December 18, 2011

An Integral Identity

Can you prove the following identity?
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Solution The inside of the integral can be rewritten in terms of the exponential
function m% =127% = e "% Using the series representation for e®, we get
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as a series representation for x7*. We wish to integrate the series term by term.
The following lemma will be helpful.

Lemma 1. For every natural number n > 0 and k > 0,
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Proof. Chose n, arbitrarily. Proof is by induction on k. If £ = 0 then

1
1
/x”dx: .
0 n+1

Now suppose the identity holds for all £ < k. Using integration by parts,
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The middle term evaluates to 0, so using the induction hypothesis on the right
hand side integral we get the desired equality.
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To show the initial identity we replace the integrand by its series expansion,
and then integrate term by term, using the identity in the previous lemma to
do the actual integration.
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Thanks to John Holmes for the central idea of integrating the series term-
wise.



