely. (rhis leaves a data
set with 7 features: hour, minute, data transmission ugggesral packet radio service
(GPRS) usage, telephone usage, text messages sent, aneéssgpes received.

Figure 3.1 shows the time series for each of the seven sdeatares of the dataset.
Note that each time series exhibits periodic concept diftunderlying change in the
process generating the data [88], based on the time of dag.tel&@phone time series

is relatively consistent from day to day, though the calluvoé varies somewhat de-
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pending on the day of the week and on whether the day is a lyolidaontrast, there
is a noticeable increase in the network load for each of theratervices as time goes
by; this is a form of non-periodic concept drift. This suggethat the way in which
people use the telephone service is relatively well esthétl. Notably, this is also the
oldest and most used service. As technology evolves, anplggebabits change, we

can expect new manifestations of concept drift.

3.4.1 Offline Clustering Analysis

Since many clustering algorithms requar@riori knowledge of the number of clus-
ters, we must have some way of determining the correct valuthis parameter. There
are a couple of methods for accomplishing this. One methtal sémply perform the
clustering for various numbers of clusters and choose tisé lesult based on some
metric such as sum squared error or log likelihood. Anothethod is to use 10-fold
cross validation fork € 1,2,...,m, increasingk until the quality of the clustering
starts to degrade [92].

We use the implementation of expectation maximization ey by the Weka
package [92] with 10-fold cross validation to determinerthenber of clusters. 10-fold
cross validation partitions the data set into 10 equallgéigubsets, or folds. Starting
with £ = 1, for each distinct set of 9 folds we compute clusters anddpdikelihood
of the cluster set. The value @fis incremented by 1 and the process repeats until
the average log likelihood is less than that of the previtersiion. The final result is
the set of clusters that maximizes the average log liketiho&/hile this approach is
not necessarily likely to find a global maxima, it is consmsteith Occam’s Razor in
favoring a smaller number of clusters, which correspondsgionpler hypothesis [92].

We use expectation maximization to cluster the datasetaridiowing two ways.
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First, we arbitrarily select a day from the data set (day 4) @mpute the clusters for
each hour of the day (see figure 3.2). Second, we computeeduslr accumulated
data. We cluster the first day, the first two days, the firstela@ys, and so on until we
include all 12 days of data (see figure 3.3). Using both appres, we find that the
number of clusters fluctuates, indicating that the appat@nalue foik changes as the

stream progresses.

3.5 AHYBRID CLUSTERING ALGORITHM

We implement a hybrid clustering algorithm that combinesadification of the
leader algorithm withk-means clustering. The basic idea behind the algorithm is to
usek-means to establish a set of clusters and to use the leadeitlaly in conjunction
with statistical process control to update the clusterseasdata arrives.

Statistical process control [22] aims to distinguish betwéassignable” and “ran-
dom” variation. Assignable variations are assumed to hawveprobability and indicate
some anomaly in the underlying process. Random variatiarentrast, are assumed
to be quite common and to have little effect on the measugiddities of the process.
These two types of variation may be distinguished basededifference in some mea-
sure on the process output from the maarof that measure. The threshold is typically
some multiple/, of the standard deviatiom, Therefore, if the measured output falls
in the rangeu + (o, the variance is considered random; otherwise, it is aabign

Our algorithm represents the data using two structurecltis¢er set and the outlier
set. To save space, the cluster set does not store the exdaimuienake up each cluster.
Instead, each cluster is summarized by the the sum and swarestualues of its feature
vectors along with the number of items in the cluster. Thdi@uset consists of the

examples that do not belong to any cluster. We rely on theraenand the standard
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deviations of the features to summarize and update theecfysto clusters are only
accepted when they contain some minimum number of exampleshe algorithm
periodically clusters the examples in the outlier set usirgeans. Clusters which
contain at leastn items are reduced to the summary described above and adttes to
cluster set.

Algorithm 1 shows the details of our approach. The algoritiakes three argu-
ments: the minimum number of elements per clustemumber of clusters to compute
with k-means,k’, and a threshold] that, when multiplied by the magnitude of the
standard deviation vector, defines the boundary betweerdtra” and “assignable”
variation. (Note that’ specifies the number of clusters for the first level of the hy-
brid algorithm, not the final number of clusters producedhmsy algorithm.) For each
example that arrives, we compute the closest cluster. |exaenple is considered an
“assignable” variationi,eit is further thanc from the closest cluster center (or the set
of clusters is empty), the example is placed in the outlier@therwise, if the example
is considered a “random” variation, the example is used ttatgpthe summary of the
closest cluster. When there dren examples in the outlier set, cluster these examples
with k-means. The new clusters with at leasexamples are added to the cluster set,
and all the examples in the remaining clusters return to thieo set.

This algorithm attempts to take advantage of the fact thaintlkean is sensitive to
outliers. By using means as the components of the clusteercand updating the
centers whenever a new example is added to a cluster, we bdpentle a certain
amount of concept drift. At the same time, we hope that theofis¢atistical process
control to filter out anomalous data prevents the clustetecsrirom being affected by
outlying points. This algorithm does not requaeoriori knowledge of the number of

clusters (recall that the argumefitis only the number of clusters for the first level
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cluster), since new clusters will form as necessary.

Algorithm 1 INCREMENTALHYBRID(X, [, k, m)

Let X be a list of examples;;, 75, . ..

