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Abstract

Novel aspects of human dynamics and social interactions are investigated

by means of mobile phone data. Using extensive phone records resolved in

both time and space, we study the mean collective behavior at large scales

and focus on the occurrence of anomalous events. We discuss how these

spatiotemporal anomalies can be described using standard percolation theory

tools. We also investigate patterns of calling activity at the individual level

and show that the interevent time of consecutive calls is heavy-tailed. This

finding, which has implications for dynamics of spreading phenomena in social

networks, agrees with results previously reported on other human activities.

1 Introduction

Mobile phones are becoming increasingly ubiquitous throughout large portions of the
world, especially in highly populated urban areas and particularly in industrialized
countries, where mobile phone penetration is almost 100%. Mobile phone providers
regularly collect extensive data about the call volume, calling patterns, and the
location of the cellular phones of their subscribers. In order for a mobile phone to
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place outgoing calls and to receive incoming calls, it must periodically report its
presence to nearby cell towers, thus registering its position in the geographical cell
covered by one of the towers. Hence, very detailed information on the spatiotemporal
localization of millions of users is contained in the extensive call records of any mobile
phone carrier. If misused, these records - as well as similar datasets on buying habits,
e-mail usage, and web-browsing, for instance - certainly pose a serious threat to
the privacy of the users. However, the use of privacy-safe, anonymized datasets
represent a huge scientific opportunity to uncover the structure and dynamics of
the social network at different levels, from the small-scale individual’s perspective
to the large-scale, collective behavior of the masses, with an unprecedented degree
of reach and accuracy. Besides the inherent scientific interest of these issues, deeper
insight into applications of great practical importance could certainly be gained.
For instance, urban planning, public transport design, traffic engineering, disease
outbreak control, and disaster management, are some areas that will greatly benefit
from a better understanding of the structure and dynamics of social networks [1].

The use of mobile phone data as a proxy for social interaction has already proved
successful in several recent investigations. Onnela et al. [2, 3] have analyzed the
structure of weighted call graphs arising from reciprocal calls that serve as signa-
tures of work-, family-, leisure- or service-based relationships. A coupling between
interaction strengths and the network’s local structure was observed, with the coun-
terintuitive consequence that social networks turn out to be robust to the removal of
the strong ties but fall apart following a phase transition if the weak ties are removed.
Szabó and Barabási [4] have studied social network effects in the spread of innova-
tions, products and new services. They investigated different mobile phone-based
services and found the coexistence on the same social network of two distinct usage
classes, with either very strong or very weak community-based segregation effects.
In the context of urban studies and planning, Ratti et al. [5, 6] have considered
the potential use of aggregated data from mobile phones and other hand-held de-
vices. Their “Mobile Landscapes” project aims at the application of location based
services to urban studies in order to gain insight into complex and rapidly chang-
ing urban dynamics phenomena. More recently, Palla, Barabási and Vicsek [7, 8]
used mobile phone data to study the evolution of social groups. They found that
large groups persist for longer times if they are capable of dynamically altering their
membership, suggesting that an ability to change the group composition results in
better adaptability. In contrast, the behavior of small groups displays the opposite
tendency, the condition for stability being that their composition remains stable.

In the following sections, we present new results that address novel aspects of
human dynamics and social interactions obtained from extensive mobile phone data.
In Sect. 2 we show how large-scale collective behavior can be described using aggre-
gated data resolved in both time and space. We stress the importance of investigat-
ing large departures from the average and develop the basic framework to quantify
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anomalous fluctuations by means of standard percolation theory tools. In Sect. 3 we
focus on the individual level and study patterns of calling activity. We show that the
interevent time of consecutive calls is heavy-tailed, a finding that has implications
for the dynamics of spreading on social networks [9, 10, 11, 12, 13, 14, 15, 16, 17].
Furthermore, by fixing the time of observation between consecutive calls it is possible
to use the phone call data to characterize some aspects of human mobility.

