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A SYSTEM FOR DETECTING ANOMALIES IN DATA STREAMS FOR

EMERGENCY RESPONSE APPLICATIONS

Abstract

by

Alec Pawling

This document proposes research for a Ph.D. dissertation inComputer Science and

Engineering. We intend to develop two components of an emergency response system:

a Detection and Alert System and a Real-Time Data Source.

The Detection and Alert System will identify anomalies in a stream of telecommu-

nication data that may indicate an emergency has occurred oran interesting situation

has arisen in a developing situation. We will consider threecomponents of the telecom-

munication data when looking for anomalies: the call volumes, the geographical distri-

bution of calls, and the social networks formed by the call transactions.

The Real-Time Data Source will receive a raw stream of telecommunication trans-

actions and provide temporal and spatially aggregated summaries of the data to the

Detection and Alert System, as well as other components of the emergency response

system. In addition to timely distribution of the summarized data to the clients, we also

require synchronization between all components of the WIPERsystem.
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CHAPTER 1

INTRODUCTION

This document proposal research on two problems: (1) fast anomaly detection in

streaming sensor data and (2) aggregating and streaming real-time data to components

of a distributed system. We tackle these problems in the context of developing an

emergency response system.

In this chapter, we discuss the problem of emergency response management and sur-

vey emergency response systems. We also present an overviewof the Wireless Phone-

based Emergency Response (WIPER) project and related researchproblems.

1.1 EMERGENCY RESPONSE MANAGEMENT

Emergency response managers decide how to use available resources to cope with

a crisis situation. Making good decisions is difficult, especially when factors such as

stress, fatigue, and restrictive time constraints are present. These stressors are common

in emergency situations. Emergency response systems provide support for gathering,

analyzing, and presenting data in such a way that it is usefuland meaningful to the

manager [51].
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1.2 EMERGENCY RESPONSE SYSTEMS

Emergency response systems provide communication, data collection, data analy-

sis, and decision making tools. The standard model for emergency response systems

consists of four components that provide the following functionality: data storage with

fast access, fast data analysis, solution evaluation, and auser interface that provides

access to all other components [51].

Belardoet al. [20] describe four early emergency response systems.

• A system for the American Red Cross stores survey data collected before emer-

gencies in high risk areas, initial damage survey results, and victim claim infor-

mation. The goal of the system is to quickly verify claims to facilitate timely aid

distribution.

• A system for the United States Coast Guard predicts the position of a lost vessel

based on the last known position and drift forces such as current and wind. Based

on the result, the Coast Guard implements a search pattern.

• A system for a regional emergency medical organization provides information on

available resources, modeling tools to aid in resource allocation, and reminders

of correct procedures.

• A system for the New York State Office of Disaster Preparedness, motivated by

the Three Mile Island incident, includes tools for storing and accessing informa-

tion on available resources, including equipment and personnel, and modeling

the dispersion of radioactive material over time.

Current technology can provide emergency response managersaccess to abundant

data; however, studies have shown that abundant data does not necessarily lead to good
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decisions. In cases where there is more data than can be effectively handled, a phe-

nomenon referred to asinformation overload, ad hoc processes for reducing the data

volume for human processing may distort the data causing a degradation in decision

quality [84]. Emergency response systems attempt to counteract information overload

by providing methods of organizing and presenting data suchthat more data can be

effectively used by decision makers.

1.3 DYNAMIC DATA DRIVEN APPLICATION SYSTEMS

Dynamic data driven application systems (DDDAS) simulations and models make

use of new data (typically provided by a sensor network) as itbecomes available. This

data validates and steers running simulations in order to improve their quality. Dynamic

data driven application systems typically consist of threecomponents: a simulation

system, a sensor network, and a software system that provides data from the sensor

network to the simulation system as requested [34].

Darema [34] identifies four areas of research that are necessary for the development

of DDDAS applications:

• Application simulations must be able to utilize new data dynamically at runtime.

• Mathematical algorithms must have robust convergence properties under dynamic

data inputs.

• Systems software must support dynamic computational, communication, and data

with fault tolerance and quality of service guarantees.

• Interfaces to measurement infrastructure, such as wireless sensor networks, for

management of data collection.
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There are several DDDAS applications related to the problemof emergency re-

sponse under development. We describe two of these applications below.

The Vehicle-Infrastructure Integration initiative uses aset of roadside and in-vehicle

sensors to monitor traffic flow and evaluate the highway system. The system also pro-

vides emergency detection and response support by detecting changes in flow of traffic,

even in cases where part of the sensor network is lost, and running distributed simula-

tions in support of a dynamic emergency response plan [39].

The iRevive system is intended to help emergency responders in the triage phase of

mass casualty emergencies. The system uses data received through wireless hand-held

computers carried by emergency responders and sensor that monitor patient vital signs

to help the responders determine the order in which patientsare treated [40].

1.4 OVERVIEW OF THE WIPER PROJECT

The Wireless Phone-Based Emergency Response (WIPER) system, currently un-

der development, utilizes a cell-phone network as a set of sensors for gathering and

presenting information to emergency response managers. The system monitors the net-

work data for anomalous activity, runs simulations to predict population movement

during a crisis, and provides the emergency response manager with a current view of

the affected area using GIS tools [60, 61, 77, 78].

The WIPER system consists of five components, each of which is described briefly

below.

• The Decision Support System(DSS) is a web-based front end through which

emergency response managers interact with the WIPER system.

• The Detection and Alert System(DAS) monitors streaming network data and

detects anomalous activity. There are various aspects of the cell-phone network

4



data that may be of interest, include overall usage levels, spatial distribution of

users, and social network characteristics.

• The Simulation and Prediction System(SPS) receives anomaly alerts from the

DAS, produces hypotheses that describe the anomaly, and uses simulations in

conjunction with streaming activity data to validate or reject hypotheses.

• The Historical Data Source(HIS) is a repository of cellular network data that

resides in secondary storage. This data is used to determinethe base-line behavior

of the network against which anomalies are detected.

• TheReal-Time Data Source(RTDS) is a real-time system that will receive trans-

action data directly from a cellular service provider. The RTDS is responsible

handling requests for streaming data from the DAS, SPS, and DDS and stream-

ing incoming data to these components in a timely manner.

Figure 1.1 shows an architectural overview of the WIPER system. The RTDS and

HIS provide the bridge from the service provider, about which we have very little ar-

chitectural knowledge, and the WIPER system. The figure showsthe flow of streaming

data from the service provider through the RTDS, possibly byway of the HIS for de-

velopment and training, and to the remaining components. Requests for streaming data

from the RTDS occur via SOAP messages. SOAP messages are alsoused by the De-

tection and Alert System to inform the Simulation and Prediction system of a potential

anomaly in the streaming data.

1.5 OVERVIEW OF PROPOSED RESEARCH

The research proposed in this document focuses on two components of the WIPER

system: the Detection and Alert System and the Real-Time DataSource. Our goal is to
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Figure 1.1. WIPER system architecture.

develop:

• fast, dynamic, stream mining algorithms for anomaly detection in both relational

and non-relational data

• a real-time system that distributes data from the service provider to the WIPER

components quickly and reliably.
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CHAPTER 2

BACKGROUND

2.1 OVERVIEW

In this chapter, we present background information relevant to development of the

Detection and Alert System and Real-Time Data Source for WIPER.We survey sev-

eral topics, including outlier detection, anomaly detection in time series data, complex

networks, link mining, data stream models, and real-time system.

2.2 OUTLIER DETECTION

An outlier is an item in a data set that does not appear to be consistent with the

rest of the set [17]. Outliers are of interest because they may be noise that significantly

degrades the quality of data models. There is a great deal of literature on the prob-

lem of outlier detection as well as a number of applications,including fraud detection,

intrusion detection, and time series monitoring [46].

2.2.1 Methods for Finding Outliers in Data

There are three fundamental approaches for outlier detection [46]:

• Model normality and abnormality.This approach assumes that a training set

representative of both normal and abnormal data exists.
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• Model one of normality or abnormality.This approach typically models normal-

ity and is well suited for dynamic data.

• Assume no a priori knowledge of the data.This approach is well suited for static

distributions and assumes that outliers are, in some sense,far from normal data.

There are several statistical methods for outlier detection, including parametric

methods, semi-parametric methods, non-parametric methods, and proximity based meth-

ods [46].

2.2.1.1 Parametric Methods

Parametric outlier detection methods assume that the data follows a particular prob-

ability distribution. These methods tend to be fast but inflexible. They depend on a

correct assumption of the underlying data distribution andare not suitable for dynamic

data [46].

Statistical process control assumes that the variation in the output of a process fol-

lows a Gaussian distribution. In manufacturing, a certain amount of deviation in some

measure on the output of a process is expected due to variations in material and other

factors; however, a significant deviation from the mean may indicate that the equipment

is not working properly either due to a mechanical failure orwear on the system over

time. The boundary between random variation, the former, and assignable variation,

the latter, isµ ± kσ, whereµ is the mean,σ is the standard deviation, andk is some

constant. [22].

2.2.1.2 Semi-parametric Methods

Semi-parametric models use mixture models or kernel density estimators rather than

a single global model. Both mixture models and kernel models estimate a probability
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distribution as the combination of multiple probability distributions.

Mixture models consist of a weighted sum of probability density functions. Gaus-

sian mixture models, which consists of a set of Gaussian probability density functions,

are most common, though any combination of probability density functions may be

used [87]. The expectation maximization clustering algorithm discovers a Gaussian

mixture model for a data set where each Gaussian probabilitydensity function corre-

sponds to a cluster.

A kernel density estimator models the data set by assuming a probability density

function is centered at each point in the dataset. The probability density function for

the entire data set is the sum of all the kernel estimators [79]. Yeung and Chow [95] use

a kernel density estimation, with Gaussian kernels, as a basis for hypothesis testing for

intrusion detection.

2.2.1.3 Non-parametric and Proximity Based Methods

Non-parametric methods make no assumptions about the underlying distribution

of the data and tend to be computationally expensive. Many non-parametric methods

define outliers in terms of their distance from other points in the data set. Specific

definitions vary from application to application. Two definitions that appear in the

literature are stated below.

Definition 1 (from [54]). An objectO in a datasetT is aDB(p,D) outlier if at least

fractionp of the objects inT lie greater than distanceD from O

Definition 2 (from [75]). TheDk
n outliers are then points with the largest distance from

theirkth nearest neighbor.

Both DB andDk
n outliers can, näıvely, be discovered by computing the distances

between all points in the data set and finding the points that meet the criteria specified
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in above definitions; however, this approach is slow, especially for large data sets. The

detection of these outliers may be accelerated with the use of spatial data structures.