Let/ be the threshold multiple

Let & be the number of clusters to produce in the first level

Letm be the minimum number of items required to accept a cluster

Let C' be the set of clusters
Let U be the set of unclustered examples

C 10

U+~

forall ¥ € X do
Find the closest clustet;;
if dist(#, C;) < [|&| then

Add c'to C;
end if
if |U| = km then

C" — k-MEANS(k, U)
forall ¢ € C"do
if ¢ contains more tham exampleghen
Addc toC
else
Put the items i’ into U
end if
end for
end if
end for

3.6 EXPERIMENTAL SETUP

We evaluate our incremental hybrid clustering algorithmaiast the expectation

maximization clustering algorithm. We use the implemeatabf expectation maxi-
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mization provided by the Weka package [92] using 10 fold €xadidation to determine
the baseline for the number of clusters in the data. For theidhyalgorithm, we use
[ =1,3andk’ = 5,10,20,30. We evaluate the cluster quality using sum square error.
We examine the number of clusters and outliers producedéiyhbrid algorithm, and
we compare the outlier set produced by the hybrid algorithmutliers determined by

an offline algorithm.

3.7 RESULTS

Figure 3.4 shows the number of clusters produced by expettataximization
clustering and our hybrid clustering algorithm. As expdctine number of clusters
produced by the hybrid clustering algorithm decreases eghiteshold/, increases.
Figure 3.5 shows the average number of outliers resultiog ihe application of the
hybrid clustering algorithm, with error bars. There are & factors that cause the
number of outliers to fluctuate. Recall that we only accepstelts fromk-means if
they have some number of minimum members, Since we cluster when there are
mk’ members in the outlier set, increasikigalso increases the number of items used
by k-means. If all the clusters are approximately the same seageral clusters with
nearlym items may remain in the outlier set, increasing the numbeutiers found by
the algorithm. In contrast, if most of the examples fall ire fclusters, few examples
may remain in the outliers set.

Figure 3.6 shows the sum squared error for expectation mzaiion and the hybrid
algorithm. The hybrid algorithm produces clusters withslesim squared error, by
orders of magnitude, than the expectation maximizatioorédlym. Also note that the
sum squared error increases as both parameétanslt’ increase.

Figure 3.7 and 3.8 show the distribution of distances betvpeents in the outlier
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set and their nearest neighbor in the full data set. Eachefiglso shows the nearest
neighbor distance distribution for the full data set. Retadt we defined outliers as
points in the dataset that are far from all other points. Wendehe extent to which a
point is an outlier by its distance from its nearest neighlb@ta points that are closer
to their nearest neighbor are less outlying that data ptuatsare far from their nearest
neighbor. Ideally, we would like the clustering algorithondetect all extreme outliers
in the nearest neighbor distance distribution for the fatidset. These box plots show
that this is not the case. The two most outlying examples avenfound by the hy-
brid algorithm, and points below the first quartile in “oatliness” are regularly found.
However, for some trials (specifically whér= 3 andk’ = 20, 30), most of the outliers

detected by the hybrid algorithm are extreme outliers (speds 3.8c and 3.8d).

3.8 CONCLUSION

We have discussed issues in anomaly detection on dynanacsttaam. We pre-
sented a hybrid clustering algorithm that combihaseans clustering, the leader algo-
rithm, and statistical process control. Our results indi¢hat the quality of the clusters
produced by our method are orders of magnitude better thasethroduced by the
expectation maximization algorithm, using sum squaredrexs an evaluation metric.
We also compared the outlier set discovered by our algontitinthe outliers discov-
ered using one nearest neighbor. While our clustering dlgarproduced a number of
significant false positive and false negatives, most of titbey detected by our hybrid
algorithm (with proper parameter settings) were in factiergs. We believe that our
approach has promise for clustering and outlier detectiostieeaming data.

We also believe that this approach has promise for use asar@nt of the WIPER

system. Determining where are new example will be placetherin an existing
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cluster or in the outlier set—can be accomplished quicklyis Isimply a matter of
finding the closest cluster and determining if the examplis faithin its threshold
boundary. Once an initial set of clusters is formed, an al@ntbe produced whenever
a data item is assigned to the outlier set. Additionallyadegms assigned to a cluster
which is known to contain items produced during an emergeitcyation can also be

used to inform the emergency response manager of a potemteigency.

3.9 PROPOSED RESEARCH

Further empirical tests have shown that a bad choice of peteaeymay cause an
increase in the number false positives. We propose to exfiher use of alternatives to
k-means, particularly divisive algorithms which seem mo#ititive for this application.
We also propose to measure the changes in the clusters imeeatid develop methods
for discarding old clusters without destroying the repn¢éggon of long term patterns.
Finally, in this paper we present an online clustering atgor; we propose to further

develop this algorithm so that it meets the space requirésrienstreaming algorithms.
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CHAPTER 4

LINK SAMPLING FOR ANOMALY DETECTION IN STREAMING SOCIAL
NETWORKS

4.1 ABSTRACT

Phone and email systems can produce social networks irearstrg fashion, which
provides opportunities for the development of a variety mfree applications, includ-
ing emergency response management and organizationaldags\flow management.
However, dealing with social networks that arrive as a streélinks is a difficult prob-
lem. We investigate link sampling from a graph for fast anlwmus link detection in
email and cell-phone networks. We use three methods for aloars link detection—
two neighborhood based and one path based—in conjunctitintiniee methods of
sampling suitable for streaming data. Each sampling metao@s in the extent to
which it considers the history of the stream. We evaluatentie¢hods using Spear-

man’s rank correlation and measure its degradation as thplea become smaller.

4.2 INTRODUCTION

Much work on social networks is constrained to only a sampteé@full network.

Traditionally, social network data has been gathered tiitanterviews via two meth-

ods [26]:
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e Full network samplingn which the connections between a predetermined set of

individuals are mapped.

e Snowball samplingn which a sample is grown by mapping the connections of
an individual in order to find additional individuals, whosennections are also

mapped. This process continues until the network is largeigim

Technological networks, such as the world-wide web, emativorks, or cell-phone
networks, may be mapped more efficiently using softwareiegjns. These net-
works may be more complete; however, their size may makesisalifficult due to
computational constraints.