2 Fluctuations in aggregated spatiotemporal call

activity patterns

The spatial dependence of the call activity at any given time can be conveniently
displayed by means of maps divided in Voronoi cells, which delimit the area of
influence of each transceiver tower or antenna. Figure 1 shows activity maps for
aggregated data corresponding to a 1-hour interval. The upper panel shows the
activity pattern (in log10 scale) for a peak hour (Monday noon), while the lower panel
shows the same urban neighborhood during an off-peak hour (Sunday at 9 am). The
differences between both panels reflect the intrinsic rhythm and pulse of the city: we
can expect call patterns during peak hours to be dominated by the hectic activity
around business and office areas, whereas other, presumably residential and leisure
areas can show increased activity during off-peak times, thus leading to different,
spatially distinct activity patterns. Besides different spatial patterns, each particular
time of the day, as well as each day of the week, is characterized by a different overall
level of activity. This phenomenon is shown by the plot at the center of Figure 1,
in which aggregated data for a country is shown as a function of time (data was
binned in time intervals of 1 hour). As expected, the overall normalization of the
aggregated pattern is lower during weekends than during weekdays, except around
weekend midnights and early mornings, when many people go out.

The minimum spatial resolution is determined by either the typical distance
between towers or, in rural regions with sparse tower density, by the reach of the
radio-frequency signals exchanged between the mobile handset and the antenna
(typically ranging from a few hundred meters to several kilometers). To explore
activity differences at larger scales, the data of neighboring cells can be aggregated.
At the expense of some loss of spatial resolution, aggregating data into larger spatial
bins (taking, e.g., a regular spatial grid covering the entire country) allows for better
statistics and for a more stable activity pattern. That is, the number of calls made
from a group of nearby cells at a certain time and day of the week is expected to be
fairly constant, except for small statistical fluctuations.

Usually, activity patterns are strongly correlated with the daily pulse of popu-
lated areas (such as those shown in Fig. 1) and, at a larger scale, to variations in
population density between different regions within the country. In contrast, depar-
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Figure 1: Call activity maps in an urban neighborhood, showing the number of calls
per hour managed by each transceiver tower or antenna (dots). The division in
terms of Voronoi cells defines the area of reach of each tower. Call traffic patterns
depend on time and day of the week, as shown by comparing the map on a Monday
at noon (upper panel) with that on a Sunday at 9 am (lower panel). The bars on
the right side of each panel correspond to the number of calls per hour and tower in
log10 scale.

tures from the mean expected activity are in general not trivially correlated with
population density and describe instead interesting dynamical features.

The measurement of fluctuations around the mean expected activity is of paramount
importance, since it allows a quantitative measurement of anomalous behavior and,
ultimately, of possible emergency situations. This indeed constitutes the base of
proposed real-time monitoring tools such as the Wireless Phone-based Emergency

Response (WIPER) system [18]. Anomalous patterns indicative of a crisis (such
as the occurrence of natural catastrophes and terrorist attacks) could be detected
in real time, plotted on satellite and GIS-based maps of the area, and used in the
immediate evaluation of mitigation strategies, such as potential evacuation routes
or barricade placement, by means of computer simulations [18, 19].
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Figure 2: Activity and fluctuations in a regular 2D grid showing a normal event (left
panels) and an anomalous one (right panels). The activity is displayed in terms of
the number of calls per hour inside each square bin in log10 scale (upper panels).
High-activity bins above the fluctuation threshold Athr = 0.25 are shown in black,
while bins with normal activity are shown in grey (bottom panels). Bins in white
correspond to areas not covered by the mobile phone carrier.