Knorr and Ng [54] present a cell-based method that divides the space into hypercubes

of equal size. The properties of this structure, with a carefully chosen cell size, allow

all points in certain cells to be identified as outliers or non-outliers at once, in many

cases. Multiresolutionalkd-trees [66] may also be used to speed up the search for

outliers. Mrkd-trees form a hierarchical representation of the points ina data set,i.e.the

root of the tree “owns” all nodes and a node’s points are partitioned among its two

children. Each node stores basic statistics on the points it“owns”: the number of points,

the centroid, the covariance, and the bounding hyper-rectangle. Chaudharyet al.[27]

present a method of outlier detection that computes a mrkd-tree such that the points in

each node are divided evenly among its children and refines the node boundaries so that

each node has a uniform density distribution of points. Thisproduces a set of nodes in

which all points in a node have the same amount of “outlier-ness”.

2.2.2 Methods for Finding Anomalies in Time Series Data

Keoghet al. [52] discuss the problem of finding surprising patterns in time series

data. They provide the following formal definition of a surprising pattern:

Definition 3 (from [52]). A time series patternP , extracted from databaseX is sur-

prising relative to a databaseR if the frequency of its occurrence is greatly different to

that expected by chance, assuming thatT andX are generated by the same underlying

process.

The approach discretizes the time series into a symbolic string (the specific dis-

cretization method depends on the application) and uses either a Markov model or a

suffix tree to characterize the probability of each substring.
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Lin et al. [58] describe a discretization and dimensionality reduction method for

time series data called SAX. They also define a measure that lower-bounds the distance

between two time series that have been discretized via SAX. This result makes SAX

feasible for use with various machine learning techniques such as clustering, nearest

neighbor classification, and decision tree classification.

Weiet al. [91] use SAX in conjunction with a pair of sliding windows forassumption-

free anomaly detection. They use a “lag” window as a base lineand compute its distance

from the “lead” window. This distance provides a measure of “anomalousness” for the

“lead” window at each time step.

Scott [80] presents a method for network intrusion detection using a Markov mod-

ulated nonhomogeneous Poisson process. The approach consists of two Poisson pro-

cesses, one modeling normal behavior and another modeling abnormal behavior, and a

Markov process modeling the probability of moving from normal behavior to abnormal

behavior and vice versa. Scott and Symth [81] use a similar method for modeling web

traffic, and [47] use a Markov modulated Poisson process for modeling foot traffic at

the entrance of a building and freeway traffic near a major sport venue.

2.2.3 Application: Fraud Detection

Outlier detection is often used in fraud detection applications. Identifying fraud

quickly is important in order to minimize the loss due to the fraud. Fraud is pervasive

and takes many forms, including money laundering, credit card fraud, telecommunica-

tions fraud, computer intrusion, medical fraud, and scientific fraud [24].

We discuss two approaches to fraud detection. The supervised approach requires

data describing non-fraudulent behavior and all classes offraudulent behavior that are

to be detected. The unsupervised approach identifies outliers as potential fraud and
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flags these for further investigation [24].

Fawcett and Provost [36] present a supervised framework fordetecting cloning

fraud, a form of telecommunication fraud in which identifying account information

is stolen and used to gain access to a legitimate user’s account. Their approach uses a

rule based system to identify fraudulent calls and a set of profile monitors that model

normal behavior and variation for each user.

2.2.3.1 Intrusion Detection

Intrusion detection is a form of fraud detection which seeksto quickly identify any

security compromise of a computer system in order to minimize the damage inflicted

by a malicious user. A security compromise occurs when an individual obtains per-

missions on a machine to which he is not entitled. There are many ways in which a

compromise can occur, including a stolen password and exploitation of vulnerable pro-

grams. There are two major approaches to intrusion detection: signature detection and

anomaly detection [13].

The signature detection approach requires each type of intrusion to be specified.

The major drawback of this method is that it can only detect known intrusions and must

be updated as new types of intrusions are discovered. The anomaly detection method

for intrusion detection tend to be semi-supervised and are based on the assumption that

“abnormal behavior is probably suspicious” [13].

Denning [35] suggests the idea of viewing abnormal behavioras suspicious based

on the observation that many security compromises have beendiscovered by system

administrators and users who observe strange behavior. Various approaches of anomaly

detection have been applied to this problem.

Some approaches utilize standard methods for detecting anomalies, such as hidden
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Markov models [96] and clustering [74]. Other approaches are based on hypothesis

testing and entropy. Yeung and Ding [96] use cross entropy asa measure of the differ-

ence between the distributions of two data sets as the basis for hypothesis testing.

2.3 COMPLEX NETWORKS

A wide range of phenomena may be modeled as graphs,e.g.social interaction, bio-

logical systems, the world wide web, research collaboration, power grids, transportation

systems, food webs, and ecosystems. [9, 15, 23]. In this section we introduce standard

graph metrics and major graph models. We also discuss approaches for data mining

complex networks.

2.3.1 Graph Metrics

2.3.1.1 Diameter

Thediameterof a graph is the longest shortest path in a graph and gives themaxi-

mum distance required to travel between any two vertices in the graph. The diameter of

an unconnected graph is∞; however, the maximum component diameter may be used

in this situation [94].

2.3.1.2 Degree Distribution

One of the most commonly measured graph characteristics is the degree distribu-

tion, which is the probability distribution of the degrees of thevertices. Several network

models produce graphs with a Poisson degree distribution, including the Erd̈os-Ŕenyi

and Watts-Strogatz models discussed below, and many real world networks are known

to have power-law degree distributions [9]. Under a power-law distribution, the proba-
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bility a vertex has degreek is

P (k) ∝ k−γ (2.1)

whereγ > 1 [16].

2.3.1.3 Characteristic Path Length

Thecharacteristic path lengthof a graph is the average shortest path length between

a pair of vertices [90]. A graph is characterized as asmall-worldnetwork if its charac-

teristic path length is no greater than logarithmic with respect to the number of vertices

in the graph [23].

2.3.1.4 Clustering Coefficient

Theclustering coefficientcharacterizes the connectivity of the neighborhoods of a

graph. Two methods of computing the clustering coefficient appear in the literature.

The first method, by Watts and Strogatz [90], is the average probability that two

neighbors of a vertex are connected. Letev be the number of edges connecting neigh-

bors of vertexv andd(v) be the number of neighbors for vertexv (the degree ofv). The

clustering coefficient is

C =
1

|V |

∑

v∈V

ev

d(v) (d(v)− 1) /2
(2.2)

The second method, by Newmann [68], computes the probability that two neighbors of

any vertex are connected.

C =

∑

v∈V ev
∑

v∈V d(v) (d(v)− 1) /2
(2.3)

Readers should be aware that both methods are used in the literature and may pro-
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duce different values. The definition by Watts and Strogatz gives greater weight to

vertices with smaller degrees [70].

2.3.2 Graph Models

2.3.2.1 Erd̈os-Ŕenyi Model

Erdös and Ŕenyi study the properties of evolving random graphs of|V | vertices as

the probability,p, of a an edge existing between any pair of vertices increases. They

find that a number of properties appear suddenly, with high probability, at some critical

probability,pc, asp→ 1. One of their most famous discoveries is the critical probability

for the formation of a giant component,i.e. a component of sizeO(|V |), is 1/|V |.

Whenp > 1/|V | a component withO(|V |) vertices is likely present. Whenp < 1/|V |,

a random graph likely hasO|E| components, none of which have more thanO(ln |V |)

vertices. Whenp = 1/|V |, the largest component of the graph is probablyO(|V |2/3)

vertices. Erd̈os-Ŕenyi graphs typically have small characteristic path length and small

clustering coefficients [9, 23, 70].

2.3.2.2 Watts-Strogatz Model

Watts and Strogatz [90] observe that naturally occurring networks are neither com-

pletely random, like the Erd̈os-Ŕenyi model, nor completely ordered. The Watts-

Strogatz generative model starts with a regular lattice. The vertices are organized in

a circle and each vertex in the graph is connected to some constant number of its near-

est neighbors, resulting in a regular graph in which each vertex has the same degree.

Each edge in the lattice is randomly rewired with a constant probability. Watts and Stro-

gatz evaluate their model using two metrics: characteristic path length and clustering

coefficient. They show that while both random graphs and graphs generated using their
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model both exhibit the small-world characteristic, their model produces graphs with the

larger clustering coefficients that are found in naturally occurring graphs.

2.3.2.3 Barab́asi-Albert Scale-Free Graphs

Albert, Jeong, and Barabási [10] show that, like social and biological networks, the

world wide web is a small world network and has an estimated characteristic path length

of 19. Additionally, they discovered that the world wide webhas a power law distribu-

tion, a distribution that is significantly different than the expected Poisson distribution.

Further investigation reveals power law distributions in actor collaboration and power

grid graphs. Graphs with a power law degree distribution arereferred to asscale free

graphs because their properties are independent of the number of vertices [10, 15, 16].

2.3.3 Link Mining

Link mining learns on a collection of related objects ratherthan assuming each item

in a data set is independent—an assumption of traditional data mining methods. Link

mining tasks can be divided into three types [41]:

• Object related tasksinclude link based ranking, link based classification, group

detection, and object identification.

• Link related tasksinclude link prediction and anomalous link detection.

• Graph related tasksinclude subgraph discovery, graph classification, and gener-

ative models for graphs

Generative models for graphs include the Erdös-Renyi, Watts-Strogatz, and Barabási-

Albert models discussed above. The link prediction and anomalous link detection prob-
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lems are directly related to the research presented in this proposal, and we briefly dis-

cuss them below.

2.3.3.1 Link Prediction Problem

Liben-Newell and Klienberg [57] define the link prediction problem:

Given a snapshot of a social network, can we infer which new interactions
among its members are likely to occur in the near future?

They evaluate various approaches for assigning a connection weight rank for each pair

of nodes in the graph. The ranks may be a function of proximityor similarity and are

determined by examining either the neighborhoods within the network or the paths

through the network. Neighborhood based ranks may be the number of neighbors

shared by two nodes, the probability that two nodes share a given neighbor (Jaccard’s

coefficient), or the product of the number of neighbors of twonodes (preferential at-

tachment). Path based ranks may be a weighted sum of the number of paths between

two nodes such that shorter paths are assigned higher weights (Katz method) or the

expected number of links between two nodes (hitting time) [57].

2.3.3.2 Anomalous Link Detection

The anomalous link detection problem consists of identifying links that are not

likely to occur. Rattigan and Jensen [76] applied the Katz method, used for link predic-

tion by Liben-Nowell and Kleinberg [57], to detect anomalous links.

2.4 DATA STREAMS

Data stream model deals with data sets that may only be read once and only in

the order in which they are generated. These limitations aredue to the volume of the
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data; the data sets are so large that it is not feasible store the entire data set in main

memory, read the data multiple times, or perform random accesses on the data. A data

stream may be the product of reading a large file from disk or tape, the result of a

database query, or the output of an ongoing process. Given size of data streams and

the memory restrictions, streaming algorithms are required to use sublinear space. In

general, algorithms using polylogarithmic space with respect to the number of items in

the data stream are considered good solutions [14, 45].