Over the past several years, a number of fairly complete orétwatasets have
become publicly available, including the Enron email detd82], the SourceForge
Open Source Software dataset [3, 4], the Wikigraph data&¢t §nd several scientific
collaboration datasets from the arXiv e-print databasé9].,

Social network data collected using surveys have the paté¢ntcontain more in-
formation about their links than technological networkessgarchers can design surveys
to collect more of the information relevant to their projdcatcontrast, the technological
datasets contain only limited information about the linkensider datasets such as the
SourceForge network and the scientific collaboration ngiwwhere the fact that two
people have contributed to a common project or are co-asithroa paper provides very
little information regarding the nature of their interacts with each other. Email and
cell-phone network datasets are more descriptive singectre provide more detail on
the frequency of contact between two people; however, we stilisbe aware of the
shortcomings of these types of datasets.

Grippaet al. [42], evaluate email networks as a tool for measuring kndgdeflow

in an organization. They compare an email network to a so@salork that consists
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of face-to-face, phone, and chat communications in additiothe email data. They
found that email and phone interactions occur much less aften face-to-face and
chat communications, which impacts the results of knowdefligv analysis. While it

is important to recognize this issue, Frantz and Carley [BBJsthat three significant
events at Enron translated into detectable changes in &8 agtwork.

In this paper we present work on the problem of fast anomalyatien in dynamic
graphs. Our primary motivation for this work is an emergeresgponse application,
currently under development, which uses a cellular compaii@n network as a sensor
network. This work is also relevant where obtaining redutisy a large network dataset
in a timely fashion is important. Examples of such applmagiinclude fraud detection,
network intrusion detection, and organizational risk gsial

We develop a method for quickly detecting anomalies in gsaplth reasonably
small space requirements. Since cell-phone networks tebd targe and transactions
— records of SMS and phone calls — may arrive quickly, we bégioonsidering the
data stream model. A data stream is a dataset, produced l®y@wyoing process, that
arrives one item at a time, such as prices on a stock tickgr P4dta streams tend to
be so large that it is neither feasible to store the data imme@mory nor repeatedly
read the entire dataset from disk. The data stream modeldsatitese characteristics

by imposing the following constraints on algorithms forestming data:
e Each item in the stream may only be read once.
e The items in the stream must be processed in the order in winggharrive.

e The algorithm should not use more than polylogarithmic epagth respect to

the number of items in the stream.
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Sometimes the model is relaxed, and a small number of passeshe data are per-
mitted to reduce the memory requirements. This relaxatiay be beneficial to appli-
cations such as database query processing where streamodueed by sequential
access of massive files on secondary storage, but is not ésefwocessing streaming
data from sensors, since these are potentially unboundedgth [14, 45].

Previous work on graph mining streaming data has focusedilograph matching
for fraud detection, community detection, or communitylgsia. Cortest al. [33] use
edge aggregation to handle streaming phone call transadto fraud detection. Their
method retains only the most active, and heavily weightattyang links for each node
in the network. They account for the dynamic nature of thelgray reducing edge
weights over time via an exponential decay. Using a datatiagfsaudulent activity and
a measure of difference between subgraphs, the networkiishesl for new instances
of fraud. This approach is not suitable for our work becausecannot assume that
only the most active edges are relevant.

Cobleet al. [30, 31] present online versions oU8DUE which incrementally iden-
tify common substructures in graphs. The graphs are cosgaddsy collapsing com-
monly occurring subgraphs. This approach does not allowdh®oval of outdated
information without re-expanding the common subgraphgs Ehproblematic for the
present applications because we don’'t necessarily wardrisider the entire history,
since the graph is dynamic.

Aggarwal and Yu [8] present an online method for summarizipgamic networks
that supports offline queries for measuring the change imuonities over time. This
summarization stores the initial graph along with incretabanapshots. Over time,
storage is reclaimed by merging older snapshots, meanegequency of the graph

shapshots decreases for older data. This approach efigesttiees the entire graph in
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a space efficient way; which is necessary for the communiyyais Aggarwal and Yu
propose. However, given the size of the cell-phone netwevkgprefer a more memory

efficient solution.

4.2.1 Contributions

Our goal is to quickly summarize the communication pattefritbe streaming net-
work to identify areas of anomalous behavior. These may aogssarily correspond
to a single community but likely contains portions of a numbecommunities. We
characterize anomalous behavior in terms of the likelilsaaicthe edges in the graph;
however, we must deal with the size and dynamic nature of éteork. We apply
stream sampling methods designed for non-relational eetés three large, real-world
social networks. We evaluate three sampling methods, eashioh weights the his-
tory of the stream differently. We evaluate the performaoiceeighborhood and path
based anomalous link detection methods on samples of gasyre drawn from the

social network.

4.2.2 Organization

The remainder of the paper is organized as follows. Sectioevi2ws previous
work related to graph sampling, stream sampling methodsaaomalous link detec-
tion. Section 3 describe how samples of the transactioarstage translated into social
networks. Section 4 describes the datasets. Section Shiesour experimental setup

and results, and section 6 presents our conclusions ana fdinections for this work.
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4.3 RELATED WORK

In this section, we discuss related work coupled with the twa&n components of
our work — sampling from streaming social networks and arlgmetection. We end
by juxtaposing the related work in the context of our worlghtighting our contribu-

tions.

4.3.1 Sampling

This section reviews previous work on sampling methods. firsepart, section
2.1.1, discusses methods of sampling networks. These waoeks good starting point,
but are not sufficient for our application since they assutagcsnetworks. To the best
of our knowledge, these methods have not yet been appliecatotaming updated
summaries of dynamic graphs. The second part, section, Zliib@isses methods of
sampling from streaming data; however, these methods argrasl for non-relational
data. Our work combines ideas from these two topics to buld@es of dynamic

graphs from streaming data.

4.3.1.1 Sampling Static Networks

Stumpfet al. [85] analyze the effect of node sampling on the degree digion
of scale-free graphs. Node sampling consists of selectingesnumber of vertices
in the graph at random along with the edges among these e®rtithey argue that
observations made on a sampled network can only generaligteetfull network if
the degree distribution of the two networks belong to theeséamily of probability
distributions. They show analytically that subgraphs @ledree graphs are not scale
free.