The call volume shows strong variations with time and day of the week, as shown
in Figure 1, but differences across subsequent weeks are generally mild (provided
one considers call traffic in the same place, time and day of the week). To capture
the weekly periodicity of the observed patterns, we define ni(r, t, T ) as the number
of calls recorded at location r (which can either denote a single Voronoi cell or a
group of neighboring cells) during the ith week between times t and t + T , where
time is defined modulo 1 week. Assuming we have access to continuous data for N
weeks, the mean call activity is given by

〈n(r, t, T )〉 =
1

N

N
∑

i=1

ni(r, t, T ) . (1)
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Figure 3: Size of the largest cluster as a function of the fluctuation threshold for the
normal case (left) and the anomalous one (right). Measurements on the call data
(solid line with circles) are compared to those of randomized distributions, of which
we show the mean (long-dashed line) and confidence bounds at ±σrdm (short-dashed
lines) and ±2σrdm (dotted lines).

Note that, in the same way as one can trade off spatial resolution for increased
statistics by summing over a group of Voronoi cells, varying T one can regulate time
accuracy versus statistics. This certainly depends on the extent to which aggregated
data shows a regular, stable behavior. The results presented here correspond to
T = 1 hour.

The scale to measure departures from the average behavior is set by the standard

deviation, defined as

σ(r, t, T ) =

√

√

√

√

1

N − 1

N
∑

i=1

(ni(r, t, T ) − 〈n(r, t, T )〉)2 . (2)

Hence, using recorded data for an extended period of time, one can determine the
expected call traffic levels and corresponding deviations for all times and locations.
Once this normal behavior is established, anomalous fluctuations above or below a
given threshold can be obtained using the condition

|ni(r, t, T ) − 〈n(r, t, T )〉| > Athr × σ(r, t, T ) , (3)

where Athr > 0 is a constant that sets the fluctuation level.
We grouped Voronoi cells together generating a regular 2D grid made of square

bins of about 12 km of linear size. Considering a fixed time slice, we study the
spatial clustering of bins showing anomalous activity at different fluctuation levels.
In order to illustrate our procedure, Figure 2 shows the activity and fluctuations in
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Figure 4: Number of different clusters as a function of the fluctuation threshold for
the normal case (left) and the anomalous one (right). Measurements on the call data
(solid line with circles) are compared to results on random configurations (dashed
and dotted lines).

a grid of size 40× 40 bins (i.e. 480× 480 km2 area). We compare the activity in the
same region for 2 different weeks (corresponding to the same time and day of the
week). The left panels show a normal event, in which fluctuations around the local
mean activity are typically small, with just a few scattered bins having somewhat
larger deviations. The right panels, however, show an anomalous event, character-
ized by extended, spatially correlated fluctuations that indicate the emergence of
a large-scale, coordinated activity pattern. As pointed out above, the existence of
anomalous activity patterns could be indicative of possible emergency situations.
Similarly to the Voronoi maps already discussed, the upper panels in Fig.2 show
the activity (number of calls per hour inside each square bin) in log10 scale. White
bins correspond to areas not covered by the mobile phone provider. Taking a fixed
threshold value Athr = 0.25, the bottom panels show the high-activity bins above the
fluctuation threshold (in black) and the bins with normal activity (in grey). Note
that, although the activity maps have a similar appearance to the degree that they
seem at first look indistinguishable, the fluctuation maps display striking differences.

In order to quantify the clustering of anomalous bins, we will use the standard
tools of percolation theory and determine the size of the largest cluster, the num-
ber of different clusters, and the size distribution of all clusters. The statistical
significance of the measured clustering is evaluated by comparing it to results from
randomized distributions, in which many different configurations are randomly gen-
erated, keeping fixed the total number of high-activity bins above the fluctuation
threshold. The substrate, which is formed by all bins with non-zero activity, re-
mains always the same (in Fig.2, for instance, the substrate is the set of all grey and
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Figure 5: Cumulative size distribution of all clusters as a function of cluster size, for
Athr = 0.25 (upper panels), Athr = 0.75 (bottom panels), normal case (left panels),
and anomalous case (right panels). Thick solid lines are measurements on the call
data, while dashed and dotted lines are results from random configurations.

black bins). Clusters are defined by first- and second-order nearest neighbors in the
square 2D grid. In the remainder of this section, we will focus on a specific large-
scale anomalous event and compare it to the normal behavior observed in data of a
different week (but corresponding to the same time and day of the week). The com-
parison between normal and anomalous events will illustrate the use of percolation
observables as diagnostic tools for anomaly detection.