2.4.1 Measuring the Evolution of Streaming Data

A characteristic of a data stream we may wish to consider is the way in which it

evolves over time. Arggarwal [5] suggests two metrics for measuring the evolution of

a stream: (1) velocity density estimation, which estimatesthe rate at which the density

of data at a given location is changing and (2) spatial vectorprofiles which provides

insight into the manner in which the data is shifting. Kiferet al.[53] use a “two win-

dow paradigm” in which areference windowis used as a baseline with which future

data is compared and thecurrent window. This method uses a generalization of the

Kolmogorov-Smirnov statistic to estimate the distance between the distributions that

produced the values in the two windows.

2.5 REAL-TIME SYSTEMS

Real-time systems behave according to explicit timing constraints and are generally

divided into two categories.

• Hard real-time systemsfail if any time constraint is violated.

• Soft real-time systemstolerate some number or rate of time constraint violations.
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A real-time system consists of a set oftasks, each of which is a process or thread.

Each task consists of a sequence ofjobs. There are three types of tasks.

• Periodic tasksrelease jobs at regular intervals.

• Aperiodic tasksrelease jobs at irregular intervals.

• Sporadic tasksare aperiodic tasks in which the release of two consecutive jobs is

constrained by a minimum time interval.

The tasks in a real-time system are assigned a priority, which determines the order

in which tasks are executed. Tasks with higher priorities run before tasks with lower

priorities.

2.5.1 The Periodic Task Model

Liu and Layland [59] define the canonical real-time model forperiodic tasks. The

model is highly constrained; they assume that all tasks are periodic with a deadline

equal to the period, all tasks are independent, all tasks have a fixed or bounded compu-

tation time, all tasks may be preempted so that a task with a higher priority may run,

and all tasks run on a single processor [59, 82].

In the periodic task model, the jobs of a task are defined by four parameters.

• Therelease timeis the earliest time a job may begin execution

• Theexecution time, e, is worst case CPU time required to execute the job.

• Thedeadline, d, is the time by which the job execution must be completed.

• Theperiod, p, is the rate at which the task releases jobs. The deadline of ajob is

equal to the period of its task.
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In their paper Liu and Layland [59] define two fundamental scheduling algorithms

and derive feasibility conditions, the conditions under which a task set meets all tempo-

ral requirements. Their analyses are based on the concept ofa critical instantwhich is

a time at which a job will require maximum time to complete. A critical instant occurs

when a job is released at the same time that all higher priority tasks release a job. If all

jobs meet their timing constraints at their critical instant, the task set is feasible.

The feasibility analyses are based on thesystem utilization, fraction of available

processing time required by a task. For taski with execution timeei and periodpi, the

utilization isei/pi. The total utilization,U , of a system withm tasks is

U =
m

∑

i=1

ei

pi

.

Rate monotonicscheduling is a fixed priority algorithm in which the priority of a

task is inversely related to its period. Liu and Layland [59]derive a sufficient feasibility

condition for rate monotonic scheduling; a set ofm periodic tasks is feasible if

U ≤ m
(

21/m − 1
)

. (2.4)

Earliest deadline firstscheduling is a dynamic priority scheduling algorithm. in

which the priority of a task is inversely related to the time until its next deadline. Liu

and Layland [59] show that with earliest deadline first scheduling, there can be no idle

processor time,i.e. the processor is fully utilized, prior to any missed deadline. They,

therefore, derive a necessary and sufficient feasibility condition for earliest deadline

first scheduling; a set ofm periodic tasks is feasible if and only if

m
∑

i=1

ei

pi

≤ 1. (2.5)

20



2.5.1.1 Extensions of the Liu and Layland Model

The work of Liu and Layland [59] provides an important foundation in real-time

scheduling research, and much work has been done to extend this model.

Deadline monotonic scheduling is a generalization the ratemonotonic scheduling

algorithm in which the deadline of a periodic task is less than or equal to its period.

This generalization improves the schedulability analysisfor task sets where the worst

case execution times are less than the periods [12].

Several methods have been developed for improving the response time of aperiodic

tasks, which do not typically have hard deadlines but may have quality of service, av-

erage response time, or average throughput requirements. Several solutions utilize a

polling server, a periodic task that provides time in which aperiodic tasks execute. The

more sophisticated server methods are able to use more processor time when the total

system utilization is low [82].

2.5.2 The Sporadic Task Model

The sporadic task model [65] assumes that all tasks are sporadic. A sufficient fea-

sibility test for a sporadic task system assumes that each task is released as frequently

as allowed by the system, in which case the analysis degenerates into the periodic case;

however, this approach does not permit a large number of feasible task sets. Baruahet

al. [19] derive a necessary and sufficient feasibility test for sporadic task sets. While

their algorithm for determining feasibility takes exponential time in the worst cases,

it requires pseudo-polynomial time in most cases. Baruah andFisher [18] derive a

polynomial time feasibility test for sporadic real-time task sets on single and multiple

processor systems when there are a constant number of distinct task types.
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2.5.3 Rate-Based Execution

Jeffay and Goddard [50] note that in practice, distributed real-time systems are often

neither periodic nor sporadic and that in many cases the expected rate at which jobs

are released in known. To handle this situation, they develop a model for rate-based

execution.

Tasks in the rate-based execution model are defined by four parameters:

• a time interval,y

• the maximum expected number of times the task releases jobs,x, in a time inter-

val y

• the maximum desired response time,d, of the jobs

• the maximum execution time,e.

The deadline of each job depends on either the start time or the deadline of thexth

prior job. When jobs are released at a rate less than the maximum expected rate, the

deadline of a job is the sum of its release time and its desiredresponse time. When jobs

are released at a rate greater than the maximum expected rate, only the firstx jobs in

a time interval of lengthy are expected to complete withind time, the remaining tasks

are allowedy time beyond the deadline of thexth previous task. Formally, lettij be the

release time of thejth job or theith task. The deadline for jobj of taski is

Di(j) =















tij + di if 1 ≤ j ≤ xi

max (tij + di, Di (j − xi) + yi) if j > xi

(2.6)

Jeffay and Goddard [50] derive necessary and sufficient feasibility conditions for

rate based execution under preemptive scheduling, with andwithout shared resources,
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and non-preemptive scheduling.
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CHAPTER 3

ANOMALY DETECTION IN A MOBILE COMMUNICATION NETWORK

3.1 ABSTRACT

Mobile communication networks produce massive amounts of data which may be

useful in identifying the location of an emergency situation and the area it affects. We

propose a one pass clustering algorithm for quickly identifying anomalous data points.

We evaluate this algorithm’s ability to detect outliers in adata set and describe how

such an algorithm may be used as a component of an emergency response management

system.1 2

3.2 INTRODUCTION

Cellular networks have recently received attention as viable, pre-existing sensor net-

works. City officials in Baltimore use cell phone location datato monitor traffic flow,

and the state of Missouri is considering a similar state wideprogram that would make

traffic information available to the public [11]. IntelliOne, a company based in Atlanta,

GA, recently released a system that displays anonymous cellphone location data onto a

1This paper won the best student paper award at the North American Association for Computational
Social and Organizational Science (NAACSOS) Conference 2006, University of Notre Dame, Notre
Dame, Indiana, USA. [72]

2This work has been accepted for publication in Computational & Mathematical Organization Theory.
[71]
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map so that users can identify congested areas [67]. The emergency response commu-

nity has also gained interest in using existing cell phone networks as a way to distribute

warnings to citizens [83, 93].

The Wireless Phone Emergency Response (WIPER) system, an emergency response

management tool currently under development, monitors an existing cellular phone net-

work. Operating under the assumptions that the behavior of the network models the

behavior of a population and that anomalous behavior may indicate an emergency sit-

uation has developed, the system attempts to quickly detectanomalies in the network.

When anomalies occur, WIPER uses a suite of simulations to predict how the situa-

tion will unfold. This paper focuses on the problem of identifying anomalous events in

streaming cell phone data as part of the WIPER system. See [61,77, 78] for a complete

overview of the WIPER system.

Our goal is to mine the cellular phone network data for eventsand anomalies to

enable a more efficient emergency response system. Emergency response systems are

tools that aid emergency response managers in the decision making process. The diffi-

culty of making good decisions is increased by several factors including stress, fatigue,

restrictive time constraints.

Another major issue for emergency response managers is the problem of “infor-

mation overload”. Studies have shown a correlation betweenabundant available data

and bad decision making in crisis situations [84]. Good emergency response systems

provide access to the large amount of available data in such away that the emergency

response manager can use the data effectively to reach good decisions [20, 51]

We believe that an anomaly detection system that monitors incoming streaming

cellular network data and posts alerts for the emergency response manager will be a

useful addition to an emergency response system. It will draw the managers attention

25



to information that may be easily missed in a fast moving, stressful situation. The

manager can use or ignore that information based on their experience. The goal is to

provide valuable information without being too intrusive in the case of false positives.

The nature of the data poses some difficulties in developing an anomaly detection

system. First, a large amount of data arrives at a rapid rate.The sheer volume of the

data makes it difficult to store it in its entirety, much less operate on it using repeated

accesses, which is a typical algorithmic requirement. Therefore, we aim to develop a

method that follows the data stream model [14]. Intuitively, a data stream is a sequence

of data items that arrive at such a rapid rate that it is only feasible to operate on a

small portion of the data. As each data item is seen, it must beeither incorporated into

a summary that requires a small amount of memory or it must be discarded, in which

case it cannot be retrieved. The data stream model imposes two algorithmic limitations:

each item in the dataset may only be read once in a predefined order, and memory usage

must be sub-linear—typically polylogarithmic with respect to the number of data items

seen. Our main focus in this paper is the one pass requirement; we present a one pass

hybrid clustering algorithm for anomaly detection.

Another difficulty is the fact that the system is dynamic; theway in which people use

the services provided by a cellular network changes over time. The anomaly detection

approach should be sensitive enough to detect anomalies butshould not be so sensitive

that it flags changes in the underlying system as anomalies. That said, the cost of false

positives is far less than the cost of false negatives. The system can handle the detection

of a few non-emergency situations, as long it does not happentoo often.

In this paper, we present a one-pass hybrid clustering algorithm for detecting anoma-

lies in streaming data. We evaluate clusters produced by thealgorithm and its ability to

detect outliers. Finally, we discuss how such an algorithm can be used in an emergency
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response system like the one described above.

3.3 RELATED WORK

There is abundant literature on the anomaly detection problem which describes a

variety approaches, including statistical, neural network, and machine learning meth-

ods. In this paper, we focus on the statistical approaches, which can be divided into

two categories: parametric and non-parametric. Parametric approaches tend to be more

efficient, but assume the data conforms to a particular distribution. Non-parametric

methods do not assume any particular data distribution; however, they are often less of

efficient. [46, 62, 63].

Clustering is an appealing non-parametric method because itallows us to capture

various classes of “normal” and “abnormal” behavior. This may be quite useful since,

in addition to detecting anomalies caused by events that have never been seen before,

knowing various types of “abnormality” would allow us to identify interesting events

that have already been seen.