Leeet al. [56] empirically examine the effect of sampling graphs oarfgraph
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metrics: degree distribution exponent, betweenness algytdistribution exponent,
assortativity, and clustering coefficient. They consitiee¢ methods for sampling from

a network:

¢ Node sampling some fraction of the vertices, along with the edges commgct

these vertices, are selected uniformly at random.
¢ Link sampling some fraction of the edges are selected uniformly at random

e Snowball samplinga vertex in the graph is selected uniformly at random and

breadth first search is used to extract a subgraph of theedesize.

They found that, for the most part, sampling the graph adféetse metrics consistently.
Research in computer networks evaluates a wider range di geappling methods,
motivated by an interest in performing detailed protocoidations on small, realistic

networks [55]. Methods for generating such graphs include:
e Deletion methodsedges or vertices in a graph are randomly removed.

e Contraction methodsedges and vertices are randomly eliminated by merging

neighboring vertices.

e Exploration methodsextracts subgraphs via breadth first search or depth first

search.

The deletion and exploration methods are similar to the sagmmethods in [56],

though several variants of both are examined in [55].

4.3.1.2 Sampling Streams: Non-relational Data

In this section, we briefly discuss three methods of samptioigp streaming data,

particularly applicable to standard non-relational dataling window, uniform reser-
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voir sampling, and biased reservoir sampling. Each methodiges an “anytime”
sample of the dataset, meaning that the sample is updatkedheitrrival of each data
item, and it always conforms to its specified representatfdhe data. On one extreme,
a sliding window consists of only the most recent data itembe stream. On the other
extreme, a uniform reservoir sample retains each data itethe stream with the same
probability. A biased reservoir sample is in the middle grdumore recent data items
have a higher probability of being retained in the sample.

Sliding Window. A sliding window stores only the most recent data items in the
streams. They may be either fixed in size, hold the last: items, or they may contain
the data for some period of timieg. the last day.

Uniform Reservoir Sampling. Vitter [89] describes a one pass algorithm for ex-
tracting a uniform random sample efitems from an arbitrarily large data set. The
algorithm populates the sample, called the reservoir, thighfirstn data items. Each
new item is placed in the reservoir with a probabilityrofV, whereN is the number
of data items that have been seen so far, in which case ansett{ed uniformly at
random) is ejected from the reservoir. At any time duringdhéval of the stream, the
reservoir contains a uniform random sample of the items seédar.

Biased Reservoir Sampling. Aggarwal [6] presents a compromise between the
sliding window and uniform reservoir sampling approachBse algorithm described
by Vitter is modified to store an exponentially biased resgrsample. This algorithm
always adds the new data item to the reservoir. The probaltilat the new item
replaces an item in the reservoir is the fraction of the resethat is populated, in
which case an item is selected for replacement uniformlpatiom. Leip(r, ¢) be the
probability that the-th item in the stream is in the sample aftééems arrive. Aggarwal

shows that for this algorithmy(r, t) oc e=(t=7)/7,
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4.3.1.3 Summary

We combine link sampling with each of the stream samplindhodt to summarize
dynamic graphs. Link sampling is the most natural approaateshe edges automat-
ically provide the relevant vertices in the graph. Node dargps problematic since
an additional mechanism is required for capturing the etigéseen the vertices in the
sample. Feigenbauet al. [37] show that building a breadth first search tree from a
stream requires multiple passes, so snowball samplingtipossible for this applica-

tion. Section 3 describes algorithms for building sumnsaokdynamic graphs.

4.3.2 Anomalous Link Detection

Rattigan and Jensen [76] define the anomalous link detectmligm as the task
of finding “surprising” edges in a graph. Anomalous links nieyfound by determin-
ing the likelihood of each edge in the graph; the edges wiikedithood below some
threshold may be considered anomalous. We use methodsesiieing edge likeli-
hoods from work on a closely related problem: link predict&7].

Each method described below is a likelihood measure cordpoteeach edge,

(u,v), in the graph.

4.3.2.1 Neighborhood Based Methods

We use two neighborhood measures: common neighbors anardaoccoefficient.
These are drawn directly from the link prediction litera&(s7]. Common neighbors,
¢, is simply the number of neighboisandv share. Formally, let’(u) be the set of

vertices that are connecteddavith an edge:

¢ = [[(u) NT(v)] (4.1)
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Jaccard'’s coefficient], is the probability that a neighbor afor v is a neighbor of both
u andv. Formally,

(4.2)

4.3.2.2 Path Based Methods

Rooted PageRank is a path based method that measures theilgyobd random
walk starting at. reachingy when the walk fails at each step with some probabitity,

[57].

4.3.2.3 Summary

We use the neighborhood method and Jaccard’s coefficienisassded above.
However, we provide a modification to rooted PageRank do ma@nihe memory con-

straints (see section 5.1 for details).

4.4 SAMPLING STREAMING GRAPHS

Each method described in section 2.1.2 provides an “anysia@ple,i.e. the data
in the sample always corresponds to its specified charattsti For non-relational
datasets, this means that the sample is alway usable; hgpwerveur data we must
build the graph from the sample. We only use one snapshoedjrdph in this work;
however, for most applications, it is necessary to peradticanalyze the network.

There are two possible approaches for updating dynamichgrammaries:

e Each snapshot of the network can be build from scratch usiagtate of the

sample at any given time (see algorithm 2).
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Algorithm 2 REBUILD GRAPH
Let G’ = (V’, E’) be the graph sample.
Let {1, 1o, ...} be the set of times at which the graph is analyzed.
Let £, +;) be the set of transactions that arrive between tinaadt;.
forall ¢; € {t1,t5,...} do
forall e; € Ey, 4, do
UPDATESAMPLE(e;)
end for
Vi—10
E «— 0
forall e; = (v,,v,) € E' do
V= V' UA{ug, vy}

E — E'U{e;}
end for
Compute a likelihood measure for eaghe E'.
end for

¢ We can maintain an anytime graph by adding and removing etlggse samples

are updated (see algorithm 3).