Figure 3 shows the size of the largest cluster, Smax, as a function of the fluc-
tuation threshold Athr, for the normal case (left) and the anomalous one (right).
Each measured plot (solid line with circles) is compared to results from randomized
distributions. The latter correspond to the mean (long-dashed line) and confidence
bounds at ±σrdm (short-dashed lines) and ±2σrdm (dotted lines), as obtained from
generating 100 random configurations in each case. As expected, the plots show that
the size of the largest cluster monotonically decreases with the fluctuation thresh-
old. However, while the clustering in the normal case lacks any significance, the
anomalous event shows large departures from the clustering expected in a random
configuration.

In the same vein, Figure 4 shows the number of different clusters, Ncl, as a func-
tion of the fluctuation threshold Athr, where measurements on the call data for the
same normal (left) and anomalous (right) events are compared to results from ran-
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domized configurations. As before, in the normal case the number of clusters agrees
well with the expectations for random configurations, while significant departures
are observed in the anomalous case.

Figure 5 shows the cumulative size distribution of all clusters, Ncl(scl > S), as a
function of the cluster size S, compared to random configurations. The upper panels
display results for Athr = 0.25, while the bottom ones show results for Athr = 0.75, as
indicated. Moreover, the left panels correspond to the normal event, while the right
panels to the anomalous event. Again, the measured cluster size distribution in the
normal case is in good agreement with the expected one for a random configuration.
In contrast, the anomalous event shows the occurrence of a few very large clusters
formed by many highly active bins. These unusually large structures cannot be
explained as arising just from random configurations, but instead are the result of
the spatiotemporal correlation of large, highly active regions.

As a summary, in this Section we showed how large-scale collective behavior can
be described using aggregated data resolved in both time and space. Moreover,
we developed the basic framework for detecting and characterizing spatiotemporal
fluctuation patterns, which is based on standard procedures of statistics and perco-
lation theory. These tools are particularly effective in detecting extended anomalous
events, as those expected to occur in emergency scenarios due to e.g. natural catas-
trophes and terrorist attacks.

3 Individual calling activity patterns

In order to use the huge amount of data recorded by mobile phone carriers to investi-
gate various aspects of human dynamics [1, 20, 21, 22, 23], a necessary starting point
it is to characterize the dynamics of the individual calling activity per se. Previous
studies have measured the time between consecutive individual-driven events, such
as sending e-mails, printing, and visiting a web page or the library [24, 25]. Those
events are described by heavy-tailed processes [20, 26], challenging the traditional
Poissonian modeling framework [27, 28, 29, 30, 31], with consequences on task com-
pletion in computer systems. In this section we explore the interevent distribution
of the calling activity of 6 × 106 mobile phone users during 1 month.

As many other human activities, the calling activity pattern is highly hetero-
geneous. While some users rarely use the mobile phone others make hundreds or
even thousands of calls each month. To analyze so different levels of activity, we
group the users based on their total number of calls. Within each group, we mea-
sure the probability density function P (∆T ) of the time interval ∆T between two
consecutive calls made by each user. As the inset of Fig. 6 shows, the tail of the dis-
tribution is shifted to longer interevent times for users with less activity. However,
if we plot ∆TaP (∆T ) as a function of ∆T/∆Ta, where ∆Ta is the average interevent
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Figure 6: Interevent time distribution P (∆T ) for calling activity. ∆T corresponds
to the time interval between two mobile phone calls sent by the same user. Different
symbols indicate the measurements done over groups of users with different activity
levels (# calls). The inset shows the unscaled interevent time distribution and the
solid line corresponds to Eq. (4).