The goal of clustering is to group similar data items together. The concept of simi-

larity is often defined by a distance metric; we use Euclideandistance. Good clustering

algorithms form clusters such that the distance between intra-cluster points are min-

imized and the distance between inter-cluster points are maximized. Anomalies are,

intuitively, the data items that are far from all other data items. There are three major

types of clustering algorithms: partitional, hierarchical, and incremental [48].

3.3.1 Partitional Clustering

Partitional clustering divides the data set into some number, often a predefined num-

ber, of disjoint subsets.K-means is a classical and simple clustering algorithm that
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iteratively refines a set of clusters. The initial cluster centroids for thek-means algo-

rithm arek randomly selected data items from the data set. Each examplein the data

set is assigned to the closest cluster, and the new cluster centroids are computed. This

process is repeated until the clusters stabilize,i.e.no point in the data set receives a new

cluster assignment [92].

Expectation maximization (EM) clustering is another classical, partitional algo-

rithm. EM is a probability based algorithm that seeks to discover a set of clusters

corresponding to a Gaussian mixture model, a set of Gaussiandistributions, that de-

scribes the data set. The algorithm is initialized withk random Gaussian distributions

and iteratively refines these distributions using a two stepprocess. The expectation step

computes the probability that the data set is drawn from the current Gaussian mixture—

the likelihood. The maximization step reassigns the data items to the cluster which they

most likely belong and recomputes the Gaussian mixture. Thealgorithm halts when the

likelihood that the dataset is drawn from the Gaussian mixture increases by less than a

user defined threshold.

There are a couple of drawbacks with these approaches. Thek-means and EM

algorithms are not guaranteed to find an optimal set of clusters, and both algorithms

requirea priori knowledge of the number of clusters in the data. These issuescan be

mitigated by running the algorithms multiple times using different initial conditions

and varying numbers of clusters. The best set of clusters is used to describe the data

[92]. Another issue is scalability. These algorithms are inefficient for very large data

sets. Spatial data structures may reduce the time required by these algorithms.kd-trees

[21] have been used reduce the number of distance calculations required byk-means.

Often, akd-tree can be used to determine cluster memberships for a subset of points

with only k distance computations (rather thank computations for each point in the
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subset) [73]. Multiresolutionalkd-trees have been used to improve the performance of

EM clustering. A multiresolutionalkd-tree stores hierarchical summary statistics on

the data “owned” by the node: the number of points, centroid,covariance matrix, and

bounding hyperrectangle. With these summaries stored for hierarchical subsets of the

data set, the computation of EM parameters can be accelerated significantly [66].

3.3.2 Hierarchical Clustering

Hierarchical clustering divides data into a nested set of partitions and may be use-

ful for discovering taxonomies in data. Agglomerative algorithms produce hierarchical

clusters via a bottom-up approach in which each example is initially a unique cluster

and the clusters are iteratively merged with their neighbors. Two common agglomera-

tive clustering algorithms are single link and complete link. These algorithms are graph

based: each example becomes a vertex, and edges are added based on the distance

between pairs of vertices. A level of the hierarchical cluster is defined by a distance

threshold: an edge is added to the graph if and only if two examples are separated by a

distance less than the threshold. The connected componentsand completely connected

components are the clusters for the single link and completelink algorithms, respec-

tively. The hierarchy of clusters is formed by iteratively increasing the threshold to

produce larger clusters [48, 49]. Since single and completelink clustering compute the

distances between all pairs of examples in the dataset they have greater time complexity

than partitional algorithms, however, they produce optimal solutions.

3.3.3 Incremental Clustering

Incremental algorithms consider each example once, immediately deciding either to

place it in a existing cluster or to create a new cluster. These algorithms tend to be fast,
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but are also often order dependent [48]. The leader algorithm is a simple incremental

clustering algorithm in which each cluster is defined by a single data item—the first

item assigned to the cluster. For each data example, if the example is within a user

specified distance of the defining item of the closest cluster, the example is assigned

to that cluster; otherwise, the example becomes the definingexample of a new cluster

[44].

Portnoyet al. use the leader algorithm for intrusion detection (another application

of anomaly detection. In order to handle arbitrary distributions, they normalize the data

usingz-score, in which the feature values are transformed by

v′

i =
vi − v̄i

σi

(3.1)

Unfortunately, this requires two passes over the data. Furthermore, the distance thresh-

old is fixed over all clusters, and cannot change as the data stream evolves.

3.3.4 Clustering Algorithms for Streaming Data

A few methods have been developed for clustering data streams. Guhaet al.[43]

present a method based onk-mediods—an algorithm similar tok-means. The clusters

are computed periodically as the stream arrives, using a combination of the streaming

data and cluster centers from previous iterations to keep memory usage low. Aggar-

wal et al.[7] present a method that takes into account the evolution ofstreaming data,

giving more importance to more recent data items rather thanletting the clustering re-

sults be dominated by a significant amount of outdated data. The algorithm computes

micro-clusters, which are statistical summaries of the data periodically throughout the

stream. These micro-clusters serve as the data points for a modifiedk-means clustering

algorithm.
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3.3.5 Hybrid Clustering

Hybrid clustering combines two clustering algorithms. Cheuet al.[28] examine

the use of iterative, partitional algorithms such ask-means, which tend to be fast, as

a method of reducing a data set for hierarchical, agglomerative algorithms, such as

complete-link, that tend to have high computational complexity. Chipman and Tibshi-

ran [29] combine agglomerative algorithms, which tend to dowell at discovering small

clusters, with top-down methods, which tend to do well at discovering large clusters.

Surdeanuet al.[86] propose a hybrid clustering algorithm for document classification

that uses hierarchical clustering as a method for determining initial parameters for ex-

pectation maximization.

3.4 THE DATASET

We use a data set generated from a database of real world cellular network infor-

mation. The database provides the following information for each transaction (use of a

service by a customer): the initiation time, the duration (in minutes), and the name of

the service. From the database, we generated a data set with 17,280 examples. Each

example indicates how many instances of each service are in use for each minute of a

12 day period. We prune the year, month, and day from the data set due to the small

time frame covered and we remove 11 services that are rarely used. This leaves a data

set with 7 features: hour, minute, data transmission usage,general packet radio service

(GPRS) usage, telephone usage, text messages sent, and text messages received.

Figure 3.1 shows the time series for each of the seven servicefeatures of the dataset.

Note that each time series exhibits periodic concept drift,an underlying change in the

process generating the data [88], based on the time of day. The telephone time series

is relatively consistent from day to day, though the call volume varies somewhat de-
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pending on the day of the week and on whether the day is a holiday. In contrast, there

is a noticeable increase in the network load for each of the other services as time goes

by; this is a form of non-periodic concept drift. This suggests that the way in which

people use the telephone service is relatively well established. Notably, this is also the

oldest and most used service. As technology evolves, and peoples habits change, we

can expect new manifestations of concept drift.

3.4.1 Offline Clustering Analysis

Since many clustering algorithms requirea priori knowledge of the number of clus-

ters, we must have some way of determining the correct value for this parameter. There

are a couple of methods for accomplishing this. One method isto simply perform the

clustering for various numbers of clusters and choose the best result based on some

metric such as sum squared error or log likelihood. Another method is to use 10-fold

cross validation fork ∈ 1, 2, . . . ,m, increasingk until the quality of the clustering

starts to degrade [92].

We use the implementation of expectation maximization provided by the Weka

package [92] with 10-fold cross validation to determine thenumber of clusters. 10-fold

cross validation partitions the data set into 10 equally sized subsets, or folds. Starting

with k = 1, for each distinct set of 9 folds we compute clusters and the log likelihood

of the cluster set. The value ofk is incremented by 1 and the process repeats until

the average log likelihood is less than that of the previous iteration. The final result is

the set of clusters that maximizes the average log likelihood. While this approach is

not necessarily likely to find a global maxima, it is consistent with Occam’s Razor in

favoring a smaller number of clusters, which corresponds toa simpler hypothesis [92].

We use expectation maximization to cluster the dataset in the following two ways.
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First, we arbitrarily select a day from the data set (day 4) and compute the clusters for

each hour of the day (see figure 3.2). Second, we compute clusters for accumulated

data. We cluster the first day, the first two days, the first three days, and so on until we

include all 12 days of data (see figure 3.3). Using both approaches, we find that the

number of clusters fluctuates, indicating that the appropriate value fork changes as the

stream progresses.

3.5 A HYBRID CLUSTERING ALGORITHM

We implement a hybrid clustering algorithm that combines a modification of the

leader algorithm withk-means clustering. The basic idea behind the algorithm is to

usek-means to establish a set of clusters and to use the leader algorithm in conjunction

with statistical process control to update the clusters as new data arrives.

Statistical process control [22] aims to distinguish between “assignable” and “ran-

dom” variation. Assignable variations are assumed to have low probability and indicate

some anomaly in the underlying process. Random variations, in contrast, are assumed

to be quite common and to have little effect on the measurablequalities of the process.

These two types of variation may be distinguished based on the difference in some mea-

sure on the process output from the mean,µ, of that measure. The threshold is typically

some multiple,l, of the standard deviation,σ. Therefore, if the measured output falls

in the rangeµ± lσ, the variance is considered random; otherwise, it is assignable.

Our algorithm represents the data using two structures: thecluster set and the outlier

set. To save space, the cluster set does not store the examples that make up each cluster.

Instead, each cluster is summarized by the the sum and sum squared values of its feature

vectors along with the number of items in the cluster. The outlier set consists of the

examples that do not belong to any cluster. We rely on the centroid and the standard
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deviations of the features to summarize and update the clusters, so clusters are only

accepted when they contain some minimum number of examples,m. The algorithm

periodically clusters the examples in the outlier set usingk-means. Clusters which

contain at leastm items are reduced to the summary described above and added tothe

cluster set.

Algorithm 1 shows the details of our approach. The algorithmtakes three argu-

ments: the minimum number of elements per cluster,m, number of clusters to compute

with k-means,k′, and a threshold,l that, when multiplied by the magnitude of the

standard deviation vector, defines the boundary between “random” and “assignable”

variation. (Note thatk′ specifies the number of clusters for the first level of the hy-

brid algorithm, not the final number of clusters produced by the algorithm.) For each

example that arrives, we compute the closest cluster. If theexample is considered an

“assignable” variation,i.e.it is further thanlσ from the closest cluster center (or the set

of clusters is empty), the example is placed in the outlier set. Otherwise, if the example

is considered a “random” variation, the example is used to update the summary of the

closest cluster. When there arek′m examples in the outlier set, cluster these examples

with k-means. The new clusters with at leastm examples are added to the cluster set,

and all the examples in the remaining clusters return to the outlier set.