We use unweighted, undirected graphs, and we are only aoedtevith vertices
that have degree greater than zero. For each €dge,), if either vertex is not already
in the graph, we add it. We then add the undirected edge,septed as two directed
edges, ifitis not already present. We use AVL trees for sgpbioth the vertices and the
edges. In the worst case, we must add two verticeandv;, and two directed edges,
(v;,v;) and (v;, v;). Adding a vertex is simply an AVL tree insert. Adding a dimedt
edge consists of finding the source vertex in the vertex tndareserting the destination
into the vertex’s adjacency tree. Each of these operatiegsiresO (log(|V])) time,
where|V| is the number of vertices in the sample. Since there are aamnsum-
ber of these operations, the overall time required for isgran undirected edge is
O(log(|V])).

Now suppose we want to remove an edge,v;), from the graph. The first step is

to remove the undirected edge. If either vertex has degmeeatter the edge removal,

55



Algorithm 3 UPDATEGRAPH
Let G’ = (V’, E’) be the graph sample.
Let {1, 1o, ...} be the set of times at which the graph is analyzed.
Let £, +;) be the set of transactions that arrive between tinaadt;.
Letd(v;) be the degree of vertex.
Vie—10
E 1
forall ¢; € {t1,ts,...} do
forall e; = {ej,es,...} do
UPDATESAMPLE(e;)
if edgee; = (v, v,) is added to the samptaen
V= V' UA{vg, vy}

E — E'U{e;}
end if
if edgee; = (v, v,) is evicted from the samplien
B E'\ {e;}
if d(v,) = 0then
Vi—= V' \ {u.}
end if
if d(v,) = 0then
V' — V' \{vu}
end if
end if
Compute a likelihood measure for eaghe E'.
end for
end for

it is also removed. Since removing an item from an AVL treeesR(log(|V])) time—
like insertion—the overall time complexity for edge rembigaalsoO (log(|V])).

Suppose we choose to build each snapshot from scratch. éetatmple store
|E| edges. In the worst casgy| = |V|, and the time required to build the graph is
O(|E|log(|El))-

Now suppose we choose to update the whenever the sampleeshdnghe worst
case, a change to the graph requires an edge insertion add@negnoval, which takes
O(log(|E1)) time. The frequency at which the sample updates depend#yheauhe

type of sample used. Both sliding window and biased samplasgshwith the arrival
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of each data item. Updating a sliding window always congitn edge insertion and
deletion; however, updating a biased sample does not aleeuyire the edge removal.
Recall that the probability of edge eviction from a biased @anis the fraction of
the reservoir that is occupied; therefore, the rate at whdtdes are removed from the
graph increases over time. In contrast, the probabilityttihauniform sample changes

is |E|/N, where N is the number of data items seen so far. The uniform sample,
therefore, is expected to change less often as the streajrepses.

The appropriate choice depends on the situation. If thamsti@rives very quickly,
it may not be feasible to update the graph for each changeeosdimple. This is
especially true for sliding windows and biased samplesesthe arrival of each data
item changes the sample. Additionally, if the sample is Varge or the network must

be analyzed frequently, it may not be feasible to repeatauallg the graph from scratch.

4.5 DATASET

We evaluate the effect of graph sampling on various methdédsomalous link
detection using three datasets. A text message (SMS) rietvmol a call network are
the primary focus of our work. We also examine the Enron edwtset [32] since it is
widely used and publicly available. Since the Enron datissteindamentally different
from our cell-phone network, it provides an external refieeepoint that enhances our
analysis.

The SMS and call networks are extracted from the transaotioords of a cellular
communication company; we use one day of data from thesed®dor our evalua-
tion. An examination of the degree distribution of theseadats reveals vertices with
unrealistically high degrees (see figures 4.1 and 4.2). (@értat is not feasible for
someone to call 100,000 different people or send SMS to DOdifterent people in a
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Figure 4.1. The degree distribution for the SMS dataset.

day, so we prune the vertices with the high&$t/: degrees from these datasets. Such
vertices may be present for a number of reasons. They mayrieesethat distribute
information to subscribers, or they may be fraudulent @&gtivi hese datasets contain
only transactions initiated by subscribers of a singleiserprovider. Any call made
into the system from a non-subscriber that is not recipeztaipes not appear as an
edge in the graph.

The Enron email dataset is a snapshot of Enron’s email séma¢mwas released
by the Federal Energy Regulatory Commission [32]. We generaecial network
from this snapshot by extracting the date, from, to, carbopy, and blind carbon-
copy fields from each email. We use that e: : Par se[2] package for Perl to handle

various timestamp formats found in the data. Several messeggeived unrealistic
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Figure 4.2. The degree distribution for the call dataset.

timestamps either due to noise in the data or failufgadfa: : Par se to handle certain
timestamp formats. These data (emails supposedly senid di92020, for example)
were removed. The dates in the final data set range from Ma¥9d® to January 31,
2002.

Table4.1 gives a brief summary of the social networks thatused in this paper.
The vertices in the networks correspond to email addresspnde numbers. The
datasets are sets of transactions (SMS messages, phaandlemails) that we rep-
resent as undirected, unweighted graphs. Figures 4.1add4.3 show the degree

distributions of the SMS, call, and Enron datasets, regpygt
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Figure 4.3. The degree distribution of the Enron dataset.

4.6 EXPERIMENTS

We examine how methods for anomalous link detection aretaffieby edge sam-
pling from a graph. We use sample sizes ranging from 10% to 8D%#e edges in
the original graph. We expect the values of these measurgsatoge as the graph is
sampled, and we are interested in whether the anomalous @ugjee full graph are
also anomalous in the sample. Since larger common neighbaesard’s coefficient,
and rooted PageRank values are typically interpreted ashiggige likelihoods, we
evaluate using Spearman’s rank correlation. We computeatilecorrelation only for
the edges that appear in the sampled graph. Ideally, we witeldo see high rank
correlations, indicating that the edges remain in the samer@f “anomalousness”.