time for the corresponding user, the data collapses into a single curve (Fig. 6). This
indicates that the measured interevent distribution follows the expression P (∆T ) =
1/∆TaF(∆T/∆Ta), where F(x) is independent of the average activity level of the
population. This represents a universal characteristic of the system that surprins-
ingly also coincides with the result from e-mail communication [32]. The data is
well be fitted by

P (∆T ) = (∆T )α exp(∆T/τc), (4)

where the power law scaling with exponent α = 0.9±0.1 is followed by an exponen-
tial cutoff at τc ≈ 48 days. Equation (4) is shown by a solid line in the inset of Fig. 6
and its scaled version is presented in the main panel of the figure using ∆Ta = 8.2
hours, which is the average interevent time measured for the whole population. The
obtained result is clearly different from the one predicted by a Poisson approxima-
tion [26, 33, 34]. This would for instance affect the predictions of spreading dynamics
through the network of calls [35].
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Figure 7: Travel behavior. (a)-(b) Number of trips and consecutive calls that are
reported within a fixed interevent time ∆To = 30 min vs. time of the day. (c) The
ratio of the two quantities described in (a) and (b) shows that along the whole day
40 ± 20% of the people that is calling seems to be also traveling. (d) The average
distance of travel within ∆To = 30 min remains constant during the day within
6± 2 km, a reasonable value that may be the combination between walk and motor
transportation.

To explore the interplay between human activity and mobility patterns, we fix the
characteristic observation time to ∆To = 30 min, and collect only those consecutive
calls that occur with this interevent time, recording also the time of the day in which
they occurred (Fig. 7 a). For each pair of calls we count how many of them result
in a change of coordinate, e.g. the user traveled in the 30 min time interval between
the calls (Fig. 7 b). The number of events that result in a change of location and
the number of calls vs. time capture the daily activity pattern of the users [36]. We
find that both the call and the mobility pattern decrease at night and have clear
peaks near noon and late evening. There is a factor of 30 between the largest and
the smallest number of events (calls/changes of location) reported during the day.
Interestingly, when we calculate the fraction of consecutive calls also resulting in
a potential change of location, the quantity varies at most 40% during the whole
day (Fig. 7c). This indicates that although the total activity varies strongly, the
percentage of the people that are calling and traveling remains relatively stable.

11



More importantly, the average distance traveled within ∆To = 30 min. is stable
in the vicinity of ∆r = 6 ± 2 km (Fig. 7d), a value consistent for the combination
between walk and motor transportation.

4 Conclusions

Novel aspects of human dynamics and social interactions were addressed by means
of mobile phone data with time and space resolution. This allowed us to study the
mean collective behavior at large scales and focus on the occurrence of anomalous
events. Considering a fixed time slice, we partitioned the space using a regular grid
and studied the aggregated call activity inside each square bin forming the grid. We
showed that anomalous events give rise to spatially extended patterns that can be
meaningfully quantified in terms of standard percolation observables. By considering
a series of consecutive time slices, we could investigate the rise, clustering and decay
of spatially extended anomalous events, which could be relevant e.g. in real-time
detection of emergency situations.

We also investigated patterns of calling activity at the individual level. We
observed that the interevent time of consecutive calls is heavy-tailed, a finding that
has implications for dynamics of spreading phenomena on social networks, and that
agrees with results previously reported on other, related human activities. We also
show that, despite of the complexity inherent in the interevent calling patterns,
it is still possible to recover some characteristic values from the behavior of the
population that are stationary during the day, such as the fraction of active traveling
population and their average distance traveled.

In many ways, these results represent only a first step towards understanding
human activity patterns. Our results indicate that the rich information provided by
mobile communication data open avenues to addressing novel problems. These tools
offer a chance to improve our understanding of complex networks as well [37, 38, 39,
40, 41, 42, 43, 44], by potentially correlating the structure of social networks with
the spatial layout of the users as nodes [45, 46, 47, 48, 49, 50, 51], thus contributing
to a better understanding of the spatiotemporal features of network evolution.
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