This algorithm attempts to take advantage of the fact that the mean is sensitive to

outliers. By using means as the components of the cluster center and updating the

centers whenever a new example is added to a cluster, we hope to handle a certain

amount of concept drift. At the same time, we hope that the useof statistical process

control to filter out anomalous data prevents the cluster centers from being affected by

outlying points. This algorithm does not requirea priori knowledge of the number of

clusters (recall that the argumentk′ is only the number of clusters for the first level
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cluster), since new clusters will form as necessary.

Algorithm 1 INCREMENTALHYBRID(X, l, k,m)

Let X be a list of examples,~x1, ~x2, . . .
Let l be the threshold multiple
Let k be the number of clusters to produce in the first level
Let m be the minimum number of items required to accept a cluster

Let C be the set of clusters
Let U be the set of unclustered examples

C ← ∅
U ← ∅
for all ~x ∈ X do

Find the closest cluster,Ci

if dist(~x, Ci) < l|~σ| then
Add~c to Ci

end if
if |U | = km then

C ′ ← k-MEANS(k, U )
for all c′ ∈ C ′ do

if c′ contains more thanm examplesthen
Add c′ to C

else
Put the items inc′ into U

end if
end for

end if
end for

3.6 EXPERIMENTAL SETUP

We evaluate our incremental hybrid clustering algorithms against the expectation

maximization clustering algorithm. We use the implementation of expectation maxi-
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mization provided by the Weka package [92] using 10 fold cross validation to determine

the baseline for the number of clusters in the data. For the hybrid algorithm, we use

l = 1, 3 andk′ = 5, 10, 20, 30. We evaluate the cluster quality using sum square error.

We examine the number of clusters and outliers produced by the hybrid algorithm, and

we compare the outlier set produced by the hybrid algorithm to outliers determined by

an offline algorithm.

3.7 RESULTS

Figure 3.4 shows the number of clusters produced by expectation maximization

clustering and our hybrid clustering algorithm. As expected, the number of clusters

produced by the hybrid clustering algorithm decreases as the threshold,l, increases.

Figure 3.5 shows the average number of outliers resulting from the application of the

hybrid clustering algorithm, with error bars. There are a few factors that cause the

number of outliers to fluctuate. Recall that we only accept clusters fromk-means if

they have some number of minimum members,m. Since we cluster when there are

mk′ members in the outlier set, increasingk′ also increases the number of items used

by k-means. If all the clusters are approximately the same size,several clusters with

nearlym items may remain in the outlier set, increasing the number ofoutliers found by

the algorithm. In contrast, if most of the examples fall in a few clusters, few examples

may remain in the outliers set.

Figure 3.6 shows the sum squared error for expectation maximization and the hybrid

algorithm. The hybrid algorithm produces clusters with less sum squared error, by

orders of magnitude, than the expectation maximization algorithm. Also note that the

sum squared error increases as both parameters,l andk′ increase.

Figure 3.7 and 3.8 show the distribution of distances between points in the outlier
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set and their nearest neighbor in the full data set. Each figure also shows the nearest

neighbor distance distribution for the full data set. Recallthat we defined outliers as

points in the dataset that are far from all other points. We define the extent to which a

point is an outlier by its distance from its nearest neighbor. Data points that are closer

to their nearest neighbor are less outlying that data pointsthat are far from their nearest

neighbor. Ideally, we would like the clustering algorithm to detect all extreme outliers

in the nearest neighbor distance distribution for the full data set. These box plots show

that this is not the case. The two most outlying examples are never found by the hy-

brid algorithm, and points below the first quartile in “outlier-ness” are regularly found.

However, for some trials (specifically whenl = 3 andk′ = 20, 30), most of the outliers

detected by the hybrid algorithm are extreme outliers (see figures 3.8c and 3.8d).

3.8 CONCLUSION

We have discussed issues in anomaly detection on dynamic data stream. We pre-

sented a hybrid clustering algorithm that combinesk-means clustering, the leader algo-

rithm, and statistical process control. Our results indicate that the quality of the clusters

produced by our method are orders of magnitude better than those produced by the

expectation maximization algorithm, using sum squared error as an evaluation metric.

We also compared the outlier set discovered by our algorithmwith the outliers discov-

ered using one nearest neighbor. While our clustering algorithm produced a number of

significant false positive and false negatives, most of the outlier detected by our hybrid

algorithm (with proper parameter settings) were in fact outliers. We believe that our

approach has promise for clustering and outlier detection on streaming data.

We also believe that this approach has promise for use as a component of the WIPER

system. Determining where are new example will be placed—either in an existing
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cluster or in the outlier set—can be accomplished quickly. It is simply a matter of

finding the closest cluster and determining if the example falls within its threshold

boundary. Once an initial set of clusters is formed, an alertcan be produced whenever

a data item is assigned to the outlier set. Additionally, data items assigned to a cluster

which is known to contain items produced during an emergencysituation can also be

used to inform the emergency response manager of a potentialemergency.

3.9 PROPOSED RESEARCH

Further empirical tests have shown that a bad choice of parameters may cause an

increase in the number false positives. We propose to explore the use of alternatives to

k-means, particularly divisive algorithms which seem most intuitive for this application.

We also propose to measure the changes in the clusters over time and develop methods

for discarding old clusters without destroying the representation of long term patterns.

Finally, in this paper we present an online clustering algorithm; we propose to further

develop this algorithm so that it meets the space requirements for streaming algorithms.
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(a) Telephone (b) Data Transmission

(c) GPRS (d) SMS Sent

(e) SMSReceived

Figure 3.1. Time series for the five service features. These graphs show the
number of times each service is used during each minute of the12 day period.
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Figure 3.2. The number of clusters of for each hour of day 4. The number of
clusters is determined using 10 fold cross validation with expectation

maximization clustering.
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Figure 3.3. The number of clusters of the cumulative data setover the 12
days. The number of clusters is determined using 10 fold cross validation

with expectation maximization clustering.
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Figure 3.6. Sum squared error of the clusters for the expectation
maximization and hybrid clustering algorithms. (Note they axis is log-scale.)

The hybrid algorithm produces clusters with less sum squared error than
expectation maximization.
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Figure 3.7. Box-plots of the distribution of distances between the outliers and
their nearest neighbor in the full dataset for each trial of the hybrid clustering

algorithm wherel = 1. The bottom box-plot in each graph shows the
distribution of distances from the nearest neighbor for allexamples in the

dataset.
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Figure 3.8. Box-plots of the distance between the outliers and their nearest
neighbor in the full dataset for each trial of the hybrid clustering algorithm
wherel = 1. The bottom box-plot shows the distribution of distances from

the nearest neighbor for all examples in the dataset.
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CHAPTER 4

LINK SAMPLING FOR ANOMALY DETECTION IN STREAMING SOCIAL

NETWORKS

4.1 ABSTRACT

Phone and email systems can produce social networks in a streaming fashion, which

provides opportunities for the development of a variety of online applications, includ-

ing emergency response management and organizational knowledge flow management.

However, dealing with social networks that arrive as a stream of links is a difficult prob-

lem. We investigate link sampling from a graph for fast anomalous link detection in

email and cell-phone networks. We use three methods for anomalous link detection—

two neighborhood based and one path based—in conjunction with three methods of

sampling suitable for streaming data. Each sampling methodvaries in the extent to

which it considers the history of the stream. We evaluate themethods using Spear-

man’s rank correlation and measure its degradation as the samples become smaller.

4.2 INTRODUCTION

Much work on social networks is constrained to only a sample of the full network.

Traditionally, social network data has been gathered through interviews via two meth-

ods [26]:
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• Full network samplingin which the connections between a predetermined set of

individuals are mapped.

• Snowball samplingin which a sample is grown by mapping the connections of

an individual in order to find additional individuals, whoseconnections are also

mapped. This process continues until the network is large enough.

Technological networks, such as the world-wide web, email networks, or cell-phone

networks, may be mapped more efficiently using software applications. These net-

works may be more complete; however, their size may make analysis difficult due to

computational constraints.

Over the past several years, a number of fairly complete network datasets have

become publicly available, including the Enron email dataset [32], the SourceForge

Open Source Software dataset [3, 4], the Wikigraph dataset [25], and several scientific

collaboration datasets from the arXiv e-print database [1,69].

Social network data collected using surveys have the potential to contain more in-

formation about their links than technological networks; researchers can design surveys

to collect more of the information relevant to their project. In contrast, the technological

datasets contain only limited information about the links.Consider datasets such as the

SourceForge network and the scientific collaboration network, where the fact that two

people have contributed to a common project or are co-authors on a paper provides very

little information regarding the nature of their interactions with each other. Email and

cell-phone network datasets are more descriptive since they can provide more detail on

the frequency of contact between two people; however, we must still be aware of the

shortcomings of these types of datasets.

Grippaet al. [42], evaluate email networks as a tool for measuring knowledge flow

in an organization. They compare an email network to a socialnetwork that consists
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of face-to-face, phone, and chat communications in addition to the email data. They

found that email and phone interactions occur much less often than face-to-face and

chat communications, which impacts the results of knowledge flow analysis. While it

is important to recognize this issue, Frantz and Carley [38] show that three significant

events at Enron translated into detectable changes in its email network.

In this paper we present work on the problem of fast anomaly detection in dynamic

graphs. Our primary motivation for this work is an emergencyresponse application,

currently under development, which uses a cellular communication network as a sensor

network. This work is also relevant where obtaining resultsfrom a large network dataset

in a timely fashion is important. Examples of such applications include fraud detection,

network intrusion detection, and organizational risk analysis.

We develop a method for quickly detecting anomalies in graphs with reasonably

small space requirements. Since cell-phone networks tend to be large and transactions

— records of SMS and phone calls — may arrive quickly, we beginby considering the

data stream model. A data stream is a dataset, produced by some ongoing process, that

arrives one item at a time, such as prices on a stock ticker [14]. Data streams tend to

be so large that it is neither feasible to store the data in main memory nor repeatedly

read the entire dataset from disk. The data stream model handles these characteristics

by imposing the following constraints on algorithms for streaming data:

• Each item in the stream may only be read once.

• The items in the stream must be processed in the order in whichthey arrive.

• The algorithm should not use more than polylogarithmic space, with respect to

the number of items in the stream.
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Sometimes the model is relaxed, and a small number of passes over the data are per-

mitted to reduce the memory requirements. This relaxation may be beneficial to appli-

cations such as database query processing where streams areproduced by sequential

access of massive files on secondary storage, but is not useful for processing streaming

data from sensors, since these are potentially unbounded inlength [14, 45].

Previous work on graph mining streaming data has focused on subgraph matching

for fraud detection, community detection, or community analysis. Corteset al. [33] use

edge aggregation to handle streaming phone call transactions for fraud detection. Their

method retains only the most active, and heavily weighted, outgoing links for each node

in the network. They account for the dynamic nature of the graph by reducing edge

weights over time via an exponential decay. Using a databaseof fraudulent activity and

a measure of difference between subgraphs, the network is searched for new instances

of fraud. This approach is not suitable for our work because we cannot assume that

only the most active edges are relevant.