The implementations of common neighbors and Jaccard’'diceet are straight-
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TABLE 4.1

GENERAL CHARACTERICS OF THREE NETWORK DATASETS

vertices transaction edges

Enron 25,854 1,033,638 201,243
SMS (1day) 2,350,793 3,339,708 1,597,818
Call (1day) 6,261,633 8,019,290 5,243,128

forward; however, the normal approach for computing ro®tagdeRank is not feasible
for the cell-phone datasets due to space constraints. $ns#ation, we describe an
approximation of rooted PageRank followed by a discussiothefresults from our

experiments.

4.6.1 Approximation of Rooted PageRank

Recall that rooted PageRank is the probability that a randotk starting atu
reaches when the walk fails at each step with some probabitityThe rooted PageR-
ank of an edge can be drawn directly from the stationaryildigion of the Markov
Chain that represents the random walk described above [SNlakov chain is de-
fined by a transition matrix that represents the probabhilitgnoving between any two
vertices in a single step. Multiplying the matrix by itself times produces a matrix
that gives the probability of moving between any two vedige exactlym steps. A
transition matrixR has a stationary distributiolR ™, whenR™) = R(™~1) [64].

Unfortunately, it is not feasible to store a transition mafor the SMS and call
graphs in main memory due to their large number of vertioesteld, we approximate

the rooted PageRank using Monte Carlo trials. The Rooted PagaRastimated to

61



be the fraction of Monte Carlo trials in which the random wadkcehes the destination.
Since the walk fails at each step independently and with avknarobability, o, we
can bound the length of the walk using a geometric distriputiVe bound the walk by
halting, for some threshold, when the probability of reaching stepis less tharg.

We halt, and fail, when the walk reaches step
0
n = log,_,, > +1 (4.3)

Note that we remove the edde, v) from the graph before running the random walks
and re-add it once the rooted PageRank has been approximatbe £dge.

Given this value, we estimate the number of paths of lendithsed on the average
degree of the graphi, to ben?. The number of Monte Carlo trials is proportional to
the estimated number of paths. For our experiments, wa se).15 andfd = 0.001,
son ~ 31, and we runl00n? trials. Table 4.2 shows the average degréeand the
estimated number of paths?, for each dataset. This approach is not feasible for the
Enron dataset, due to its high average degree. Computatiooiad PageRank for the

SMS and call datasets is feasible, though time-consuming.

4.6.2 Results and Discussion

Figures 4.4, 4.5, and 4.6 show the rank correlations destibove for the three
datasets. Interestingly, the rank correlations of alléhmeethods on the Enron dataset
follow roughly the same trend; though using a uniform sampt®njunction with com-
mon neighbors and Jaccard’s coefficient performs betterdhmased sample or sliding
window. This may be due to the time coverage of this datasexténds two months be-

yond the large scale layoffs coinciding with the compangskruptcy announcement
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TABLE 4.2

CHARACTERISTICS OF NETWORK DATASETS RELATED TO
ROOTED PAGERANK

d n? |70l

Enron 15.58 1.72 x 10 6.68 x 108
SMS 1.36 1.06 x 102 5.63 x 1012
Phone 1.68 3.20 x 10> 3.92 x 10'3

on December 2, 2001, which likely had a significant impactlm dompany’s email
network (see figure 4.7) [38]. The biased sample and slidimglow rely heavily on
recent information and, for small sample sizes ignore,ddles in the graph appearing
before December 2, 2001. The uniform sample, on the othet, akes into account
the whole history, and, therefore, better captures theactevnistics of the entire dataset.

In contrast, using a sliding window results in the best ramkeadations on the call
dataset for Jaccard’s coefficient for small samples. Thgbdn rank correlation may
be due to the fact that the portion of the dataset the slidimglow relies on — the
last transactions of the day — is also the most active (seesfiy8 for the volume of
call transactions throughout the day). As the sample sieesrhe larger, the sliding
window, like the uniform and biased samples, includes mi@esiactions from earlier
in the day. This would explain why all three sampling methpelSorm comparably for
larger samples. We see a similar phenomenon, though toex lestent, on the SMS
dataset. This may be due to the consistency of the activitywe after noon and the
smaller peak near the end of the day (see figure 4.9).

These results make sense if we think about how people mayhasehones. For
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example, if people tend to call their friends in the eveniafjer work (note that in
figure 4.8 there is a peak around five o’clock in the evening)haps to make evening
plans or to visit with distant loved ones, the social netwsittescribed more accurately
by only these transactions, which roughly correspond toldketransactions of the
day. In this case, a uniform sample is likely to impact higattive and descriptive
transaction sub-streams more severely, which in turn degréhe performance of the
overall anomalous link detection approach.

The rank correlations are high across the board for the cammamhbors measure
on the cell-phone network datasets. Issues related to #isigpof the datasets raise
questions about how much meaning can be attached to thesis régost of the edges
in the cell-phone network datasets §5%) have the worst possible value (no common
neighbors). The vertices connected by these edges havenmoao neighbors in any
sample in which they appear (removing edges from a graphr mesreases the number
of common neighbors for a pair of vertices). Since these dgein the majority, their
values for these measures do not change for any sample it hey are included.
Since they are likely to dominate any sample, the high ramketations for common

neighbors seem to be trivial results.