Cobleet al. [30, 31] present online versions of SUBDUE which incrementally iden-

tify common substructures in graphs. The graphs are compressed by collapsing com-

monly occurring subgraphs. This approach does not allow theremoval of outdated

information without re-expanding the common subgraphs. This is problematic for the

present applications because we don’t necessarily want to consider the entire history,

since the graph is dynamic.

Aggarwal and Yu [8] present an online method for summarizingdynamic networks

that supports offline queries for measuring the change in communities over time. This

summarization stores the initial graph along with incremental snapshots. Over time,

storage is reclaimed by merging older snapshots, meaning the frequency of the graph

snapshots decreases for older data. This approach essentially stores the entire graph in
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a space efficient way; which is necessary for the community analysis Aggarwal and Yu

propose. However, given the size of the cell-phone networks, we prefer a more memory

efficient solution.

4.2.1 Contributions

Our goal is to quickly summarize the communication patternsof the streaming net-

work to identify areas of anomalous behavior. These may not necessarily correspond

to a single community but likely contains portions of a number of communities. We

characterize anomalous behavior in terms of the likelihoods of the edges in the graph;

however, we must deal with the size and dynamic nature of the network. We apply

stream sampling methods designed for non-relational datasets to three large, real-world

social networks. We evaluate three sampling methods, each of which weights the his-

tory of the stream differently. We evaluate the performanceof neighborhood and path

based anomalous link detection methods on samples of varying size drawn from the

social network.

4.2.2 Organization

The remainder of the paper is organized as follows. Section 2reviews previous

work related to graph sampling, stream sampling methods, and anomalous link detec-

tion. Section 3 describe how samples of the transaction stream are translated into social

networks. Section 4 describes the datasets. Section 5 describes our experimental setup

and results, and section 6 presents our conclusions and future directions for this work.
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4.3 RELATED WORK

In this section, we discuss related work coupled with the twomain components of

our work — sampling from streaming social networks and anomaly detection. We end

by juxtaposing the related work in the context of our work, highlighting our contribu-

tions.

4.3.1 Sampling

This section reviews previous work on sampling methods. Thefirst part, section

2.1.1, discusses methods of sampling networks. These worksare a good starting point,

but are not sufficient for our application since they assume static networks. To the best

of our knowledge, these methods have not yet been applied to maintaining updated

summaries of dynamic graphs. The second part, section 2.1.2, discusses methods of

sampling from streaming data; however, these methods are designed for non-relational

data. Our work combines ideas from these two topics to build samples of dynamic

graphs from streaming data.

4.3.1.1 Sampling Static Networks

Stumpfet al. [85] analyze the effect of node sampling on the degree distribution

of scale-free graphs. Node sampling consists of selecting some number of vertices

in the graph at random along with the edges among these vertices. They argue that

observations made on a sampled network can only generalize to the full network if

the degree distribution of the two networks belong to the same family of probability

distributions. They show analytically that subgraphs of scale-free graphs are not scale

free.

Lee et al. [56] empirically examine the effect of sampling graphs on four graph
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metrics: degree distribution exponent, betweenness centrality distribution exponent,

assortativity, and clustering coefficient. They consider three methods for sampling from

a network:

• Node sampling: some fraction of the vertices, along with the edges connecting

these vertices, are selected uniformly at random.

• Link sampling: some fraction of the edges are selected uniformly at random.

• Snowball sampling: a vertex in the graph is selected uniformly at random and

breadth first search is used to extract a subgraph of the desired size.

They found that, for the most part, sampling the graph affects these metrics consistently.

Research in computer networks evaluates a wider range of graph sampling methods,

motivated by an interest in performing detailed protocol simulations on small, realistic

networks [55]. Methods for generating such graphs include:

• Deletion methods: edges or vertices in a graph are randomly removed.

• Contraction methods: edges and vertices are randomly eliminated by merging

neighboring vertices.

• Exploration methods: extracts subgraphs via breadth first search or depth first

search.

The deletion and exploration methods are similar to the sampling methods in [56],

though several variants of both are examined in [55].

4.3.1.2 Sampling Streams: Non-relational Data

In this section, we briefly discuss three methods of samplingfrom streaming data,

particularly applicable to standard non-relational data:sliding window, uniform reser-
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voir sampling, and biased reservoir sampling. Each method provides an “anytime”

sample of the dataset, meaning that the sample is updated with the arrival of each data

item, and it always conforms to its specified representationof the data. On one extreme,

a sliding window consists of only the most recent data items in the stream. On the other

extreme, a uniform reservoir sample retains each data itemsin the stream with the same

probability. A biased reservoir sample is in the middle ground: more recent data items

have a higher probability of being retained in the sample.

Sliding Window. A sliding window stores only the most recent data items in the

streams. They may be either fixed in size,i.e. hold the lastn items, or they may contain

the data for some period of time,i.e. the last day.

Uniform Reservoir Sampling. Vitter [89] describes a one pass algorithm for ex-

tracting a uniform random sample ofn items from an arbitrarily large data set. The

algorithm populates the sample, called the reservoir, withthe firstn data items. Each

new item is placed in the reservoir with a probability ofn/N , whereN is the number

of data items that have been seen so far, in which case an item (selected uniformly at

random) is ejected from the reservoir. At any time during thearrival of the stream, the

reservoir contains a uniform random sample of the items seenso far.

Biased Reservoir Sampling. Aggarwal [6] presents a compromise between the

sliding window and uniform reservoir sampling approaches.The algorithm described

by Vitter is modified to store an exponentially biased reservoir sample. This algorithm

always adds the new data item to the reservoir. The probability that the new item

replaces an item in the reservoir is the fraction of the reservoir that is populated, in

which case an item is selected for replacement uniformly at random. Letp(r, t) be the

probability that therth item in the stream is in the sample aftert items arrive. Aggarwal

shows that for this algorithm,p(r, t) ∝ e−(t−r)/n.
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4.3.1.3 Summary

We combine link sampling with each of the stream sampling methods to summarize

dynamic graphs. Link sampling is the most natural approach since the edges automat-

ically provide the relevant vertices in the graph. Node sampling is problematic since

an additional mechanism is required for capturing the edgesbetween the vertices in the

sample. Feigenbaumet al. [37] show that building a breadth first search tree from a

stream requires multiple passes, so snowball sampling is not possible for this applica-

tion. Section 3 describes algorithms for building summaries of dynamic graphs.

4.3.2 Anomalous Link Detection

Rattigan and Jensen [76] define the anomalous link detection problem as the task

of finding “surprising” edges in a graph. Anomalous links maybe found by determin-

ing the likelihood of each edge in the graph; the edges with a likelihood below some

threshold may be considered anomalous. We use methods of determining edge likeli-

hoods from work on a closely related problem: link prediction [57].

Each method described below is a likelihood measure computed for each edge,

(u, v), in the graph.

4.3.2.1 Neighborhood Based Methods

We use two neighborhood measures: common neighbors and Jaccard’s coefficient.

These are drawn directly from the link prediction literature [57]. Common neighbors,

c, is simply the number of neighborsu andv share. Formally, letΓ(u) be the set of

vertices that are connected tou with an edge:

c = |Γ(u) ∩ Γ(v)| (4.1)
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Jaccard’s coefficient,J , is the probability that a neighbor ofu or v is a neighbor of both

u andv. Formally,

J =
|Γ(u) ∩ Γ(v)|

|Γ(u) ∪ Γ(v)|
(4.2)

4.3.2.2 Path Based Methods

Rooted PageRank is a path based method that measures the probability of a random

walk starting atu reachingv when the walk fails at each step with some probability,α

[57].

4.3.2.3 Summary

We use the neighborhood method and Jaccard’s coefficient as discussed above.

However, we provide a modification to rooted PageRank do minimize the memory con-

straints (see section 5.1 for details).

4.4 SAMPLING STREAMING GRAPHS

Each method described in section 2.1.2 provides an “anytime” sample,i.e. the data

in the sample always corresponds to its specified characteristics. For non-relational

datasets, this means that the sample is alway usable; however, for our data we must

build the graph from the sample. We only use one snapshot of the graph in this work;

however, for most applications, it is necessary to periodically analyze the network.

There are two possible approaches for updating dynamic graph summaries:

• Each snapshot of the network can be build from scratch using the state of the

sample at any given time (see algorithm 2).
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Algorithm 2 REBUILDGRAPH

Let G′ = (V ′, E ′) be the graph sample.
Let {t1, t2, . . . } be the set of times at which the graph is analyzed.
Let E(ti,tj) be the set of transactions that arrive between timeti andtj.
for all ti ∈ {t1, t2, . . . } do

for all ei ∈ E(ti−1,ti) do
UPDATESAMPLE(ei)

end for
V ′ ← ∅
E ′ ← ∅
for all ei = (vx, vy) ∈ E ′ do

V ′ ← V ′ ∪ {vx, vy}
E ′ ← E ′ ∪ {ei}

end for
Compute a likelihood measure for eachei ∈ E ′.

end for

• We can maintain an anytime graph by adding and removing edgesas the samples

are updated (see algorithm 3).

We use unweighted, undirected graphs, and we are only concerned with vertices

that have degree greater than zero. For each edge,(vi, vj), if either vertex is not already

in the graph, we add it. We then add the undirected edge, represented as two directed

edges, if it is not already present. We use AVL trees for storing both the vertices and the

edges. In the worst case, we must add two vertices,vi andvj, and two directed edges,

(vi, vj) and(vj, vi). Adding a vertex is simply an AVL tree insert. Adding a directed

edge consists of finding the source vertex in the vertex tree and inserting the destination

into the vertex’s adjacency tree. Each of these operations requiresO(log(|V |)) time,

where|V | is the number of vertices in the sample. Since there are a constant num-

ber of these operations, the overall time required for inserting an undirected edge is

O(log(|V |)).

Now suppose we want to remove an edge,(vi, vj), from the graph. The first step is

to remove the undirected edge. If either vertex has degree zero after the edge removal,
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Algorithm 3 UPDATEGRAPH

Let G′ = (V ′, E ′) be the graph sample.
Let {t1, t2, . . . } be the set of times at which the graph is analyzed.
Let E(ti,tj) be the set of transactions that arrive between timeti andtj.
Let d(vi) be the degree of vertexvi.
V ′ ← ∅
E ′ ← ∅
for all ti ∈ {t1, t2, . . . } do

for all ei = {e1, e2, . . . } do
UPDATESAMPLE(ei)
if edgeei = (vx, vy) is added to the samplethen

V ′ ← V ′ ∪ {vx, vy}
E ′ ← E ′ ∪ {ei}

end if
if edgeej = (vx, vy) is evicted from the samplethen

E ′ ← E ′ \ {ej}
if d(vx) = 0 then

V ′ ← V ′ \ {vx}
end if
if d(vy) = 0 then

V ′ ← V ′ \ {vw}
end if

end if
Compute a likelihood measure for eachei ∈ E ′.

end for
end for

it is also removed. Since removing an item from an AVL tree takesO(log(|V |)) time—

like insertion—the overall time complexity for edge removal is alsoO(log(|V |)).

Suppose we choose to build each snapshot from scratch. Let the sample store

|E| edges. In the worst case,|E| = |V |, and the time required to build the graph is

O(|E| log(|E|)).

Now suppose we choose to update the whenever the sample changes. In the worst

case, a change to the graph requires an edge insertion and an edge removal, which takes

O(log(|E|)) time. The frequency at which the sample updates depends heavily on the

type of sample used. Both sliding window and biased samples change with the arrival
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of each data item. Updating a sliding window always consistsof an edge insertion and

deletion; however, updating a biased sample does not alway require the edge removal.

Recall that the probability of edge eviction from a biased sample is the fraction of

the reservoir that is occupied; therefore, the rate at whichedges are removed from the

graph increases over time. In contrast, the probability that the uniform sample changes

is |E|/N , whereN is the number of data items seen so far. The uniform sample,

therefore, is expected to change less often as the stream progresses.

The appropriate choice depends on the situation. If the stream arrives very quickly,

it may not be feasible to update the graph for each change of the sample. This is

especially true for sliding windows and biased samples, since the arrival of each data

item changes the sample. Additionally, if the sample is verylarge or the network must

be analyzed frequently, it may not be feasible to repeatedlybuild the graph from scratch.

4.5 DATASET

We evaluate the effect of graph sampling on various methods of anomalous link

detection using three datasets. A text message (SMS) network and a call network are

the primary focus of our work. We also examine the Enron emaildataset [32] since it is

widely used and publicly available. Since the Enron datasetis fundamentally different

from our cell-phone network, it provides an external reference point that enhances our

analysis.

The SMS and call networks are extracted from the transactionrecords of a cellular

communication company; we use one day of data from these records for our evalua-

tion. An examination of the degree distribution of these datasets reveals vertices with

unrealistically high degrees (see figures 4.1 and 4.2). Certainly, it is not feasible for

someone to call 100,000 different people or send SMS to 10,000 different people in a
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Figure 4.1. The degree distribution for the SMS dataset.

day, so we prune the vertices with the highest0.1% degrees from these datasets. Such

vertices may be present for a number of reasons. They may be services that distribute

information to subscribers, or they may be fraudulent activity. These datasets contain

only transactions initiated by subscribers of a single service provider. Any call made

into the system from a non-subscriber that is not reciprocated does not appear as an

edge in the graph.

The Enron email dataset is a snapshot of Enron’s email serverthat was released

by the Federal Energy Regulatory Commission [32]. We generatea social network

from this snapshot by extracting the date, from, to, carbon-copy, and blind carbon-

copy fields from each email. We use theDate::Parse[2] package for Perl to handle

various timestamp formats found in the data. Several messages received unrealistic
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Figure 4.2. The degree distribution for the call dataset.

timestamps either due to noise in the data or failure ofData::Parse to handle certain

timestamp formats. These data (emails supposedly sent in 1970 or 2020, for example)

were removed. The dates in the final data set range from May 10,1999 to January 31,

2002.

Table4.1 gives a brief summary of the social networks that are used in this paper.

The vertices in the networks correspond to email address andphone numbers. The

datasets are sets of transactions (SMS messages, phone calls, and emails) that we rep-

resent as undirected, unweighted graphs. Figures 4.1, 4.2,and 4.3 show the degree

distributions of the SMS, call, and Enron datasets, respectively.
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Figure 4.3. The degree distribution of the Enron dataset.

4.6 EXPERIMENTS

We examine how methods for anomalous link detection are affected by edge sam-

pling from a graph. We use sample sizes ranging from 10% to 90%of the edges in

the original graph. We expect the values of these measures tochange as the graph is

sampled, and we are interested in whether the anomalous edges in the full graph are

also anomalous in the sample. Since larger common neighbors, Jaccard’s coefficient,

and rooted PageRank values are typically interpreted as higher edge likelihoods, we

evaluate using Spearman’s rank correlation. We compute therank correlation only for

the edges that appear in the sampled graph. Ideally, we wouldlike to see high rank

correlations, indicating that the edges remain in the same order of “anomalousness”.

The implementations of common neighbors and Jaccard’s coefficient are straight-
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TABLE 4.1

GENERAL CHARACTERICS OF THREE NETWORK DATASETS

vertices transaction edges

Enron 25,854 1,033,638 201,243

SMS (1 day) 2,350,793 3,339,708 1,597,818

Call (1 day) 6,261,633 8,019,290 5,243,128

forward; however, the normal approach for computing rootedPageRank is not feasible

for the cell-phone datasets due to space constraints. In this section, we describe an

approximation of rooted PageRank followed by a discussion ofthe results from our

experiments.

4.6.1 Approximation of Rooted PageRank

Recall that rooted PageRank is the probability that a random walk starting atu

reachesv when the walk fails at each step with some probability,α. The rooted PageR-

ank of an edge can be drawn directly from the stationary distribution of the Markov

Chain that represents the random walk described above [57]. AMarkov chain is de-

fined by a transition matrix that represents the probabilityof moving between any two

vertices in a single step. Multiplying the matrix by itselfm times produces a matrix

that gives the probability of moving between any two vertices in exactlym steps. A

transition matrixR has a stationary distribution,R(m), whenR
(m) = R

(m−1) [64].

Unfortunately, it is not feasible to store a transition matrix for the SMS and call

graphs in main memory due to their large number of vertices. Instead, we approximate

the rooted PageRank using Monte Carlo trials. The Rooted PageRank is estimated to

61



be the fraction of Monte Carlo trials in which the random walk reaches the destination.

Since the walk fails at each step independently and with a known probability,α, we

can bound the length of the walk using a geometric distribution. We bound the walk by

halting, for some threshold,θ, when the probability of reaching stepn is less thanθ.

We halt, and fail, when the walk reaches step

n = log1−α

θ

α
+ 1 (4.3)

Note that we remove the edge(u, v) from the graph before running the random walks

and re-add it once the rooted PageRank has been approximated for the edge.

Given this value, we estimate the number of paths of lengthn based on the average

degree of the graph,̄d, to bend̄. The number of Monte Carlo trials is proportional to

the estimated number of paths. For our experiments, we setα = 0.15 andθ = 0.001,

so n ≈ 31, and we run100nd̄ trials. Table 4.2 shows the average degree,d̄, and the

estimated number of paths,nd̄, for each dataset. This approach is not feasible for the

Enron dataset, due to its high average degree. Computation ofrooted PageRank for the

SMS and call datasets is feasible, though time-consuming.

4.6.2 Results and Discussion

Figures 4.4, 4.5, and 4.6 show the rank correlations described above for the three

datasets. Interestingly, the rank correlations of all three methods on the Enron dataset

follow roughly the same trend; though using a uniform samplein conjunction with com-

mon neighbors and Jaccard’s coefficient performs better than a biased sample or sliding

window. This may be due to the time coverage of this dataset: it extends two months be-

yond the large scale layoffs coinciding with the company’s bankruptcy announcement
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TABLE 4.2

CHARACTERISTICS OF NETWORK DATASETS RELATED TO

ROOTED PAGERANK

d̄ nd̄ |ru,v|

Enron 15.58 1.72× 1023 6.68× 108

SMS 1.36 1.06× 102 5.63× 1012

Phone 1.68 3.20× 102 3.92× 1013

on December 2, 2001, which likely had a significant impact on the company’s email

network (see figure 4.7) [38]. The biased sample and sliding window rely heavily on

recent information and, for small sample sizes ignore, all edges in the graph appearing

before December 2, 2001. The uniform sample, on the other hand, takes into account

the whole history, and, therefore, better captures the characteristics of the entire dataset.

In contrast, using a sliding window results in the best rank correlations on the call

dataset for Jaccard’s coefficient for small samples. This higher rank correlation may

be due to the fact that the portion of the dataset the sliding window relies on — the

last transactions of the day — is also the most active (see figure 4.8 for the volume of

call transactions throughout the day). As the sample sizes become larger, the sliding

window, like the uniform and biased samples, includes more transactions from earlier

in the day. This would explain why all three sampling methodsperform comparably for

larger samples. We see a similar phenomenon, though to a lesser extent, on the SMS

dataset. This may be due to the consistency of the activity volume after noon and the

smaller peak near the end of the day (see figure 4.9).

These results make sense if we think about how people may use their phones. For
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example, if people tend to call their friends in the evening,after work (note that in

figure 4.8 there is a peak around five o’clock in the evening), perhaps to make evening

plans or to visit with distant loved ones, the social networkis described more accurately

by only these transactions, which roughly correspond to thelast transactions of the

day. In this case, a uniform sample is likely to impact highlyactive and descriptive

transaction sub-streams more severely, which in turn degrades the performance of the

overall anomalous link detection approach.

The rank correlations are high across the board for the common neighbors measure

on the cell-phone network datasets. Issues related to the sparsity of the datasets raise

questions about how much meaning can be attached to these results. Most of the edges

in the cell-phone network datasets (> 85%) have the worst possible value (no common

neighbors). The vertices connected by these edges have no common neighbors in any

sample in which they appear (removing edges from a graph never increases the number

of common neighbors for a pair of vertices). Since these edges are in the majority, their

values for these measures do not change for any sample in which they are included.

Since they are likely to dominate any sample, the high rank correlations for common

neighbors seem to be trivial results.

4.7 CONCLUSIONS

In this paper, we evaluate the impact of edge sampling a graphon anomalous link

detection. We use three real-world social networks which vary widely in size and den-

sity. We evaluate three methods of computing edge likelihood: common neighbors,

Jaccard’s coefficient, and rooted PageRank. Rooted PageRank outperforms Jaccard’s

coefficient in terms of Spearman’s rank correlation; however, it is also much more com-

putationally expensive. Most of the results for common neighbors are not meaningful.

64



We investigate three methods of sampling, over a range of sample sizes, using Spear-

man’s rank correlation. Among the these methods, there is noclear winner; though we

make some observations. For Jaccard’s coefficient:

• The sliding window performs best on small samples of the rapidly changing cell-

phone network graphs.

• The uniform sample performs best on small samples of the Enron email dataset,

which evolves more gradually.

For rooted PageRank on the cell-phone network graphs:

• The sliding window performs consistently well compared to the other samples.

• The uniform sample performs worst on small samples.

• The biased sample performs worst on large samples.

The fact that the rank correlations for all trials are positive is promising; however, the

extent to which these values decline for small samples is a concern.