4.7 CONCLUSIONS

In this paper, we evaluate the impact of edge sampling a grapgnomalous link
detection. We use three real-world social networks whialy vadely in size and den-
sity. We evaluate three methods of computing edge likeihamommon neighbors,
Jaccard’s coefficient, and rooted PageRank. Rooted PageRgrdfouns Jaccard’s
coefficient in terms of Spearman’s rank correlation; howates also much more com-

putationally expensive. Most of the results for common hbas are not meaningful.
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We investigate three methods of sampling, over a range opkasizes, using Spear-
man’s rank correlation. Among the these methods, there @aay winner; though we

make some observations. For Jaccard’s coefficient:

e The sliding window performs best on small samples of thedigmhanging cell-

phone network graphs.

e The uniform sample performs best on small samples of therEanmail dataset,

which evolves more gradually.
For rooted PageRank on the cell-phone network graphs:
e The sliding window performs consistently well comparedhe other samples.
e The uniform sample performs worst on small samples.
e The biased sample performs worst on large samples.

The fact that the rank correlations for all trials are pesiis promising; however, the

extent to which these values decline for small samples isiaaro.

4.8 PROPOSED RESEARCH

In this chapter we examine methods for reducing relatioathskts that arrive as
a stream for the fast detection of anomalous links. We ctlgréocus only on a sin-
gle snapshot of the full dataset and propose to investigatehanges in the common
neighbors, Jaccard’s coefficient, and rooted PageRankbdisons over time for both
the full data set and samples of the datasets described .ab@@eawill also examine

various subsets of the full network by extracting transandifor a diverse set of cities.
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ter), and call (right) datasets for varying sample sizes.
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CHAPTER 5

A REAL-TIME DATA SOURCE PROTOTYPE

In this chapter, we present an overview of the real-time satace (RTDS). We dis-
cuss requirements, describe a prototype implementatibs@mmarize lessons learned,

and list implementation issues and proposed researcimigetatthis component.

5.1 OVERVIEW OF THE REAL-TIME DATA SOURCE

The real-time data source will receive raw transaction fai&a a cellular service
provider and serve requests for streaming data from othapoaents of the WIPER
system, namely the Detection and Alert System, the Sinmrathd Prediction System,
and the Decision Support System. These components maystdhadransaction data
or aggregated summaries of the da&,a summary consisting of the number of trans-
actions (calls, SMSgto), in a series of time intervals. Some clients may only reguir
data from a limited geographical area, so the system wiligeothis filtering func-
tionality. The system will provide a uniform stream requestrface for all clients and
must support many clients simultaneously. In particula, $imulation and Prediction
System may contain many clients as it runs ensembles of ations utilize new data
as it becomes available.

The remainder of this section provides a detailed desonpif the real-time data

source.
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5.1.1 Incoming Data Stream

The incoming data from the cellular providers will consistacstream of transac-

tions. Each transaction consists of 6 fields (see figure 5.1):

1. the date on which the date on which the transaction occurs,

2. the time at which the transaction occurs,

3. the anonymized ID of the person initiating the transamtio

4. the anonymized ID of the person receiving the receivimgitansaction,

5. the ID of the tower through which the transaction wasaéd or received, and

6. the transaction type which whether the transaction iscm@ltall or SMS mes-
sage and whether the transaction is generated by theimgtiat receiving hand-

set.

1 2 3 4 5 6
20061101, 203311, 596887, 2295, 214031250124834. 000, SOM

Figure 5.1. The transaction format.

5.1.2 Input/Output

The RTDS will receive stream requests from clients via walsises using SOAP

remote procedure calls. Data streams will be transmittéde@lients over UDP sock-
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ets.

5.1.3 Outgoing Data Stream

The RTDS will provide two types of streaming data to its dgn

e Raw transaction streams simply forward transactions totdias they are re-

ceived by the RTDS.

e Summary transaction streams contain the number of traosagier client spec-

ified time interval.

Both of these streams may be filtered by tower ID. A whiteligbngvided by the

client and any transaction containing a tower ID that is ndhe whitelist is ignored.

5.1.4 Temporal Constraints

The RTDS is driven by incoming transactions from the cefllarvice provider.
These tasks are neither periodic nor sporadic; howeverawestablish an upper bound
on the rate at which transactions arrive. For this reas@system will follow the rate-

based execution model.

5.2 PROTOTYPE IMPLEMENTATION

Our prototype for the real-time data source is implememegliby, an interpreted,
object-oriented scripting language, and uses a perioshkotedel. Ruby was originally
selected for its simple, easy to use web services classegltht also provides support

for multi-threading with a large priority space.
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5.2.1 The Task Set
There are two tasks associated with each client receivingrergry stream.

e An aperiodic task runs whenever a new transaction arriees the service provider.

This task updates the summary for the current time interval.

e A periodic task runs at the end of each interval. It sendsritexval summary to

the client and resets the summary for the next interval.

5.2.2 Task Scheduling

We use the periodic task model for the prototype and only eored ourselves with
temporal constraints within the RTDS; that is, we assumeatenty from the service
provider to the data source, and we ignore the latency betwee data source and
clients altogether.

Let the delay be the time between the end of the of the intéovidle time the sum-
marized and filtered data is sent out to the clients. Idetidlymaximum delay will be
the length of the period of the shortest periodic task, tihadgjays of the task’s period
may be tolerated. This requirement aims to provide bothlatessand relative temporal
consistency since it establishes both a maximum age and ianmaxdifference in ages
for data distributed to the clients at the end of any giveeridl. Additionally, this
constraint guarantees that the system keeps up with the iddtee time required to
summarize an interval (after all the data for that intervatweceived) was longer than
any given interval, the quality of the data, due to perishylalecrease as time passes.

We implement and evaluate three standard scheduling #igwifor the periodic
tasks: deadline monotonic scheduling, earliest deadlisie ind weighted fair queuing.
This task set differs from more traditional periodic reialé tasks sets in that the ape-

riodic tasks take on greater importance. One approach tering to aperiodic tasks is
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the deadline monotonic scheduling algorithm [12] which geaeralization of the rate
monotonic algorithm that allows for periodic task deadiine be before the end of the
task’s period. We define the soft deadline for each task tbd@etinimum period in the

task set. The hard deadline is the end of the task’s period.

5.2.3 Utilization Analysis

The utilization of a real-time system with only periodickass computed by

Uv=>" % (5.1)
=1

where C; and T; are the worst case execution time and the period, respbgctoke
periodic taski. Let P be the worst case execution time of the periodic jobs. Sinee t
periodic tasks depend on the aperiodic tasks for corregtmesalso must consider the
aperiodic tasks when computing the utilization. ebe the worst case execution time
of the aperiodic jobs an& be the upper bound of the rate at which the transactions
arrive at the data serveRT; gives us an upper bound on the number of aperiodic tasks

that run in the period. The utilization is then

n

P+ RT;A
Z—

T (5.2)

=1

Since we stipulate that all periodic jobs must execute withe shortest interval, we

also add the following constraint to the schedulabilitylgsia:

iP < min(T;). (5.3)
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Figure 5.2: The percent of missed deadlines, percent opskiperiodic tasks, and the
average delay of the periodic tasks for an increasing numbelients with a task set
consisting of periodd).05, 0.06, 0.07, 0.08, and0.09 seconds.

5.2.4 Evaluation and Results

The RTDS runs on a dual Pentium Ill (650 MHz) with 1 GB of mainmuey;
however, since Ruby threads are contained within the Rubypirgter process, the
RTDS can only make use of one processor.

We evaluate the three algorithms based on four measures:

¢ the rate at which periodic tasks miss their soft deadlinepi@ctice, hard dead-

lines were rarely missed, rather tasks were skipped),

¢ the rate at which periodic tasks are skipped due to beingseteafter the end of
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Figure 5.3: The median result sent to the clients with a taslcensisting of periods
0.05,0.06,0.07,0.08, and0.09 seconds.

their period,

¢ the average delay for periodic tasks, the average time between the end of the

summary interval and the time the data is sent to the cliewt, a
¢ the median output of the periodic tasks for each interval.

Figure 5.2 shows the rate of missed deadlines, rate at wbihgre skipped, and
the average delay for the deadline monotonic, earliestlohesfirst, and weighted fair
queuing scheduling algorithms. Figure 5.3 the median duipthe periodic tasks for
each interval. The task sets consist of 2 to 24 periodic tédlents) with periods of
0.05,0.06,0.07,0.08, and0.09 seconds. Figure 5.2 shows that the deadline monotonic
scheduling algorithm performs significantly better in terof percentage of missed
deadlines than either of the other two algorithms and diididtter in terms of average
delay when there are more than 16 clients. All three algarstperform comparably in
terms of the fraction of jobs skipped due to being releastat #ie hard deadline and
in terms of the server correctness shown in figure 5.3.

Table 5.1 shows empirically measured maximum executioadifar both periodic
and aperiodic tasks in this system. Based on these executies ind the equation

derived in section 5.2.3 for system utilization (equatia) 5the processor utilization is
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only about 0.26 when the correctness begins to degrade ebampately eight clients.

TABLE 5.1

TASK EXECUTION TIME

Task Type  Execution Time

periodic 1.6 x 1072 seconds

aperiodic 8.5 x 10~° seconds

5.2.5 Discussion

The fact that the system fails with a utilization of only 0i&@ significant problem.
We believe that our choice of programming language conedbsubstantially to this;
therefore, we will migrate the system to a lower level comgilanguage, C. Since the
system is driven by aperiodic behavior, the arrival of tafs&m the service provider,

we will abandon the periodic task model for rate-based ei@tu

5.3 CHALLENGES AND PROPOSED RESEARCH

The main challenge we face is a lack of control over the aatealvork infras-
tructure that delivers data to the real-time data source.lé\Jsing a cell-phone net-
work eliminates the effort and expense of deploying a senstwork, it imposes a

pre-designed data collection mechanism over which we haw®ntrol. Most notably
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we have no control over the routing protocol, so we cannotaguae highest priority to
older packets that must travel further. This issue may t@swut-of-order transaction
arrival, a detailed we ignored in developing the prototypbe extent of this problem
may not be known at the time of deployment and will change tweg, so the system
must be adaptive. We propose to develop a method for dyndynaetermining the

maximum latency in order to balance delay times with omittath due to late arrival.
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CHAPTER 6

SUMMARY AND CONCLUSION

6.1 SUMMARY OF PROPOSED RESEARCH
We propose the following research:

e Develop a streaming hybrid clustering algorithm that reeginoa priori knowl-

edge of the number of clusters.
¢ ldentify feasible methods for reducing graph data for fastysis.

¢ ldentify graph features that can be quickly computed arahathe identification

of anomalous behavior in graphs.

e Develop a real-time system, following the rate-based exacumodel, that re-
ceives out-of-order streaming data and provides streamhatg (either raw or
summarized) to clients while performing on-line balandiegween missing data

due to jitter and data propagation delay.

6.2 PROPOSED SCHEDULE

For the purposes of scheduling, we divide the proposed res&ato three areas:

traditional stream mining, relational stream mining, aedl{time systems.
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e The traditional stream mining work is the most mature. Weehaconference
publication [72] and a journal publication (to appear) [Bafed on this work. We
believe that the next iteration of this work will be ready é@nference submission

early in 2008 and journal submission in late 2008.

e The relational stream mining work consists of two parts:upiag graphs for
fast analysis and detection of anomalous behavior in gragfek on the first
component will be submitted to SIAM’s data mining conferentearly October
2007. We expect conference level work for the second compdoebe ready
early in 2008. We expect journal submissions on both compisna late 2008

or early 20009.

e The real-time systems component is the least mature. Ginvedrawbacks of the
prototype, the real-time data source must be completelgsigded and rebuilt.
We expect to have a conference submission ready in mid 2008 gaurnal

submission in early 2009.

We expect that this work will culminate in a dissertationttwél be ready for defense

in March 2009.
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