4.8 PROPOSED RESEARCH

In this chapter we examine methods for reducing relational datasets that arrive as

a stream for the fast detection of anomalous links. We currently focus only on a sin-

gle snapshot of the full dataset and propose to investigate the changes in the common

neighbors, Jaccard’s coefficient, and rooted PageRank distributions over time for both

the full data set and samples of the datasets described above. We will also examine

various subsets of the full network by extracting transactions for a diverse set of cities.
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Figure 4.4: The rank correlation for common neighbors on theEnron (left), SMS (cen-
ter), and call (right) datasets for varying sample sizes.
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Figure 4.5: The rank correlation for Jaccard’s coefficient on the Enron (left), SMS
(center), and call (right) datasets for varying sample sizes.
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Figure 4.6. The rank correlation for rooted PageRank on the SMS (top) and
call (bottom) datasets for varying sample sizes. It was not feasible to compute
rooted PageRank on the Enron dataset using our approximation(see section

4).
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Figure 4.7. The volume of email sent by week from May 10, 1999 to January
31, 2002.
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Figure 4.9. The volume of SMS messages sent over a day.
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CHAPTER 5

A REAL-TIME DATA SOURCE PROTOTYPE

In this chapter, we present an overview of the real-time datasource (RTDS). We dis-

cuss requirements, describe a prototype implementation and summarize lessons learned,

and list implementation issues and proposed research relating to this component.

5.1 OVERVIEW OF THE REAL-TIME DATA SOURCE

The real-time data source will receive raw transaction datafrom a cellular service

provider and serve requests for streaming data from other components of the WIPER

system, namely the Detection and Alert System, the Simulation and Prediction System,

and the Decision Support System. These components may request the transaction data

or aggregated summaries of the data,i.e. a summary consisting of the number of trans-

actions (calls, SMS,etc), in a series of time intervals. Some clients may only require

data from a limited geographical area, so the system will provide this filtering func-

tionality. The system will provide a uniform stream requestinterface for all clients and

must support many clients simultaneously. In particular, the Simulation and Prediction

System may contain many clients as it runs ensembles of simulations utilize new data

as it becomes available.

The remainder of this section provides a detailed description of the real-time data

source.
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5.1.1 Incoming Data Stream

The incoming data from the cellular providers will consist of a stream of transac-

tions. Each transaction consists of 6 fields (see figure 5.1):

1. the date on which the date on which the transaction occurs,

2. the time at which the transaction occurs,

3. the anonymized ID of the person initiating the transaction,

4. the anonymized ID of the person receiving the receiving the transaction,

5. the ID of the tower through which the transaction was initiated or received, and

6. the transaction type which whether the transaction is a phone call or SMS mes-

sage and whether the transaction is generated by the initiating or receiving hand-

set.

1 2 3 4 5 6
20061101,203311,596887,2295,214031250124834.000,SOM

Figure 5.1. The transaction format.

5.1.2 Input/Output

The RTDS will receive stream requests from clients via web services using SOAP

remote procedure calls. Data streams will be transmitted tothe clients over UDP sock-

73



ets.

5.1.3 Outgoing Data Stream

The RTDS will provide two types of streaming data to its clients.

• Raw transaction streams simply forward transactions to clients as they are re-

ceived by the RTDS.

• Summary transaction streams contain the number of transactions per client spec-

ified time interval.

Both of these streams may be filtered by tower ID. A whitelist isprovided by the

client and any transaction containing a tower ID that is not in the whitelist is ignored.

5.1.4 Temporal Constraints

The RTDS is driven by incoming transactions from the cellular service provider.

These tasks are neither periodic nor sporadic; however, we can establish an upper bound

on the rate at which transactions arrive. For this reason, the system will follow the rate-

based execution model.

5.2 PROTOTYPE IMPLEMENTATION

Our prototype for the real-time data source is implemented in Ruby, an interpreted,

object-oriented scripting language, and uses a periodic task model. Ruby was originally

selected for its simple, easy to use web services classes, though it also provides support

for multi-threading with a large priority space.
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5.2.1 The Task Set

There are two tasks associated with each client receiving a summary stream.

• An aperiodic task runs whenever a new transaction arrives from the service provider.

This task updates the summary for the current time interval.

• A periodic task runs at the end of each interval. It sends the interval summary to

the client and resets the summary for the next interval.

5.2.2 Task Scheduling

We use the periodic task model for the prototype and only concerned ourselves with

temporal constraints within the RTDS; that is, we assume no latency from the service

provider to the data source, and we ignore the latency between the data source and

clients altogether.

Let the delay be the time between the end of the of the intervalto the time the sum-

marized and filtered data is sent out to the clients. Ideally,the maximum delay will be

the length of the period of the shortest periodic task, though delays of the task’s period

may be tolerated. This requirement aims to provide both absolute and relative temporal

consistency since it establishes both a maximum age and a maximum difference in ages

for data distributed to the clients at the end of any given interval. Additionally, this

constraint guarantees that the system keeps up with the data: if the time required to

summarize an interval (after all the data for that interval was received) was longer than

any given interval, the quality of the data, due to perish, would decrease as time passes.

We implement and evaluate three standard scheduling algorithms for the periodic

tasks: deadline monotonic scheduling, earliest deadline first, and weighted fair queuing.

This task set differs from more traditional periodic real-time tasks sets in that the ape-

riodic tasks take on greater importance. One approach for catering to aperiodic tasks is
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the deadline monotonic scheduling algorithm [12] which is ageneralization of the rate

monotonic algorithm that allows for periodic task deadlines to be before the end of the

task’s period. We define the soft deadline for each task to be the minimum period in the

task set. The hard deadline is the end of the task’s period.

5.2.3 Utilization Analysis

The utilization of a real-time system with only periodic tasks is computed by

U =
n

∑

i=1

Ci

Ti

(5.1)

whereCi and Ti are the worst case execution time and the period, respectively, of

periodic taski. Let P be the worst case execution time of the periodic jobs. Since the

periodic tasks depend on the aperiodic tasks for correctness, we also must consider the

aperiodic tasks when computing the utilization. LetA be the worst case execution time

of the aperiodic jobs andR be the upper bound of the rate at which the transactions

arrive at the data server.RTi gives us an upper bound on the number of aperiodic tasks

that run in the period. The utilization is then

n
∑

i=1

P + RTiA

Ti

(5.2)

Since we stipulate that all periodic jobs must execute within the shortest interval, we

also add the following constraint to the schedulability analysis:

n
∑

i=1

P ≤ min(Ti). (5.3)
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Figure 5.2: The percent of missed deadlines, percent of skipped periodic tasks, and the
average delay of the periodic tasks for an increasing numberof clients with a task set
consisting of periods,0.05, 0.06, 0.07, 0.08, and0.09 seconds.

5.2.4 Evaluation and Results

The RTDS runs on a dual Pentium III (650 MHz) with 1 GB of main memory;

however, since Ruby threads are contained within the Ruby interpreter process, the

RTDS can only make use of one processor.

We evaluate the three algorithms based on four measures:

• the rate at which periodic tasks miss their soft deadlines (in practice, hard dead-

lines were rarely missed, rather tasks were skipped),

• the rate at which periodic tasks are skipped due to being released after the end of
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Figure 5.3: The median result sent to the clients with a task set consisting of periods
0.05, 0.06, 0.07, 0.08, and0.09 seconds.

their period,

• the average delay for periodic tasks,i.e. the average time between the end of the

summary interval and the time the data is sent to the client, and

• the median output of the periodic tasks for each interval.

Figure 5.2 shows the rate of missed deadlines, rate at which jobs are skipped, and

the average delay for the deadline monotonic, earliest deadline first, and weighted fair

queuing scheduling algorithms. Figure 5.3 the median output of the periodic tasks for

each interval. The task sets consist of 2 to 24 periodic tasks(clients) with periods of

0.05, 0.06, 0.07, 0.08, and0.09 seconds. Figure 5.2 shows that the deadline monotonic

scheduling algorithm performs significantly better in terms of percentage of missed

deadlines than either of the other two algorithms and slightly better in terms of average

delay when there are more than 16 clients. All three algorithms perform comparably in

terms of the fraction of jobs skipped due to being released after the hard deadline and

in terms of the server correctness shown in figure 5.3.

Table 5.1 shows empirically measured maximum execution times for both periodic

and aperiodic tasks in this system. Based on these execution times and the equation

derived in section 5.2.3 for system utilization (equation 5.2), the processor utilization is
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only about 0.26 when the correctness begins to degrade at approximately eight clients.

TABLE 5.1

TASK EXECUTION TIME

Task Type Execution Time

periodic 1.6× 10−3 seconds

aperiodic 8.5× 10−5 seconds

5.2.5 Discussion

The fact that the system fails with a utilization of only 0.26is a significant problem.

We believe that our choice of programming language contributes substantially to this;

therefore, we will migrate the system to a lower level compiled language, C. Since the

system is driven by aperiodic behavior, the arrival of tasksfrom the service provider,

we will abandon the periodic task model for rate-based execution.

5.3 CHALLENGES AND PROPOSED RESEARCH

The main challenge we face is a lack of control over the actualnetwork infras-

tructure that delivers data to the real-time data source. While using a cell-phone net-

work eliminates the effort and expense of deploying a sensornetwork, it imposes a

pre-designed data collection mechanism over which we have no control. Most notably

79



we have no control over the routing protocol, so we cannot guarantee highest priority to

older packets that must travel further. This issue may result in out-of-order transaction

arrival, a detailed we ignored in developing the prototype.The extent of this problem

may not be known at the time of deployment and will change overtime, so the system

must be adaptive. We propose to develop a method for dynamically determining the

maximum latency in order to balance delay times with omitteddata due to late arrival.
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CHAPTER 6

SUMMARY AND CONCLUSION

6.1 SUMMARY OF PROPOSED RESEARCH

We propose the following research:

• Develop a streaming hybrid clustering algorithm that requires noa priori knowl-

edge of the number of clusters.

• Identify feasible methods for reducing graph data for fast analysis.

• Identify graph features that can be quickly computed and allow the identification

of anomalous behavior in graphs.

• Develop a real-time system, following the rate-based execution model, that re-

ceives out-of-order streaming data and provides streamingdata (either raw or

summarized) to clients while performing on-line balancingbetween missing data

due to jitter and data propagation delay.

6.2 PROPOSED SCHEDULE

For the purposes of scheduling, we divide the proposed research into three areas:

traditional stream mining, relational stream mining, and real-time systems.
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• The traditional stream mining work is the most mature. We have a conference

publication [72] and a journal publication (to appear) [71]based on this work. We

believe that the next iteration of this work will be ready forconference submission

early in 2008 and journal submission in late 2008.

• The relational stream mining work consists of two parts: reducing graphs for

fast analysis and detection of anomalous behavior in graphs. Work on the first

component will be submitted to SIAM’s data mining conference in early October

2007. We expect conference level work for the second component to be ready

early in 2008. We expect journal submissions on both components in late 2008

or early 2009.

• The real-time systems component is the least mature. Given the drawbacks of the

prototype, the real-time data source must be completely redesigned and rebuilt.

We expect to have a conference submission ready in mid 2008 and a journal

submission in early 2009.

We expect that this work will culminate in a dissertation that will be ready for defense

in March 2009.
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